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1 Further Information on Graph Notation and Definitions

Graph-theoretic elements. Graphs consist of the following key elements:
e Node v represents a biomedical entity, ranging from atoms to patients.

e FEdge e, , is arelation or link between node entities v and v, such as a bond between atoms, an
affinity between molecules, a disease association between phenotypes, and a referral between a
patient and a doctor. We denote the edge set in the graph as £ and the complementary non-edge
set as £¢. The edge can be directed, oriented such that it points from a source (or head node)
to a destination (or tail node). The edge can also be undirected, where the nodes have two-way

relations.

e Graph G = (V, ) consists of a collection of nodes )V that are connected by an edge set £, such
as a molecular graph or protein interaction network. Adjacency matrix A is commonly used to
represent a graph, where each entry A, , is 1 if nodes u, v are connected, and O otherwise. A, ,,
can also be the edge weight between nodes u,v. We denote the number of the nodes |V| = n

and the number of edges |E| = m.

e Subgraph S = (Vg,Es) is a subset of a graph G = (V, ), where Vs C V,Eg C E. Examples
include disease modules in a protein interaction network or communities in a patient-doctor

referral network.

e Node Feature x, € R? describes attributes of node v. The node feature matrix is denoted as
X € R™9, Similarly, we can have edge features X, € R for edge e,,, collected together into

edge feature matrix X¢ € R"*¢,

e Label is a target value associated with either a node Y,,, an edge Y., a subgraph Y, or a graph
Ya.

Walks and paths in graphs. A walk of length [ from node v; to node v; is a sequence of nodes
and edges v, N T SailN v;. A (simple) path is a type of walks where all nodes in the
walk are distinct. For every two nodes u, v in the graph G, we define the distance d(u,v) as the
length of the shortest path between them. In a heterogeneous graph, a meta-path is a sequence of

node types V; and their edge types R; ;: V; NS VN VAR )
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Local neighborhoods. For a node v, we denote its neighborhood A (v) as the collection of nodes
that are connected to v, and its degree is the size of N'(v). The k hop neighborhood of node v is

the set of nodes that are exactly k hops away from node v: N*(v) = {u|d(u,v) = k}.

Graph types. The following types of graphs are commonly considered to model complex biomed-

ical systems.

e Simple, weighted, and attributed graphs. A simple graph G = (V, £) is fully described by nodes
V and edges £. For example, a set of binary PPIs gives rise to an unweighted PPI network.
Further, nodes and edges can be accompanied by single-dimensional (e.g., edge weights) or
multi-dimensional attribute vectors describing node and edge properties. For example, each
node in a cell-cell interaction network can have a gene expression attribute vector encoding the

gene’s expression profile.

e Multimodal or heterogeneous graphs. Multimodal or heterogeneous graphs consist of nodes of
different types (node type set A) connected by diverse kinds of edges (edge type set R). For ex-
ample, in a drug-target-disease interaction network, nodes represent A = {drugs, proteins, diseases}

and edges indicate R = {drug-target binding, disease-associated mutations, treatments }.

e Knowledge graphs. A biomedical knowledge graph is a heterogeneous graph that captures
knowledge retrieved from literature and biorepositories. A knowledge graph is given by a set of
triplets (u,r,v) € ¥V x R x V, where nodes u, v belong to node types A and are connected by

edges with type r € 'R.

e Multi-layer graphs. Multi-layer graphs capture hierarchical relations by grouping individual
networks into different layers. Formally, we have a set of networks G, --- , G, and [ layers
where each layer corresponds to a set of networks. Different layers can represent distinct con-
texts, such as tissues or diseases. Edges can also be added across layers. For example, each
tissue can be represented with a tissue-specific PPI network, and PPIs for every tissue can be
organized by tissue taxonomy, where each layer corresponds to a tissue taxonomy. Inter-layer

edges can be connected for the same proteins across tissues .

e Temporal graphs. Biomedical systems evolve over time. A temporal graph consists of a se-
quence of graphs G, - -- , G ordered by time, where at each time step ¢, we observe a subset

of all nodes and their activity. For example, a human brain can be modeled as a temporal graph
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of brain regions showing task-related increases in neural activity at time ¢ (e.g., greater activ-
ity during an experimental task than during a baseline state) and linked based on functional

connectivity at ¢.

e Spatial graphs. Nodes or edges in a spatial graph are spatial elements usually associated with
coordinates in one, two, or three dimensions, e.g., a spatial representation of cell-cell interactions
in the 3-dimensional (3D) Euclidean tissue environment or a 3D point cloud of the protein’s
atomic coordinates. Spatial graphs are defined by having nodes or edges with spatial locations.
This small modification to aspatial graphs has profound effects on how these graphs are used
and interpreted because a spatial graph is a location map of points with the constraints of space

rather than an abstract structure.

