Supplementary information for

Synthesis of Portimines Reveals the Basis of Their Anti-cancer Activity

Junchen Tang*, Weichao Li*, Tzu-Yuan Chiu, Francisco Martínez-Peña, Zengwei Luo, Christine T. Chong, Qijia Wei, Nathalia Gazaniga, Thomas J. West, Yi Yang See, Luke L. Lairson†, Christopher G. Parker† and Phil S. Baran†

Correspondence to: llairson@scripps.edu, cparker@scripps.edu, pbaran@scripps.edu

This PDF file includes: Materials and Methods Synthetic Procedures Supplementary Tables 1 to 9 (7 to 9: Excel) References NMR spectra

Table of Contents

Overview of Synthesis	4
Skeletal numbering system of portimine A (1)	4
Summary of failed approaches to macrocyclization.	4
Summary of failed approaches to ketalization.	5
Detailed route to compound 9	6
General Experimental	7
Compound Experimental	8
Compound 19	8
Compound 20 and Rawal's diene	9
Compound 21	10
Compound 6 and its chiral report	11
Compound 7	16
Compound 8	19
Compound 22	20
Compound 23	21
Compound 24	23
Compound 25	24
Compound 36	26
Compound 9	27
Compound 3	28
Supplementary Table 1. Screened conditions for conjugate addition	29
Compound 27	31
Compound 11	32
Compound 12	35
Supplementary Table 2. Screened conditions for 1,2-diketone formation	36
Compound 28	39
Compound 15	40
Supplementary Table 3. Screened conditions for selective C-14 oxidation from compound 28	41
Compound 16	43
Compound 17 and 35	45
Compound 18	49
Compound 2 (portimine B)	50
Supplementary Table 4. Comparison of ¹³ C shift in CDCl ₃ and chemical structure between synt	thetic
2 and previously reported 2.	51
Compound 1 (portimine A)	52
Supplementary Table 5. Comparison of ¹³ C shift in CDCl ₃ and chemical structure between synt	thetic
1 and previously reported 1	53
Compound 29-1	54
Compound 29-2	55
Compound 30	56
Compound 31-1	57
Compound 31-2	58
Compound 32	59
Compound 33	60

Compound 34	61
Compound 36	62
Compound 37	63
Supplementary Fig. 1. Example gating strategy for measurement of PI level in cells	64
Supplementary Fig. 2. Uncropped western blot images in Fig. 3 and 4	65
Supplementary Fig. 3. Uncropped western blot images in Extended Data Fig. 3, 5, 6	67
Supplementary Table 6. Pharmacokinetic (PK) evaluation of portimine A in mice	68
Supplementary Table 7. Chemical proteomic data in Jurkat cells	68
Supplementary Table 8. Chemical proteomic data in MC38 cells	68
Supplementary Table 9. Chemical proteomic data in HCC1806 cells	68
Reagent or Resource summary	69
References	71
NMR Spectra	

Overview of Synthesis

Skeletal numbering system of portimine A (1)

portimine A (1)

Summary of failed approaches to macrocyclization.

Retrosynthesis based on late-stage keto-amine tautomerization

Failed macrocyclization attempts based on C13-C14 disconnection

Summary of failed approaches to ketalization.

Failed approach to reduce C-15 carbonyl

no reaction: NaBH₄, LiBH₄, DIBAL-H, LAH (-78 °C) L-selectride, LiBHEt₃, K-selectride

decomposition: LAH (rt), Red-Al (-78 °C), AlH₃

An observed undesired hydride shift

Detailed route to compound 9.

General Experimental

All reactions were carried out under an inert argon atmosphere with dry solvents under anhydrous conditions unless otherwise stated. Dry acetonitrile (MeCN), dichloromethane (DCM), diethyl ether (Et₂O), tetrahydrofuran (THF), toluene (PhMe), dimethylformamide (DMF), benzene, and triethylamine (TEA) were obtained by passing the previously degassed solvents through activated alumina columns. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Yields refer to chromatographically homogeneous material, unless otherwise stated. Reactions were monitored by thin laver chromatography (TLC) carried out on 0.25 mm E. Merck silica plates (60F254). Silica gel chromatography was performed using E. Merck silica gel (60, particle size 0.043 - 0.063 mm). NMR spectra were recorded on Bruker DRX600 and AMX-400 instruments and were calibrated using residual undeuterated solvent as an internal reference (chloroform-d: ¹H NMR δ = 7.26 ppm, ¹³C NMR δ = 77.2 ppm, acetonitrile-d3: ¹H NMR δ = 1.94 ppm, ¹³C NMR δ = 118.3, 1.3 ppm, methanol-d4: ¹H NMR δ = 3.31 ppm, ¹³C NMR δ =49.0 ppm, benzene-d6: ¹H NMR δ = 7.16 ppm, ¹³C NMR δ = 128.1 ppm). The following abbreviations were used to explain NMR peak multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, qt = quint, m = multiplet, br = broad. High-resolution mass spectra (HRMS) were recorded on an Agilent LC/MSD TOF mass spectrometer by electrospray ionization time-of-flight (ESI-TOF) reflectron experiments.

To a solution of 4-aminobutyraldehyde diethyl acetal (32.2 g, 200 mmol) in DCM (200 mL), was added Boc₂O (43.8 g, 201 mmol) dropwise at rt. The reaction was monitored by TLC (stain: 1% ninhydrin in ethanol). Upon completion, the solvent was removed under reduced pressure, and the residue was dissolved in THF (200 mL) at 0 °C under argon. To this solution, NaHMDS (0.6 M in toluene, 400 ml, 240 mmol) was added dropwise with vigorous stirring. The resulting solution was kept stirring at the same temperature, followed by a slow addition of Boc₂O (43.8 g, 201 mmol). After completion, sat. aq. NH₄Cl (500 ml) was added and stirred overnight. The organic layer was separated, while the aqueous layer was extracted with Et₂O (3x 300 ml). The combined organic layer was dried over MgSO₄, followed by concentration to give the crude Boc-imide as product.

The crude carbamate obtained above was dissolved in acetone/H₂O (4:1, 500 ml). PTSA monohydrate (14.0 g, 73.6 mmol) was added and stirred at rt for 16 h. The mixture was neutralized with sat. aq. NaHCO₃ (500 ml) and extracted with Et₂O (3x 300 ml). The combined organic layer was dried over MgSO₄, filtered and concentrated. The crude product was purified by chromatography (5% EtOAc in hexanes to 15% EtOAc in hexanes) to afford compound **19** (51.7 g, 90%) as colorless oil.

