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Figure S5. Multivariable-adjusted associations between individual prenatal PFAS and BMI 

(kg/m2) in late adolescence estimated using (A) linear regression, (B) quantile g-computation, and 

(C) Bayesian kernel machine regression (n = 545). Panel A shows the differences and 95%

confidence intervals of BMI per doubling of PFAS levels (estimates are provided in Table 3

[Adjusted]). Panel B shows the weights for each PFAS that correspond to the proportion of the 
overall effect of all PFAS on BMI in the positive or negative direction (positive and negative 
weights, respectively, add up to 1, representing the proportion of the overall effect and the relative 
importance of each mixture component within each direction; the shading of bars represents the 
overall effect size within each direction, with darker shades indicating a larger effect compared to 
lighter shades; estimates are provided in Table S8). Panel C shows the estimates and 95% credible 
intervals of PFAS with BMI when all other PFAS are fixed at their 50th percentile.
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DXA lean mass index (kg/m2) in late adolescence when all PFAS are in their 10th to 90th 
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estimated using Bayesian kernel machine regression (n = 439). 
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percentage fat in late adolescence estimated using (A) linear regression, (B) quantile g-

computation, and (C) Bayesian kernel machine regression (n = 439). Panel A shows the 

differences and 95% confidence intervals of DXA percentage fat per doubling of PFAS levels 

(estimates are provided in Table 3 [Adjusted]). Panel B shows the weights for each PFAS that 

correspond to the proportion of the overall effect of all PFAS on DXA percentage fat in the 

positive or negative direction (positive and negative weights, respectively, add up to 1, 

representing the proportion of the overall effect and the relative importance of each mixture 

component within each direction; the shading of bars represents the overall effect size within each 

direction, with darker shades indicating a larger effect compared to lighter shades; estimates are 

provided in Table S8). Panel C shows the estimates and 95% credible intervals of PFAS with 

DXA percentage fat when all other PFAS are fixed at their 50th percentile. 
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mass index (kg/m2) in late adolescence estimated using (A) linear regression, (B) quantile g-

computation, and (C) Bayesian kernel machine regression (n = 439). Panel A shows the 

differences and 95% confidence intervals of DXA fat mass index per doubling of PFAS levels 

(estimates are provided in Table 3 [Adjusted]). Panel B shows the weights for each PFAS that 

correspond to the proportion of the overall effect of all PFAS on DXA fat mass index in the 

positive or negative direction (positive and negative weights, respectively, add up to 1, 

representing the proportion of the overall effect and the relative importance of each mixture 

component within each direction; the shading of bars represents the overall effect size within each 

direction, with darker shades indicating a larger effect compared to lighter shades; estimates are 

provided in Table S8). Panel C shows the estimates and 95% credible intervals of PFAS with 

DXA fat mass index when all other PFAS are fixed at their 50th percentile. 



Figure S9. Multivariable-adjusted associations between individual prenatal PFAS and DXA 

trunk fat mass index (kg/m2) in late adolescence estimated using (A) linear regression, (B) 

quantile g-computation, and (C) Bayesian kernel machine regression (n = 439). Panel A shows 

the differences and 95% confidence intervals of DXA trunk fat mass index per doubling of PFAS 

levels (estimates are provided in Table 3 [Adjusted]). Panel B shows the weights for each PFAS 

that correspond to the proportion of the overall effect of all PFAS on DXA trunk fat mass index in 

the positive or negative direction (Positive and negative weights respectively add up to 1, 

representing the proportion of the overall effect and the relative importance of each mixture 

component within each direction; estimates are provided in Table S8). Panel C shows the 

estimates and 95% credible intervals of PFAS with DXA trunk fat mass index when all other 

PFAS are fixed at their 50th percentile. 
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lean mass index (kg/m2) in late adolescence estimated using (A) linear regression, (B) quantile g-

computation, and (C) Bayesian kernel machine regression (n = 439). Panel A shows the 

differences and 95% confidence intervals of DXA lean mass index per doubling of PFAS levels 

(estimates are provided in Table 3 [Adjusted]). Panel B shows the weights for each PFAS that 

correspond to the proportion of the overall effect of all PFAS on DXA lean mass index in the 

positive or negative direction (positive and negative weights, respectively, add up to 1, 

representing the proportion of the overall effect and the relative importance of each mixture 

component within each direction; the shading of bars represents the overall effect size within each 

direction, with darker shades indicating a larger effect compared to lighter shades; estimates are 

provided in Table S8). Panel C shows the estimates and 95% credible intervals of PFAS with 

DXA lean mass index when all other PFAS are fixed at their 50th percentile. 

Figure S11. Associations between prenatal PFAS 1 concentrations (columns) and BMI (kg/m2) in 

late adolescence by levels (10th, 25th, 50th, 75th, and 90th percentile) of prenatal PFAS 2 

concentration (rows) when all other PFAS are fixed at their 50th percentile estimated using 

Bayesian kernel machine regression (n = 545). 
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percentage fat in late adolescence by levels (10th, 25th, 50th, 75th, and 90th percentile) of prenatal 

PFAS 2 concentration (rows) when all other PFAS are fixed at their 50th percentile estimated 

using Bayesian kernel machine regression (n = 439). 
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PFAS 2 concentration (rows) when all other PFAS are fixed at their 50th percentile estimated 

using Bayesian kernel machine regression (n = 439). 
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mass index (kg/m2) in late adolescence by levels (10th, 25th, 50th, 75th, and 90th percentile) of 

prenatal PFAS 2 concentration (rows) when all other PFAS are fixed at their 50th percentile 

estimated using Bayesian kernel machine regression (n = 439). 



Figure S15. Associations between prenatal PFAS 1 concentrations (columns) and DXA lean mass 

index (kg/m2) in late adolescence by levels (10th, 25th, 50th, 75th, and 90th percentile) of prenatal 

PFAS 2 concentration (rows) when all other PFAS are fixed at their 50th percentile estimated 

using Bayesian kernel machine regression (n = 439). 

Figure S16. Fractional polynomial prediction plots showing the association between age and 

body mass index across childhood and adolescence by prenatal PFOS, EtFOSAA, and MeFOSAA 

levels stratified by child sex (male [n = 616] vs. female [n = 540]). “Higher” was defined as PFAS 

levels above the population median, and “lower” was defined as PFAS levels below the 

population median. Median levels were 25.70 ng/mL for PFOS, 1.20 ng/mL for EtFOSAA, and 

1.90 ng/mL for MeFOSAA. 
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