The graph types described above can be combined to give rise to new objects, such as multi-layer

spatial graphs or multimodal temporal graphs.

2 Overview of Graph Machine Learning Tasks
We divide machine learning tasks on biomedical graphs into three broad categories: graph pre-
diction, latent graph learning, and graph generation. Each category is associated with several

individual graph machine learning tasks.

Canonical graph prediction. Graph prediction aims to predict a label in the graph. The label can
be associated with any unit of the graph. There are four canonical graph learning tasks: (1) Node
classification/regression aims to find a function f : VV — Y}, that predicts the label of a node in the
graph; (2) Link prediction aims to find a function f : £ U £ — {0, 1}) to predict whether there
exists a link between a given pair of nodes in the graph; (3) Edge classification/regression aims to
find a function f : £ — Y that predicts the label of an edge; (4) Graph classification/regression
aims to find a function f : G — Y that maps each graph in a graph set to the correct label.

Other graph prediction tasks. In addition to the four standard prediction tasks on graphs, there
are additional tasks that are particularly important for biomedical graphs: (1) Module detection
aims to detect a subgraph module in the graph that contributes to a variable; (2) Clustering or
community detection aims to partition the graphs into a set of subgraphs such that each subgraph
contains similar nodes; (3) Subgraph classification/regression aims to predict a label for the sub-
graph or module; (4) Dynamic graph prediction aims to perform the above prediction tasks in a

sequence of dynamic graphs.

Latent graph learning. While graph prediction tasks predict given the graph-structured data,
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latent graph learning aims to obtain a function f : V, X — & to learn the underlying graph
structure (e.g., edges) given only the nodes and their feature attributes. The learned graph can be
used to (1) perform graph prediction tasks; (2) obtain the inherent topology of the data; and (3)

generate latent low-dimensional representations of the feature attributes.

Graph generation. The objective of graph generation is to generate a never-before-seen graph GG
with some properties of interest. Given a set of training graphs G with certain shared characteris-
tics, the task is to learn a function f : G — Dg to obtain a distribution Dy that characterizes the
training graphs. Then, the learned distribution can be used to generate a new graph G’, which has

the same characteristics as or optimized properties compared to the training graphs.

3 Further Details on Representation Learning Approaches
We here review four important graph representation learning approaches beyond those surveyed in

the main text. In particular, we describe:

o Graph theoretic techniques (Section 3.1): Networks model relations among real world sub-
jects. Such relations form patterns of structures in the network. These patterns can be quan-
tified by expert-defined statistics to characterize the role of nodes, links, or subgraphs. These

statistics can be used to represent elements in the graph.

e Network propagation methods (Section 3.2): Nodes in a graph influence each other along the
paths. Diffusion measures these spreads of influences. By aggregating diffusion from neigh-
boring nodes to the target node, a diffusion profile captures the local connectivity patterns of

the target node.

e Topological data analysis (Section 3.3): A dataset has an underlying structure. Topologi-
cal data analysis (TDA) analyzes the topology of the data to generate an underlying graph
structure. Two main frameworks exist. One is called persistent homology 2, which obtains a
vector that quantifies various topological shapes at different spatial resolutions. The other is
called Mapper **, which first clusters topologically similar data into a node, where similar-
ity is defined by a filter function, and then connects the clusters as the backbone of the data

topology. The output is a graph that characterizes the topology of data.

e Manifold learning (Section 3.4): Real-world data is usually high-dimensional. To better
interpret them, a mapping to find the low-dimensional characterization of the data is ideal.

This mapping is called manifold learning, or non-linear dimensionality reduction.