Physical state: colorless oil

TLC: $R_f = 0.41$ (25% EtOAc in hexanes, KMnO₄ staining) ¹H-NMR (500 MHz, CDCl₃) δ 9.74 (t, J = 2.2 Hz, 1H), 3.58 (t, J = 7.2 Hz, 2H), 2.43 (t, J = 7.2 Hz, 2 H), 1.86 (qt, J = 7.2 Hz, 2H), 1.47 (s, 18H) ¹³C-NMR (125 MHz, CDCl₃) δ 201.6, 152.7 (2C), 82.6 (2C), 45.5, 41.1, 28.1(6C), 21.6 All spectral data meet with that previously reported.¹ Compound 20 and Rawal's diene

To a solution of BnNH₂ (30.6 g, 286 mmol) in MeOH (200 mL) at 0 °C was added 4-(trimetylsilyl)-3-butyn-2-one (21.6 mL, 143 mmol) dropwise. After stirring for 1.0 h at rt, the solvent was removed in vacuo. The crude product was suspended in EtOAc (200 ml) and rinsed by aq. sat. NaH₂PO₄ (200 ml) to remove benzylamine. The organic layer was separated and the aqueous phase was extracted with EtOAc(3x 200 ml). The combined organic layer was dried over MgSO₄, and concentrated under reduced pressure to give the crude enamine², which was directly used for next step.

The crude enamine obtained above was dissolved in THF (10 ml/g), and and *n*-BuLi (2.5 M, 60 ml, 150 mmol) was added at 0 °C under argon over 30 min. After 10 min, ClCO₂Me (11.6 ml, 14.2 g, 150 mmol) was added slowly, and the solution was stirred for 2 h. Upon completion, the mixture was poured into H₂O (500 ml). The mixture was extracted with EtOAc (3x 200 ml) and dried over MgSO₄. Compound **20** (27.9 g, 120 mmol, 84%) can be obtained by chromatography (0-40% EtOAc in hexanes).

Physical state: pale yellow oil **TLC:** R_f = 0.28 (30% EtOAc in hexanes, UV active, KMnO₄ staining) ¹**H-NMR (400 MHz, CDCl₃)** δ 8.17 (d, J = 14.4 Hz, 1H), 7.36 – 7.03 (m, 5H), 5.50 (d, J = 14.4 Hz, 1H), 4.76 (s, 2H), 3.84 (s, 3H), 2.13 (s, 3H) ¹³**C-NMR (100 MHz, CDCl₃)** δ 197.3, 154.6, 142.0, 135.4, 129.0 (2C), 127.3 (2C), 126.6, 110.0, 54.6, 48.4, 27.7 **HRMS (ESI-TOF):** calc'd for C₁₃H₁₅NO₃ [M+H]⁺: 234.1125, found: 234.1126

The pure compound **20** (52 g, 223 mmol) was dissolved in Et₂O (650 ml) under argon. To this solution, TEA (45.5 g, 450 mmol) was added in one portion at -78 °C. TBSOTf (59.5 g, 225 mmol) was dropped into this solution slowly. A cloudy mixture was generated during addition. After stirring at -78 °C for 30 min, the flask was gradually warmed to 0 °C for another 30 min. The reaction was quenched by a mixture of hexanes (200 ml) and sat. aq. NaHCO₃ (500 ml), followed by extraction with hexanes (3x 400 ml). The organic phase was dried over MgSO₄, and concentrated to give Rawal's diene (purity was determined by NMR, used directly for next step).

Physical state: pale yellow solid

TLC: $R_f = 0.43$ (hexanes+1% TEA, UV active, KMnO₄ staining)

¹H-NMR (400 MHz, CDCl₃) δ 7.72 – 7.42 (m, 1H), 7.32 (t, *J* = 7.3 Hz, 2H), 7.27 – 7.13 (m, 3H), 5.36 (d, *J* = 14.1 Hz, 2H), 4.80 (s, 2H), 4.13 (s, 1H), 4.07 (s, 1H), 3.83 (s, 3H), 1.00 (s, 9H), 0.18 (s, 6H) ¹³C-NMR (100 MHz, CDCl₃) δ 155.1, 154.5, 136.9, 128.8 (2C), 127.3 (2C), 126.7, 126.3, 108.4, 93.0, 53.8, 48.2, 25.9 (3C), 18.4, -4.5 (2C) HRMS (ESI-TOF): calc'd for C₁₉H₂₉NO₃Si [M+H]⁺: 348.1990, found: 348.1986

To a mixture of aqueous formaldehyde solution (13 ml, 37% formaldehyde in water) and compound **19** (46.8 g, 162.9 mmol) in *i*-PrOH (95 mL) were added propionic acid (1.20 g, 16.2 mmol, 0.1 eq.) and pyrrolidine (1.15 g, 16.2 mmol, 0.1 equiv.). The reaction mixture was stirred at 55 °C for 1.0 h. Upon completion, sat. aq. NaHCO₃ (20 ml) and brine (100 ml) was added, and the mixture was extracted with Et_2O (3x 100 ml). The combined organic layer was dried over MgSO₄, and concentrated in vacuo to remove all volatiles. The crude acrolein (compound **4**) obtained was directly used for Diels-Alder cycloaddition.

Compound **4** was dissolved in DCM (200 mL), followed by adding MS4Å (25 g, dried in oven overnight, 110 °C) and Rawal's diene (70.5 g, 10.7 mmol, 1.2 equiv.) under argon. After stirring the mixture at 0 °C for 15 min, [Co(salen)]SbF₆ (984 mg, 1.63 mmol, 0.01 equiv.) was added in one portion. The reaction mixture was stirred at 0 °C and allowed to warm up to rt overnight. Upon completion, silica gel (ca. 150 g) was added. After concentration in vacuo, the crude was purified with chromatography (dry loading, 0-20% EtOAc in hexanes) to afford compound **21** (92.7 g, 143.3 mmol, 88%).

Physical state: white powder

TLC: $R_f = 0.35$ (20% EtOAc in hexanes, UV active, KMnO₄ staining)

 $[\alpha]^{25}_{D}$: -55.4 (*c* = 1.0, CHCl₃)

¹**H-NMR (600 MHz, CDCl₃)** δ 9.89-9.59 (m, 1H), 7.28 – 7.24 (m, 2H), 7.21 – 7.14 (m, 1H), 7.14 – 6.98 (m, 2H), 5.12 – 4.75 (m, 1H), 4.59 (d, *J* = 5.7 Hz, 1H), 4.52 (d, *J* = 16.4 Hz, 1H), 4.37 (d, *J* = 16.4 Hz, 1H), 3.79 – 3.47 (m, 4H), 3.40 – 3.30 (m, 1H), 2.23 – 2.02 (m, 3H), 2.01 – 1.83 (m, 2H), 1.63 – 1.56 (m, 1H), 1.51 (s, 18H), 0.83 (s, 9H), -0.04 (s, 3H), -0.13 (s, 3H)

