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Fig. S1. ACLY inhibition compromises its anti-tumor effect in immunocompetent mice and
upregulates PD-L1 expression in cancer cells. (A) Immunoblot analysis of Acly expression in
Hepa1-6 cells and Pan02 cells with Acly knockdown or not. (B) gPCR analysis of Acsvl1 mRNA
expressions in Pan02, B16, and Hepa1-6 cells. (C and D) Tumor growth (C) and relative tumor burdens
(D) in immunodeficient nude mice and immunocompetent C57BL/6 mice injected subcutaneously with
shAcly or shCtrl Hepa1-6 cells for 2-3 weeks. (E and F) Tumor growth (E) and relative tumor burdens
(F) in immunodeficient nude mice and immunocompetent C57BL/6 mice injected subcutaneously with
Hepa1-6 cells with treatment of ACLY inhibitor (BemA) or not for 2 weeks. (G) Immunohistochemical
staining of Ki67 and quantification of Ki67 positive cells in shAcly or shCtrl Hepa1-6 tumors in
immunodeficient nude mice and immunocompetent C57BL/6 mice. Scale bars, 100 um. (H) Immunoblot
analysis of Acly and Pd-I1 expression in Hepa1-6 tumors with Acly deficiency or not. (I) gPCR analysis
of Acly and Pd-I11 mRNA expressions in Hepa1-6 cells with Acly knockdown or not. (J and K) Flow
staining of surface Pd-11 in Hepa1-6 cells with Acly knockdown (J) or BemA treatment (K). (L)
Immunoblot analysis of Acly and Pd-I1 expressions in Hepa1-6 cells with Acly knockdown or not. (M)
MHC-I mRNA expressions in Hepa1-6 shAcly cells versus shCtrl cells by RNA-seq. (N and O) Tumor
growth (N) and tumor burdens (O) in C57BL/6 mice injected subcutaneously with shAcly or shCtrl
Pan02 cells for 3 weeks. (P) The representative gating strategy used for flow cytometry analysis. n =3
biological replicates from 3 independent experiments (A and L); n = 3 biological replicates from
one independent experiment (B, I-K, and M); n = 3-5 mice per group from one independent experiment
(C-F, N, and O); n = 4 biological replicates from one independent experiment (G and H). Statistical
significance was assessed by unpaired t test (A, D, F-H, and O), one-way ANOVA (B, |, and L), and
two-way ANOVA (C, E, and N); *P < 0.05; **P < 0.01; ***P < 0.001; n.s., not significant.
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Fig. S2. ACLY inhibition has little impact on cGAS-STING activation in T cells. (A) Quantification
of ACLY activity by ELISA in Jurkat cells with SB204990 treatment (20 uM) or not. (B) Immunoblot
analysis of CD36 and PD-L1 expressions in Jurkat cells with SB204990 treatment (20 uM) or not. (C)
Immunoblot analysis of cGAS, p-STING, STING, p-IRF3, and IRF3 expressions in Jurkat cells with
SB204990 treatment (20 uM) or not. n = 9 biological replicates from 3 independent experiments (A)
and data are shown as mean + SEM; n = 3 biological replicates from 3 independent experiments (B
and C). Statistical significance was assessed by unpaired t test (A-C); ***P < 0.001; n.s., not significant.
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Fig. S3. ACLY inhibition promotes PUFAs uptake to induce mitochondrial damage and cGAS-
STING activation. (A) gPCR analysis of cytosolic DNA extracted from digitonin-permeabilized cytosolic
extracts of B16 cells with Acly knockdown or not. (B) Flow staining and MFI of mitoSOX in Pan02 cells
and B16 cells with Acly knockdown or not after mitoTEMPO treatment (10 uM). (C) Pearson’s
correlation between ACLY and CD36 expression in human HCC and PDAC datasets (n = 134 HCC
patients, n = 41 PDAC patients). (D) Immunoblot analysis of Acly expression in B16 cells with PUFAs
(ALA, ARA, or EPA) treatment (50 uM). (E) Immunoblot analysis of cGAS, p-Sting, Sting expressions
in Pan02 cells with ALA or DHA treatment (50 pM). (F) Flow staining and MFI of mitoSOX in Pan02
cells and B16 cells with PUFAs (LA, ARA, or EPA) treatment (50 uM). (G) Immunoblot analysis of cGAS,
p-Sting, Sting, p-Irf3, and Irf3 expressions in Pan02 cells and B16 cells with PUFAs (LA, ARA, or EPA)
treatment (50 uM). (H) gPCR analysis of Ifn-B mRNA expression in Pan02 cells and B16 cells with
PUFAs (LA, ARA, or EPA) treatment (50 uM). (I) Immunoblot analysis of Acly, cGAS, p-Sting, and p-
Irf3 expressions in Pan02 cells with Acly knockdown or not after delipidated serum treatment with PA
or OA supplementation (50 uM). (J) Quantification of acetyl-CoA contents by ELISA in Pan02 cells with
Acly knockdown or not. (K to R) Qualification of protein bands in Fig. 4, B, H-L, and P. n = 3 biological
replicates from one independent experiment (A, B, F, and H); n = 3 biological replicates from
3 independent experiments (D, E, G, I, and K-R); n = 9 biological replicates from 3 independent
experiments (J) and data are shown as mean + SEM. Statistical significance was assessed by one-
way ANOVA (A, B, D-1, and K-R) and unpaired t test (J); *P < 0.05; **P < 0.01; ***P < 0.001; n.s., not
significant.
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Fig. S4. Patients with low tumor ACLY expression in CD8" T cell-enriched tumors have
significantly poorer survival. (A) Kaplan-Meier analysis of survival in head and neck squamous cell
carcinoma (HNSSC) and breast cancer patients according to the expression of ACLY in the group with
decreased or enriched intratumoral CD8* T cell infiltration.
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Fig. S5. ACLY inhibition overcomes cancer resistance to anti-PD-L1 therapy in melanoma. (A
and B) Tumor growth (A) and tumor burdens (B) in C57BL/6 mice injected subcutaneously with shAcly
or shCtrl Pan02 cells with aPD-L1 antibodies treatment. (C and D) Tumor growth (C) and tumor burdens
(D) in C57BL/6 mice injected subcutaneously with shAcly or shCtrl B16 cells with treatment of aPD-L1
antibodies. n = 5 mice per group from one independent experiment (A-D). Statistical significance was
assessed by two-way ANOVA (A and C) and one-way ANOVA (B and D); **P < 0.01; n.s., not significant.
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Fig. S6. Dietary LA supplementation enhances the efficacy of PD-L1 blockade. (A and B) Tumor
growth (A) and tumor burdens (B) in C57BL/6 mice injected subcutaneously with Pan02 cells with
treatment of LA and aPD-L1 antibodies either alone or in combination. (C and D) Flow staining and
frequency of CD8* T cells (C) and PD-1* of CD8* T cells (D) in Pan02 tumors with treatment of LA and
aPD-L1 antibodies either alone or in combination. n = 5 mice per group from one independent
experiment (A and B); n = 3 biological replicates from one independent experiment (C and D). Statistical
significance was assessed by two-way ANOVA (A) and one-way ANOVA (B-D); *P < 0.05; **P < 0.01;
***P < 0.001; n.s., not significant.
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