S6



3.1 Graph theoretic techniques

Networks model relations among real world subjects. Such relations form patterns of structures
in the network. Among the network science community, many have studied these patterns of
graph structures, and proposed graph statistics to measure their characteristics. We summarize
such statistics into the following three categories: node-, link-, and subgraph-level statistics. See

Figure 1a for an illustration of network statistics.

Node-level techniques. The goal of node-level statistics is to measure the role of a node « in a
graph. For instance, betweenness > calculates the number of shortest paths that pass through the
node. A node with high betweenness is called a bottleneck because it controls the information flow
of the network. Various centrality statistics are proposed to measure the various roles of a node
regarding its structure and function. For example, k-core ® measures the position of the node in the

graph.

Link-level techniques. Statistics have been demonstrated as a powerful tool for link prediction.
They are used to represent the likelihood that a link exists between two nodes. Classic statistics in-
clude common neighbor index, Adamic—Adar index, resource allocation index, etc 7. Most of them

rely on the homophily principle. However, *

recently showed that the protein-protein interaction
(PPI) network does not follow homophily because interacting proteins are not necessarily similar,
and similar proteins do not necessarily interact. They propose L3, which calculates the number of
paths of length 3, and it shows strong performance in learning PPI networks. For a complete list

of link-level graph statistics methods, we refer readers to °.

Subgraph-level techniques. Many subnetwork patterns recur in the network. Such patterns are
called motifs, and they are shown to be the basic blocks of complex networks. For instance, a feed-
forward loop is an important three-node motif in gene regulatory networks '°. They have functional
roles, such as increasing the response to signals !!. Individualized motifs for each network can also

be computed through frequent subgraph mining algorithms '2.
3.2 Network diffusion

Nodes in a graph influence each other along the paths. Diffusion measures these spreads of in-
fluences. The typical resulting outcomes of interest include a scalar ) between every node v to
the source node u that measures the influence, or a diffusion profile v, for source node u, which
captures the local connectivity patterns (Figure 1b). Many have studied the effect of diffusion in

physics, economics, epidemiology and various formulations have been proposed '>~'>. On a very
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related line of work, label propagation leverages connected links to propagate labels '°.

Diffusion state distance. One effective method for biomedical networks is the diffusion state
distance 7, which first calculates the number of times a random walk starting at source node will
visit a destination node given a fixed number of steps, and iterates this process for every destination

node in the graph.

Unsupervised extension. Recent efforts, such as GraphWave '8, adopt an unsupervised learning
method to learn an embedding for each node by leveraging heat wavelet diffusion patterns. The
resulting embeddings allow nodes residing in different parts of a graph to have similar structural

roles within their local network topology.
3.3 Topological data analysis

For a large and high-dimensional dataset D, it is hard to directly gauge their characteristics or
obtain a summary of the data. However, all data have an underlying shape or topology 7', which
can be considered as a network. Topological data analysis (TDA) analyzes the topology of the
data to generate an underlying graph structure. There are two major diagrams in TDA: persistent

homology (Figure 1c) and mapper (Figure 1d).

Persistent homology. Persistent homology ? obtains a vector that quantifies various topological
shapes at different spatial resolutions. As the resolution scale expands, the noise and artifacts
would disappear while the important structure persists. Recent works have used neural networks on

19,20 21

top of persistent diagrams to learn augmented topological features propose a differentiable

persistent homology layer in the network to make any GNN topology-aware.

Mapper. While persistent homology provides a vector of topology, mapper generates a topology
graph **. This graph is obtained by first clustering topologically similar data into a node, where
similarity is defined by a filter function, and then connecting the clusters as the backbone of the data
topology. The resulting shape can be used to visualize the data and understand data subtypes >* and
trajectories of development ?*. Mapper is highly dependent on the filter function, and it is usually
constructed with domain expertise. Recent works have integrated neural networks to automatically

learn the filter function from the data %*.
3.4 Manifold learning

Real-world data is usually high-dimensional. To better interpret them, a mapping to find the low-
dimensional characterization of the data is ideal. This mapping is called manifold learning, or non-

linear dimensionality reduction (Figure 1e). Note that the underlying manifold can be considered
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as a weighted network such that higher weights are assigned to edges between data points that are
closer in the manifold.