¹³C-NMR (150 MHz, CDCl₃) δ 204.8, 158.2, 155.7, 152.2, 152.1, 139.5, 128.3 (2C),126.7, 126.2, 126.1, 99.4, 82.8, 57.4, 53.0, 48.1, 42.2, 30.9, 29.8, 28.3 (6C), 25.8, 25.6 (3C), 22.8, 20.3, 18.0, -4.7 (2C) HRMS (ESI-TOF): calc'd for C₃₄H₅₄N₂O₈Si [M+H]⁺: 647.3728, found: 647.3736

before adding [Co] catalyst

after completion

product after purification

Reduction

To a solution of compound **21** (81.4 g, 126 mmol) in a mixture of MeOH (400 ml) and DCM (100 ml) was added NaBH₄ (4.7 g, 124 mmol) portionwise at 0 °C. The reaction was kept stirring for 1 h, and was quenched by sat. aq. NH₄Cl (300 ml). The mixture was extracted with DCM (3x 400 ml) and dried over Na₂SO₄. The organic phase was concentrated under reduced pressure to afford the crude product, which was directly used for next step.

E1cb

The crude product was dissolved in THF (500 ml), and added TBAF (130 ml, 1.0 M in THF). The reaction mixture was stirred for 30 min, and quenched by sat. aq. NH4Cl (200 ml). The mixture was extracted with DCM (3x 300 ml) and dried over Na₂SO₄. The organic phase was concentrated under reduced pressure. The crude product was purified by chromatography (30% EtOAc in hexanes to 80% EtOAc in hexanes) to yield compound **6** (46 g, 126 mmol, quantitative yield). **Note: Compound* **6** *is bench-stable*.

Physical state: pale yellow oil

TLC: $R_f = 0.25$ (30% EtOAc in hexanes, UV active, KMnO₄ staining) [α]²⁵ $_{D}$: +37.8 (c = 1.0, CHCl₃) ¹H-NMR (600 MHz, CDCl₃) δ 6.82 (d, J = 10.2 Hz, 1H), 6.01 (d, J = 10.2 Hz, 1H), 3.71 – 3.61 (m, 3H), 3.56 (d, J = 11.6 Hz, 1H), 2.93 (t, J = 6.4 Hz, 1H), 2.55 – 2.38 (m, 2H), 1.95 – 1.76 (m, 4H), 1.51 (s, 18H) ¹³C-NMR (150 MHz, CDCl₃) δ 199.3, 154.3, 152.8 (2C), 129.5, 83.2 (2C), 66.8, 42.0, 40.3, 33.9, 33.1, 28.4, 28.2 (6C) HRMS (ESI-TOF): calc'd for C₁₉H₃₁NO₆ [M-Boc+2H]⁺: 270.1705, found: 270.1704 Empower® 3

C1_Chiral_Areas

	CHIRAL	REPORT	
Sample Set Name:	TANG_BARAN	Acq. Method Set: Processing Method:	J1_BAR0447 J1_BAR0447
Date Acquired: Date Processed:	8/25/2022 5:13:43 PM PDT, 8/25/2 8/25/2022 5:17:48 PM PDT, 8/25/2	022 5:18:39 PM PDT 022 5:22:42 PM PDT	

Peak Areas Summary

Area Summanzed by Name								
	SampleName	Vial	Date Acquired	ent1	ent2	ee	Ent1 (µV*sec)	Ent2 (µV*sec)
1	JT-SI-RACEMIC	2:E,2	8/25/2022 5:13:43 PM PDT	62.84	37.16	25.68	1295499	766160
2	JT-SI-CHIRAL	2:E,3	8/25/2022 5:18:39 PM PDT	3.03	96.97	-93.95	47822	1532828

Reported by User: System Report Method: C1_Chiral_Areas Report Method ID: 23401 Page: 1 of 3 Project Name: 2022_Q1_Lenovo Date Printed: 8/25/2022 5:24:00 PM US/Pacific

	CHIRAL	REPORT	
Sample Name: Vial:	JT-SI-RACEMIC 2:E,2	Acq. Method Set: Processing Method:	J1_BAR0447 J1_BAR0447
Date Acquired: Date Processed:	8/25/2022 5:13:43 PM PDT 8/25/2022 5:17:48 PM PDT		

Reported by User: System Report Method: C1_Chiral_Areas Report Method ID: 23401 Page: 2 of 3 Project Name: 2022_Q1_Lenovo Date Printed: 8/25/2022 5:24:00 PM US/Pacific

	CHIRAL	REPORT
Sample Name: Vial:	JT-SI-CHIRAL 2:E,3	Acq. Method Set: J1_BAR0447 Processing Method: J1_BAR0447
Date Acquired: Date Processed:	8/25/2022 5:18:39 PM PDT 8/25/2022 5:22:42 PM PDT	

1.70 1532828 587756 3.03 96.97 -93.95

Reported by User: System Report Method: C1_Chiral_Areas Report Method ID: 23401 Page: 3 of 3

2 UV225

Ent2

Project Name: 2022_Q1_Lenovo Date Printed: 8/25/2022 5:24:00 PM US/Pacific

Alcohol oxidation

To a solution of compound **6** (16.1 g, 43.6 mmol) in DCM (60 ml) was added NaHCO₃ (15 g) and water (50 ml). The resulting mixture was added KBr (539 mg, 4.5 mmol) and TEMPO (68 mg, 0.44 mmol) at rt (open air). The reaction was cooled to 0 °C, and a solution of NaOCl (6 wt%, 105 ml) was added slowly at the same temperature. The reaction mixture turned red immediately, and the ice bath was removed. The reaction mixture was quenched by sat. aq. Na₂S₂O₃ (100 ml), and extracted with DCM (3x 200 ml). The organic phase was dried over MgSO₄ and concentrated under reduced pressure. The product (ca. 16 g) was used directly to next step without purification.

Grignard reagent preparation³

To a suspension of Mg powder (3.1 g,129 mmol) and LiCl (6.0 g, 141 mmol) in THF (29 ml), DIBAL-H (1.3 ml, 1.0 M in toluene) was added dropwise under argon at 0 $^{\circ}$ C.

Meanwhile, a solution of 3-pentynyl bromide (19.0 g, 129 mmol, in 72.8 ml THF) was prepared at rt. A small portion of this stock solution (8.7 ml) was added to the above suspension at 0 °C to initiate the Grignard reaction. After 15 min, the rest of the stock solution was added slowly. The residual bromide was rinsed by THF (3x 10 ml). The reaction mixture was stirred vigorously at 0 °C for 30 min and warmed up to rt for an extra 30 min. The Grignard reagent was obtained as 0.54 M (theo. 0.95 M) indicated by titration with I₂ in THF.

Grignard addition

To a solution of the freshly-made aldehyde (16 g, 43.6 mmol, in 320 ml THF) at -78 °C was added the freshly-prepared Grignard reagent (110 ml, 59.4 mmol) dropwise in 1 h (under argon). The reaction mixture was kept stirring at the same temperature for an extra hour, and AcOH (10 ml) was added to quench the reaction. The resulting solution was warmed up to rt gradually, followed by adding brine (250 ml) and sat. aq. NaHCO₃ (50 ml) The mixture was extracted with EtOAc (4x 400 ml) and dried over MgSO₄. The obtained organic phase was concentrated under reduced pressure to obtain the crude product, which was used in next step without purification.

Alcohol oxidation

The crude product obtained from Grignard addition was dissolved in DCM (100 ml, open air), and cooled to 0 °C. NaHCO₃ (10 g) was added to the solution, followed by adding Dess-martin periodinane (19.0 g, 44.8 mmol). The reaction mixture was warmed to rt. After 1 h, the reaction mixture was diluted

with DCM (ca. 50 ml), and was quenched by sat. aq. $Na_2S_2O_3$ (90 ml) and sat. aq. $NaHCO_3$ (150 ml). The resulting mixture was kept stirring for 45 min. The mixture was extracted with DCM (3x 100 ml) and dried over MgSO₄. The organic phase was concentrated under reduced pressure. The crude product was purified by chromatography (5% EtOAc in hexanes to 20% EtOAc in hexanes) to yield compound 7 (11.3 g, 26.1 mmol, 60%).

*Note: Compound 7 is bench-stable.

Physical state: light yellow oil TLC: R_f = 0.60 (30% EtOAc in hexanes, UV active, KMnO₄ staining) [α]²⁵b: -32.2 (c = 1.0, CHCl₃) ¹H-NMR (600 MHz, CDCl₃) δ 7.01 (d, J = 10.3 Hz, 1H), 6.09 (d, J = 10.3 Hz, 1H), 3.60 – 3.45 (m, 2H), 2.81 – 2.68 (m, 2H), 2.54 – 2.35 (m, 5H), 2.06 – 1.93 (m, 3H), 1.72, (s, 3H), 1.50 (s, 18H) ¹³C-NMR (150 MHz, CDCl₃) δ 207.5, 198.3, 152.4 (2C), 150.1, 130.6, 83.0 (2C), 77.6, 76.6, 52.4, 42.1, 38.8, 36.5, 34.8, 29.8, 28.3 (6C), 13.6, 3.6 HRMS (ESI-TOF): calc'd for C₂₄H₃₅NO₆ [M+Na]⁺: 456.2362, found: 456.2350

Pictures were based on 60 g scale

dropping bleach into 6

adding Grignard reagent

after quenching

DMP oxidation

pure product

To a solution of compound 7 (8.8 g, 20.3 mmol) in DCM (62.8 ml) was added TFA (31.4 ml) at rt. The resulting red solution was stirred for 1.5 h at the same temperature. The reaction mixture was added carefully (via dropping funnel) to a mixture of Na₂CO₃ (64 g, in 120 ml H₂O) and 4 M NaOH (24 ml), then stirred vigorously for 36 h. The mixture was extracted with Et₂O (for the first time, 100 ml) and DCM (5x 50 ml). The organic layer was dried over MgSO₄, and was concentrated under reduced pressure. The crude product was purified by chromatography (Et₂O to 5% MeOH +1% TEA in Et₂O) to yield compound **8** (3.14 g, 14.6 mmol, 72%).

*Note: Compound **8** is unstable for long-term storage (partial decomposition even took place after 1 week at -20 °C), should be used as soon as possible.

Physical state: sticky orange oil

TLC: $R_f = 0.37$ (pure EtOAc, highly UV active, KMnO₄ staining)

 $[\alpha]^{25}$ D: -155.8 (c = 0.5, CHCl₃)

¹**H-NMR (600 MHz, CDCl₃)** δ 6.62 (dd, J = 10.1, 1.6 Hz, 1H), 6.05 (d, J = 10.1 Hz, 1H), 3.96 (dddt, J = 16.0, 8.6, 3.8, 1.9 Hz, 1H), 3.81 (dtt, J = 15.6, 7.6, 2.4 Hz, 1H), 2.58 – 2.48 (m, 4H), 2.48 – 2.34 (m, 2H), 2.20 – 2.09 (m, 2H), 1.96 (dddd, J = 13.0, 8.7, 7.7, 1.0 Hz, 1H), 1.86 (dtd, J = 13.5, 4.9, 1.7 Hz, 1H), 1.75 (t, J = 2.5 Hz, 3H)

¹³C-NMR (150 MHz, CDCl₃) δ 198.3, 178.0, 152.0, 129.7, 78.4, 76.2, 58.3, 55.7, 35.4, 35.2, 30.1, 29.3, 16.0, 3.7

HRMS (ESI-TOF): calc'd for C₁₄H₁₇NO [M+H]⁺: 216.1388, found: 216.1382

reaction mixture

purified compound 8

To a solution of (*S*)-solketal (50.0 g, 378 mmol) in EtOAc (500 ml) was added NaOAc (37 g, 451 mmol) and 4-NHAc-TEMPO (0.81 g, 3.8 mmol) under argon. TCCA (35 g, 151 mmol) was added by portions at 0 °C. The mixture was stirring at the same temperature for 1.5 h, then filtered through a Büchner funnel. The residue was rinsed with EtOAc, and the resulting filtrate was added water (190 ml), K₂CO₃ (157 g, 1.14 mol), and triethyl phosphonoacetate (81.5 ml, 92.1 g, 411 mmol) at 0 °C. The reaction mixture was stirred overnight at rt, and a mixture of Et₂O (200 ml) and water (100 ml) was added. The organic layer was dried over MgSO₄ and concentrated under reduced pressure (100 mbar, 25 °C). The residue was purified by chromatography (20% Et₂O in pentane) to yield compound **22** (44.8 g, 224 mmol, 59%).