In a typical setting, we only have a set of data points, or nodes w1, - - - , u,, and their associ-
ated attributes xq, - - - , x,, without any connections among them. To learn the underlying manifold
using graphs, the first step is to construct an edge set £ that connects nodes given some distance
measure. With this connectivity graph, one approach is to apply a graph statistics operator to
directly compute the low-dimensional embedding, such as laplacian eigenmap %> and isomap 2.
Another approach is to optimize various kinds of cost functions to generate low-dimensional em-
beddings that preserve distance measures on the graph, such as t-SNE ?’. However, such methods
are all multi-stage processes in which the outcome depends on the defined distance measures. Re-
cently, a line of research has emerged that can generate embeddings in an end-to-end learnable

manner, where the manifold is learned by the signals from the downstream prediction task 22,

4 Further Details on Mathematical Formulations

Formulation 1 Graph theoretic techniques

Graph theoretic techniques are functions that map network components to real-values

3032 and node centrality %°.

representing aspects of graph structure, such as node proximity
We use betweenness as an example.

os,t(u)
Ts,t

>

Example. For node u in graph G, the betweenness is calculated as: B, = Lutt
where o is the number of shortest paths between nodes s and t, and o (u) is the number of
shortest paths that pass through node u. Basically, the larger the betweenness, the larger the

influence of this node u on the network.

Formulation 2 Network diffusion
Network diffusion computes the network influence signatures based on propagation on

the networks. We use Diffusion State Distance (DSD) ' as an example.

Example. For a node u, we calculate its diffusion distance D(u,v;) from every node v; € V as
the expected number of times that p,, a random walk of length k starting from u, will visit v;.
Formally, D(u,v;) = E[sign(v;, p.)], where sign(v;, p,) is 1 if node v; € p,, and 0 otherwise.
So, we obtain a vector D(u) = (D(u,vy),- -, D(u,v,)). Then, the DSD between nodes u and
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v is defined as DSD(u,v) = ||D(u) — D(v)||1, the LI-norm of the diffusion vector difference.
Intuitively, DSD measures the differences in the node influence from every other node to see if

they have similar local connectivity.

Formulation 3 Geometric representations along preassigned guiding functions called fil-
ters
A mapper generates the data topology T from the data D *3*. A standard mapper pro-

cedure consists of the following steps:

1. Reference Map. Given a set of data D, we first define a continuous filter function

f D — Z that assigns every data point in D to a value in Z.

2. Construction of a Covering. A finite covering U = {U, } e is constructed on Z. Each

cover consists of a set of points D,, and is the pre-image of the cover D, = {1 (U,).

3. Clustering. For each subset D, we apply a clustering algorithm C that generates N,

clusters.

4. Topology Graph. Each cluster forms a node. If two clusters share data points in D, then
an edge is formed. The resulting graph is the topology graph T of data D. Formally, the

topology graph is defined as the nerve of the cover by the path-connected components.

Formulation 4 Shallow network embedding
Shallow network embedding generates a mapping that preserves the similarity in the
network 3. Formally, typical shallow network embeddings are learned in the following three

steps:

1. Mapping to an embedding space. Given a pair of nodes u, v in network G, we obtain a

function f to map these nodes to an embedding space to generate h,, and h,,.

2. Defining network similarity. We next define the network similarity as f,(u,v), and the
embedding similarity as f,(h,,h,).
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3. Computing loss. Then, we define the loss L(f,(u,v), f.(h,,h,)), which measures
whether the embedding preserves the distance in the original networks. Finally, we

apply an optimization procedure to minimize the loss L( f,(u,v), f.(hy, h,)).