Physical state: colorless oil

TLC: $R_f = 0.40$ (10% EtOAc in hexanes, UV active, KMnO₄ staining)

 $[\alpha]^{25}$ D: -36.4 (c = 1.0, CHCl₃)

¹**H-NMR (600 MHz, CDCl₃)** δ 6.88 (dd, J = 15.6, 5.6 Hz, 1H), 6.10 (dd, J = 15.6, 1.4 Hz, 1H), 4.66 (tdd, J = 7.0, 5.6, 1.4 Hz, 1H), 4.26 – 4.14 (m, 3H), 3.68 (dd, J = 8.3, 7.0 Hz, 1H), 1.48 – 1.43 (m, 3H), 1.41 (d, J = 0.8 Hz, 3H), 1.29 (t, J = 7.1 Hz, 3H)

¹³C-NMR (150 MHz, CDCl₃) δ 166.3, 144.8, 122.7, 110.4, 75.1, 69.0, 60.8, 26.6, 25.9, 14.4 HRMS (ESI-TOF): calc'd for C₁₀H₁₆O₄ [M+Na]⁺: 223.0941, found: 223.0942 Compound 23 (Ref. 4)

To a solution of compound **22** (21.0 g, 104 mmol) in Et₂O (550 ml) was added MeLi·LiBr (1.6 M in Et₂O, 71.5 ml, 157 mmol) dropwise via syringe pump (or dropping funnel) under -78 °C over 2.5 h. Upon completion, the solution was quenched by MeOH (10 ml) and sat. aq. NaHCO₃ (200 ml) at -78 °C, then warmed to rt slowly. The resulting mixture was extracted with Et₂O (3x 200 ml) and dried over MgSO₄. The solvents were removed under reduced pressure, and the crude product was purified by chromatography (0% to 20% EtOAc in hexanes) to obtain compound **23** (18.5 g, 85.5 mmol, 82%).

Physical state: colorless oil **TLC:** *R*_f= 0.47 (20% EtOAc in hexanes) **[α]**²⁵**b:** -9.60 (*c* = 1.0, CHCl₃) ¹**H-NMR (600 MHz, CDCl**₃) δ 4.14 (q, *J* = 7.2 Hz, 2H), 4.05 – 3.96 (m, 2H), 3.66 – 3.61 (m, 1H), 2.40 (dd, *J* = 14.9, 5.0 Hz, 1H), 2.24 – 2.17 (m, 1H), 2.13 (dd, *J* = 14.9, 8.8 Hz, 1H), 1.25 (s, 3H), 1.22 (s, 3H), 1.26 (t, *J* = 7.2 Hz, 3H), 1.00 (d, *J* = 6.8, 3H) ¹³**C-NMR (150 MHz, CDCl**₃) δ 172.8, 109.1, 79.0, 67.0, 60.6, 37.8, 33.2, 26.6, 25.4, 15.6, 14.4

HRMS (ESI-TOF): calc'd for C₁₁H₂₀O₄ [M+Na]⁺: 239.1259, found: 239.1254

To a solution of compound **23** (10.4 g, 48.1 mmol) in THF (90 ml) was added LAH (1.83 mg, 48.2 mmol) by portions at 0 °C. The ice bath was removed, then the reaction mixture was allowed to stir at rt for 2 h. Upon completion, EtOAc (100 ml) was added slowly, then water (2 ml) was added to quench the remaining LAH. After stirring for 30 min, sat. aq. Rochelle's salt (200 mL) was added to this mixture and stirred overnight. After separating the organic layer, the aqueous phase was extracted with EtOAc (3x 100 ml). The combined organic layer was dried over MgSO₄ and concentrated under reduced pressure to yield the crude alcohol.

The alcohol obtained from above was dissolved in DCM (50 ml) under argon, imidazole (4.25 g, 62.5 mmol) and PPh₃ (15.1 g, 57.7 mmol) was added. To this mixture, I₂ (14.0 g, 55.3 mmol) was added slowly. The red color faded since all I₂ was consumed. Upon completion (indicated by TLC), methanol was added to quench the excess iodine, followed by blowing air over the solution to quench the excess PPh₃ (normally takes 30 min). The volatiles were then removed by reduced pressure, and pentane (150 ml) was added and stirred vigorously (sonication if necessary). After 1 h, the solids were removed by filtration through a Büchner funnel, and the residue was washed with pentane (2x 150 ml). Subsequently, the filtrate was collected, and the pentane was removed under reduced pressure to give the crude iodide (contained ~6% TPPO).

In another flame-dried round bottom flask, TIPS acetylene (9.65 g, 52.9 mmol) was dissolved in THF (86 ml), and *n*-BuLi (2.5 M in hexanes, 19.2 ml, 48.1 mmol) was added dropwise under argon. The mixture was then stirred at 0 °C for 30 min and cooled to -78 °C. DMPU (12 ml) was added to this solution in one portion. Subsequently, a solution of the freshly prepared iodide (in 20 ml THF) was added dropwise to the freshly prepared lithium acetylide. The mixture was stirred at rt overnight and quenched with water. The aqueous phase was extracted with Et₂O (3x 100 ml) and combined. The combined organic phase was rinsed with water (3x 100 ml) to remove the residual DMPU and dried over MgSO₄. After removal of the solvents, the residue was purified with chromatography (hexanes to 5% EtOAc in hexanes) to give compound **24** (12.2 g, 36.1 mmol, 75%).

Physical state: colorless oil

TLC: $R_f = 0.21$ (30% DCM in hexanes, KMnO₄ staining)

 $[\alpha]^{25}$ D: -16.5 (c = 1.0, CHCl₃)

¹**H-NMR (600 MHz, CDCl₃)** δ 4.02 (dd, J = 7.6, 6.3 Hz, 1H), 3.92 (q, J = 6.3 Hz, 1H), 3.64 (t, J = 7.6 Hz, 1H), 2.35 (ddd, J = 17.0, 7.5, 5.7 Hz, 1H), 2.27 (ddd, J = 17.0, 8.2, 7.3 Hz, 1H), 1.87 – 1.75 (m, 1H), 1.61 – 1.54 (m, 1H), 1.39 (s, 3H), 1.35 (s, 3H), 1.36 – 1.29 (m, 1H), 1.10 – 1.00 (m, 21H), 0.99 (d, J = 6.6 Hz, 3H)

¹³C-NMR (150 MHz, CDCl₃) δ 108.9, 108.6, 80.8, 79.9, 67.9, 35.6, 32.2, 26.7, 25.7, 18.8 (6C), 17.8, 15.0, 11.5 (3C)
HRMS (ESI-TOF): calc'd for C₂₀H₃₈O₂Si [M+H]⁺: 339.2719, found: 339.2711

A solution of compound **24** (18.5 g, 54.5 mmol) in a mixture of HCl (3 M, 50 ml) and THF (100 ml) was heated at 75 °C for 12 h. The mixture was then cooled down to rt, and sat. aq. NaHCO₃ (100 ml) was slowly added to neutralize the HCl. The mixture was extracted with Et₂O (3x 100 ml) and the organic phase was dried over MgSO₄. The crude was obtained from concentrating under reduced pressure and used directly.

NaH (5.4 g, 60 wt% in mineral oil, 135 mmol) was suspended in THF (100 ml) under argon atmosphere. This mixture was then cooled to 0 °C. To this solution, the crude product obtained above (dissolved in 20 ml THF) was added dropwise. Upon completion, ice bath was removed to allow the mixture to warm up. The mixture was then stirred under rt for 1.5 h, and Ts-imidazole (14.4 g, 65 mmol) was added by portion. The resulting mixture was stirred vigorously at the same temperature for 45 min. Upon completion, H₂O (100 mL) was added in and the mixture was stirred for 15 min. The organic layer was separated and the aqueous phase was extracted with Et₂O (3x 100 ml). The combined organic phase was dried over MgSO₄ and concentrated. The crude product was purified by chromatography (hexanes to 30% DCM in hexanes) to yield epoxide **25** (13.3 g, 47.4 mmol, 87%).

Physical state: colorless oil

TLC: $R_f = 0.33$ (40% DCM in hexanes, KMnO₄ staining)

 $[\alpha]^{25}_{D}$: +13.3 (*c* = 1.0, CHCl₃)

¹**H-NMR (600 MHz, CDCl₃)** δ 2.77 (dd, *J* = 5.0, 3.2 Hz, 1H), 2.70 (dt, *J* = 6.8, 3.2 Hz, 1H), 2.59 (dd, *J* = 5.0, 3.2 Hz, 1H), 2.39 – 2.26 (m, 2H), 1.64 (tt, *J* = 11.3, 4.7 Hz, 1H), 1.56 – 1.47 (m, 2H), 1.13 – 0.96 (m, 24H)

¹³C-NMR (150 MHz, CDCl₃) δ 108.4, 80.9, 56.7, 47.1, 35.3, 32.8, 18.8 (6C), 17.9, 16.9, 11.4 (3C) HRMS (ESI-TOF): calc'd for C₁₇H₃₂OSi [M+H]⁺: 281.2301, found: 281.2296

A solution of *n*-BuLi (73.0 ml, 182 mmol in hexanes) in THF (300 ml) was cooled to -78 °C under argon. To this solution, a balloon of propyne was added via needle, and the solution began to absorb the gas. Upon completion (the solution turned cloudy), the balloon was removed. The generated mixture was allowed to stir at -78 °C for 30 min.

To this freshly prepared propynyllithium, a solution of compound **25** (17.0 g, 60.6 mmol) in THF (30 ml) was added slowly at the same temperature. BF₃ etherate (22.0 ml, 178 mmol) was added subsequently, and the reaction mixture was allowed to stir at -78 °C for 1 h. The reaction was quenched with sat. aq. NaHCO₃ (100 mL) and diluted with Et₂O (50 mL), then stirred for 1 h. The mixture was extracted with EtOAc (3x 150 ml) and the organic layer was dried over MgSO₄. The solvents were removed in vacuo and the crude product was directly used for next transformation.

The crude product obtained from above was added TBAF (100 ml, 1.0 M in THF, 100 mmol) under argon. The resulting mixture was stirred at 45 °C overnight. Upon completion, sat. aq. NH₄Cl (80 mL) and EtOAc (50 mL) was added. The mixture was extracted with EtOAc (3x 100 ml) and dried over MgSO₄. After removing solvents under reduced pressure, the crude was dissolved in DCM (120 ml), then added TEA (18.2 g, 25.1 ml, 180 mmol). To this solution, TBSOTf (31.7 g, 27.6 ml, 120 mmol) was slowly added under rt. The mixture was stirred at the same temperature for 30 min, then heated to reflux for 1 h. Upon completion, sat. aq. NaHCO₃ (120 mL) was added and the mixture was extracted with DCM (3x 100 ml). The combined organic layer was dried over MgSO₄ and concentrated. The crude was purified by chromatography (0-5% EtOAc in hexanes) to yield compound **26** (15.5 g, 55.7 mmol, 92%).

Physical state: colorless oil

TLC: $R_f = 0.50$ (5% EtOAc in hexanes, KMnO₄ staining)

 $[\alpha]^{25}$ _D: -10.5 (c = 1.0, CHCl₃)

¹**H-NMR (600 MHz, CDCl₃)** δ 3.71 (td, J = 6.7, 2.8 Hz, 1H), 2.30 – 2.22 (m, 2H), 2.18 (dtd, J = 16.9, 7.8, 2.6 Hz, 1H), 1.93 (t, J = 2.6 Hz, 1H), 1.92 – 1.85 (m, 1H), 1.77 (t, J = 2.6 Hz, 3H), 1.67 (dtd, J = 13.3, 7.9, 5.3 Hz, 1H), 1.38 (dtd, J = 13.3, 8.4, 6.0 Hz, 1H), 0.88 (s, 9H), 0.85 (d, J = 6.8 Hz, 3H), 0.08 (s, 3H), 0.06 (s, 3H)

¹³C-NMR (150 MHz, CDCl₃) δ 84.8, 77.2, 76.8, 74.5, 68.3, 36.4, 32.3, 26.0 (3C), 25.0, 18.3, 16.7, 13.0, 3.70, -4.1, -4.6

HRMS (ESI-TOF): calc'd for C₁₇H₃₀OSi [M+H]⁺: 279.2139, found: 279.2142

To a solution of Cp₂ZrCl₂ (13.6 g, 46.5 mmol) in THF (100 ml) was added DIBAL-H (38.6 ml, 38.6 mmol, 1.0 M in hexanes) dropwise at 0 °C. A white precipitation was formed. The mixture was allowed to stir for 1 h, and a solution of compound **26** (8.58 g, 30.8 mmol) in THF (10 ml) was added slowly. The reaction mixture (cloudy) was warmed up to rt slowly, and kept stirring overnight. A solution of I₂ (12.0 g, 47.2 mmol) in THF (20 ml) was added at 0 °C, the resulting dark solution was stirred for 1 h at the same temperature. The reaction was quenched with sat. aq. Na₂S₂O₃ (150 mL), and filtered to remove undissolved impurities (if needed). The obtained mixture was extracted with Et₂O (3x 100 ml), and the organic phase was dried over MgSO₄ and concentrated under reduced pressure to give the crude product. Pure compound **9** (12.4 g, 30.4 mmol, 99%) was obtained by chromatography (2% EtOAc in hexanes). **Note: Compound* **9** *is highly stable and can be stored as neat (at 5 °C) for a couple of months*.