Formulation 5 Persistent homology
Given a dataset D, persistent homology generates a persistence diagram (often referred
to as a barcode) that captures the significant topological features in D, such as connected

components, holes, and cavities >%°’. It consists of the following steps:

1. Construction of the Rips Complex. Consider each data point in the original dataset
D as a vertex. For each pair of vertices u,v, create an edge if the distance between
them is at most €, i.e., € = {(u,v)|d(u,v) < €}, given the distance metric d. Consider
a monotonically increasing sequence of €, - - - , €,, we then generate a filtration of Rips

complexes Gy, - - , G,

2. Homology. Homology characterizes topological structures (e.g., O-th order homology
measures connected components, 1-st order homology measures holes, 2-nd order ho-
mology measures voids). A class in a k-th order homology is an instantiation of the
homology. In each Rips complex, we can track the various homology classes, which
capture various topological structures. For a rigorous definition of homology, we refer

reader to %,

3. Persistence Diagrams. At each €, we denote the emergence of a new homology class a
as its birth using the current €. Similarly, we denote the disappearance of a previous ho-
mology class a as its death. Thus, for each homology class a, we can represent them as
(€Birth, EDeatn)- After € reaches the end of the sequence, we have a set of 2-dimensional
points (x,y), each corresponding to the birth and death of a homology class. The persis-
tence diagram is a plot of these points. The farther away from the diagonal, the longer
the lifespan of the homology class, implying that the structure is an important shape of
the data topology.
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Formulation 6 Manifold learning
The goal of manifold learning is to learn a low-dimensional embedding that captures
the data manifold from high-dimensional data *°. In the following, we use isomap *° as an

example.

Example. First, given a set of data points with high-dimensional feature vectors Xy, - -+ , X,
we apply a k-nearest neighbor algorithm and connect the nearest neighbors to form a neigh-
borhood graph G. Next, we calculate the distance matrix D, where each entry d, ; is the length
of the shortest path between nodes 1 and j in the neighborhood graph. Then, we apply an op-

timization algorithm to obtain a set of low-dimensional vectors hy,---  h, that minimizes
2
>icy (i = hyf| — ds ;)"

Formulation 7 Graph neural networks
GNNs learn compact representations or embeddings that capture network structure and
node features “***. A GNN generates outputs through a series of propagation layers *3, where

propagation at layer [ consists of the following three steps:

1. Neural message passing. The GNN computes a message mff),, = MSG(hg - hf)l_l))

for every linked nodes u, v based on their embeddings from the previous layer h5f 1 and

h{Y,

2. Neighborhood aggregation. The messages between node u and its neighbors N, are
aggregated as 1) = AcG(mi|v € N,).

3. Update. The GNN applies a non-linear function to update node embeddings as hY =
UPD(rim(Ll), h! _1)) using the aggregated message and the embedding from the previous

layer.

Formulation 8 Generative modeling
Generative models optimize and learn data distributions in order to generate graphs

with desirable properties. In the following, we use VGAE * as an example.

Example. VGAE is a graph extension of variational autoencoders *°. Given a graph G with
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adjacency matrix A and node features X, we use two GNNs to encode the graph and generate
the latent mean vector py, and the log-variance log(oy ) parameters for each node u. Formally,
pz = GNN, (A, X) € RV* and log(oz) = GNN, (A, X) € RVIX4 We can then obtain
the latent distribution q(Z|G) ~ N (uz, (log(oz))), where we can draw a latent embedding
sample Z. € RV*4 from the latent distribution. Then, given the latent embedding, we feed into
a probabilistic decoder pg(A|Z) to generate a network G with adjacency matrix A. In VGAE,
the decoder is a dot product, i.e., py(Ay, = 1|Z) = sigmoid(z?z,). This way, we obtain a
newly generated graph G. Finally, we optimize the weight using the variational reconstruction
loss £ = Eyz1)[p(G1Z)] — KL(4(ZIG) ().
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Figure 1: Predominant graph learning paradigms. Graph machine learning is a large field with a di-
verse set of methods. Here, we summarize and categorize seven major graph machine learning methods
paradigms. (a) Graph theoretic techniques compute a deterministic value that describes patterns in the
graph; (b) diffusion process captures the importance and influence of nodes through network diffusion; (c-
d) topological data analysis provides summarized views of the shape of the data; (e) manifold learning aims
to obtain the underlying graph structure of data and a low-dimensional embedding; (f) shallow network em-
beddings generate node representations though direct encoding of node similarities in the input graph; (g)
graph neural networks learn graph embeddings through supervised signals by neural networks; (h) genera-
tive models generate novel graphs that have desirable properties. Note that panels (c) and (d) are two major

diagrams of TDA.
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