Physical state: pale yellow oil

TLC: $R_f = 0.44$ (3% EtOAc in hexanes, UV active, KMnO₄ staining)

 $[\alpha]^{25}$ D: -13.6 (*c* = 1.0, CHCl₃)

¹**H-NMR (600 MHz, CDCl₃)** δ 6.51 (dt, J = 14.3, 7.2 Hz, 1H), 5.99 (dd, J = 14.3, 1.5 Hz, 1H), 3.68 (td, J = 6.8, 2.8 Hz, 1H), 2.29 – 2.18 (m, 2H), 2.17 – 1.99 (m, 2H), 1.78 (t, J = 2.6 Hz, 3H), 1.77 – 1.70 (m, 1H), 1.55 – 1.46 (m, 1H), 1.28 – 1.18 (m, 1H), 0.88 (s, 9H), 0.83 (d, J = 6.8 Hz, 3H), 0.07 (s, 3H), 0.04 (s, 3H)

¹³C-NMR (150 MHz, CDCl₃) δ 146.8, 77.3, 76.7, 74.6, 74.4, 36.4, 34.1, 32.0, 26.0 (3C), 25.0, 18.3, 13.3, 3.8, -4.1, -4.5

HRMS (ESI-TOF): calc'd for C₁₇H₃₁IOSi [M+H]⁺: 407.1267, found: 407.1260

Lithium-halogen exchange

To a solution of compound **9** (7.42 g, 18.3 mmol, in 46 ml Et₂O) at -78 °C, *t*-BuLi (23.8 ml, 1.6 M in pentane, 38.1 mmol) was added dropwise. A bright yellow solution was formed immediately, followed by a formation of precipitation. Reaction was kept stirring under -78 °C for at least 2.5 h to give the solution of vinyllithium.

Preparation of [Cu]⁵

To a 1L round-bottom flask charged CuI (38.0 g, 200 mmol), an aqueous ammonia solution (28-30 %, 500 ml) was added under argon. A blue solution was generated (indicating the oxidation of Cu (I)) and the dissolution of CuI took place. To reduce the amount of Cu (II) as much as possible, solid hydroxylammonium chloride was added (ca. 7 g) portionwise until the color of the solution did not fade.

Subsequently, ethanol (300 ml) was added to the solution, followed by the addition of 1-pentyne (14 ml, 142 mmol) in one portion. The solution turned dark quickly and was stirred vigorously overnight. The yellow slurry was collected by a Büchner funnel, followed by washing with water, methanol, and finally ether. After drying in vacuo for 24 h, [Cu] was obtained as a light, yellow powder (12.1 g, 93 mmol, 47% based on CuI, 65% based on 1-pentyne).

Copper (I)-phosphine complex preparation⁵

Meanwhile, [Cu] (2.86 g, 21.5 mmol) was suspended in THF (16 ml) under argon. To this suspension, n-Bu₃P (10.9 ml, 8.82 g, 43.6 mmol) was added dropwise. Dissolution of the yellow precipitate took place and completed in 15-30 min.

Transmetallation and conjugate addition

To the generated vinyllithium solution at -78 °C, the prepared Cu (I)-phosphine complex was added dropwise in 5 min. After addition, the orange mixture was stirred for 1 h at -78 °C.

A solution of compound **8** (3.14 g, 14.6 mmol, in 10 ml THF) was added to the above solution dropwise at -78 °C. The resulting mixture was kept stirring at the same temperature for 40 min. Then a solution of Comins' reagent (8.59 g, 21.9 mmol, in 20 ml THF) was added and the resulting solution was warmed to 0 °C. The reaction mixture was stirred at 0 °C for 1 h, and quenched by 5% aq. NH₃ (100 ml), Na₂CO₃ (10 g), and blew with air for 1 h. The resulting mixture was stirred vigorously for 45 min, and extracted with Et₂O (3x 150 ml). The organic layer was dried over MgSO₄. The solvent was removed under reduced pressure and the resulting residue was purified by gradient chromatography (20% Et₂O in hexanes to 40% Et₂O + 1% TEA in hexanes) to yield compound **3** (6.41 g, 10.2 mmol, 70%).

*Note: Compound **3** gradually decomposed in crude, it is therefore preferable to purify the crude product as soon as possible (in the same day). The RCAM step will not work if any impurities are present.

Physical state: pale yellow oil

TLC: $R_f = 0.58$ (50% Et₂O in hexanes, KMnO₄ staining)

 $[\alpha]^{25}_{D}$: -53.1 (*c* = 1.0, CHCl₃)

¹H-NMR (600 MHz, CDCl₃) δ 5.68 (d, J = 2.0 Hz, 1H), 5.46 (dt, J = 14.3, 6.8 Hz, 1H), 5.21 (ddt, J = 14.3, 7.44, 1.49 Hz, 1H), 3.85 – 3.77 (m, 1H), 3.67 (td, J = 6.96, 2.80 Hz, 1H), 3.52 (tdd, J = 10.3, 8.3, 4.1 Hz, 1H), 3.17 – 3.06 (m, 1H), 2.56 – 2.51 (m, 2H), 2.50 – 2.34 (m, 4H), 2.28 – 2.18 (m, 2H), 2.10 – 1.93 (m, 3H), 1.93 – 1.86 (m, 1H), 1.71 – 1.65 (m, 1H), 1.81 – 1.73 (m, 6H), 1.65 – 1.53 (m, 2H), 1.46 – 1.39 (m, 1H), 1.21 – 1.12 (m, 1H), 0.88 (s, 9H), 0.81 (d, J = 6.8 Hz, 3H), 0.07 (s, 3H), 0.04 (s, 3H) (h, 165 – 1.50 MHz, CDCl₃) δ 177.8, 148.9, 134.4, 126.3, 120.6, 118.7 (q, $J_{C-F} = 316$ Hz), 78.9, 77.1, 76.9, 75.9, 74.7, 58.7, 56.7, 43.1, 37.0, 33.1, 31.5, 30.9, 30.0, 29.0, 26.0 (3C), 25.5, 25.1, 18.3, 15.9, 13.2, 3.7 (2C), -4.0, -4.5

¹H-COSY, ¹H-¹³C-HSQC, ¹H-¹³C-HMBC, NOESY spectra are available

HRMS (ESI-TOF): calc'd for C₃₂H₄₈F₃NO₄SSi [M+H]⁺: 628.3104, found: 628.3093

Supplementary Table 1. Screened conditions for conjugate addition

entry	enone	RLi precursor	condition	result $(dr = desired: undesired)$
1	SI-1	vinylMgBr	CuI	low yield
2	SI-1	vinylMgBr	CuBr	no reaction
3	SI-1	vinylSnBu ₃	CuCN, LiMe, Comins' reagent	81%, dr = 1:7
4	8	vinylSnBu ₃	CuCN, LiMe	messy
5	8	(vinyl) ₄ Sn	PhLi, CuI, Me ₂ S	30-54%, <i>dr</i> > 20:1
6	8	(vinyl) ₄ Sn	PhLi, CuI, n-Bu ₃ P, Comins' reagent	80%, dr > 20:1
7	8	26	HZrCp ₂ Cl, CuCN, LiMe	decomposed
8	8	9	<i>n</i> -BuLi, CuI, <i>n</i> -Bu ₃ P	no reaction
9	8	9	<i>n</i> -BuLi, [Cu], <i>n</i> -Bu ₃ P, PhNTf ₂	25%, dr > 20:1
10	8	9	<i>n</i> -BuLi, [Cu], P(NMe ₂) ₃ , PhNTf ₂	<20% conv.
11	8	9	<i>t</i> -BuLi, [Cu], <i>n</i> -Bu ₃ P, PhNTf ₂	54-70%, <i>dr</i> > 20:1
12	8	9	t-BuLi, [Cu], n-Bu ₃ P, Comins' reagent	70-83%, <i>dr</i> > 20:1

after adding t-BuLi

[Cu] in THF

copper(I)-phosphine complex

transmetalation

adding Comins' reagent

pure compound 3

To a solution of freshly prepared compound **3** (3.33 g, 5.31 mmol) in DCM (34.0 ml) was added DMAP (3.54 g, 29.0 mmol) and heat to reflux. Subsequently, TrocCl (8.1 ml, 12.5 g, 58.8 mmol) was added dropwise, and the resulting solution was allowed to stir at the same temperature for 30 min. Upon completion, the reaction mixture (might be slurry) was added to a vigorously stirred sat. aq. NaHCO₃ (100 mL) The mixture was then stirred at rt for 1.5 h, and extracted with hexanes (3x 50 ml), dried over MgSO₄ and concentrated. Pure compound **27** (4.09 g, 5.11 mmol, 96%) was obtained by chromatography (pentane to 40% DCM in pentane).

Physical state: colorless oil

TLC: $R_f = 0.44$ (50% DCM in hexanes, UV active, KMnO₄ staining)

 $[\alpha]^{25}_{D}$: +82.1 (c = 1.0, CHCl₃)

¹**H-NMR (600 MHz, CDCl₃)** δ 5.71 (d, J = 4.7 Hz, 1H), 5.54 (dt, J = 15.4, 6.7 Hz, 1H), 5.33 (dd, J = 15.4, 8.0 Hz, 1H), 5.00 (s, 1H), 5.20 – 4.41 (br s, 2H), 3.73 – 3.64 (m, 2H), 3.62 – 3.50 (m, 1H), 3.01 – 2.87 (m, 2H), 2.87 – 2.70 (m, 1H), 2.43 – 2.29 (m, 1H), 2.29 – 2.18 (m, 3H), 2.08 (ddt, J = 15.5, 10.9, 6.0 Hz, 1H), 2.04 – 1.95 (m, 1H), 1.81 (dt, J = 13.3, 9.7 Hz, 1H), 1.77 (t, J = 2.6 Hz, 3H), 1.76 (t, J = 2.6 Hz, 3H), 1.74 – 1.65 (m, 1H), 1.63 – 1.50 (m, 3H), 1.45 (ddt, J = 12.8, 9.5, 5.6 Hz, 1H), 1.24 – 1.16 (m, 1H), 0.87 (s, 9H), 0.82 (d, J = 6.8 Hz, 3H), 0.07 (s, 3H), 0.03 (s, 3H).

¹³**C-NMR (150 MHz, CDCl**₃) δ 148.8, 141.0, 135.1, 127.5, 121.8, 120.3, 118.7 (q, *J*_{C-F} = 320.4 Hz), 95.6, 77.1, 76.9, 75.1, 74.5, 66.0, 45.7, 45.5, 45.0, 36.9, 33.3, 31.5, 30.7, 26.0, 25.1, 19.4, 18.3, 13.1, 3.7 (2C), -4.0, -4.6

(a few carbons are missing in ¹³C-NMR; geometry of the double bond is not assigned due to rotamers) HRMS (ESI-TOF): calc'd for C₃₅H₄₉Cl₃F₃NO₆SSi [M+H]⁺: 802.2140, found: 802.2124

reaction mixture

chromatography

product after purification

A 250 ml round bottom flask charged freshly prepared compound **27** (2.35 g, 2.93 mmol) was added MS 5Å (7.01 g, 250 wt% to SM, dried at >200 °C under high vacuum overnight) and cat. (43 mg, 0.058 mmol) in glovebox. Then the flask was taken out from glovebox, and toluene (140 ml) was added under argon. The mixture was pre-stirred for 5 min, and heated to 80 °C. After 45 min, TLC (60% DCM in hexanes) indicated the full conversion. The reaction mixture was allowed to filter over a Celite[®] plug to remove the molecular sieves, and rinsed with DCM. The filtrate was concentrated under reduced pressure and gave a pale-yellow foam as crude product.

The crude product was dissolved in a mixture of DCM (2.4 ml), MeOH (24 ml) and H₂O (1.2 ml). To this solution, PTSA (1.0 g, 5.3 mmol) was added, and the solution was heated to 50 °C and stirred overnight. Upon completion, the reaction mixture was quenched with sat. aq. NaHCO₃ (30 mL) and brine (20 mL), and was extracted with DCM (3x 50 ml). The resulting organic phase was dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by chromatography (DCM to 20% Et₂O in DCM) to yield compound **11** (1.38 g, 2.11 mmol, 72%). **Note: Compound 11 is bench-stable*.

Physical state: white solid

TLC: $R_f = 0.45$ (20% Et₂O in hexanes, KMnO₄ staining)

$[\alpha]^{25}$ _D: -41.4 (*c* = 0.5, CHCl₃)

¹**H-NMR (600 MHz, CDCl3)** δ 5.65 (ddd, J = 15.3, 9.7, 4.7 Hz, 1H), 5.60 (d, J = 2.3 Hz, 1H), 5.27 (dd, J = 15.3, 8.6 Hz, 1H), 5.17 (t, J = 5.8 Hz, 1H), 4.74 (d, J = 12.0 Hz, 1H), 4.67 (d, J = 12.0 Hz, 1H), 3.56 – 3.50 (m, 1H), 3.45 (s, 1H), 3.34 – 3.27 (m, 1H), 3.26 – 3.20 (m, 1H), 2.80 (ddd, J = 18.8, 11.2, 3.0 Hz, 1H), 2.64 – 2.46 (m, 4H), 2.46 – 2.28 (m, 3H), 2.20 – 2.01 (m, 4H), 1.95 (dd, J = 14.0, 5.8 Hz, 1H), 1.85 (dq, J = 9.4, 6.6 Hz, 1H), 1.64 (ddd, J = 14.0, 9.4, 5.0 Hz, 1H), 1.50 – 1.39 (m, 2H), 1.23 – 1.15 (m, 1H), 0.93 (d, J = 6.6 Hz, 3H)

¹³C-NMR (150 MHz, CDCl₃) δ 209.9, 154.7, 147.6, 133.9, 126.5, 120.5, 118.6 (q, $J_{C-F} = 320$ Hz), 95.7, 81.5, 75.8, 74.7, 73.0, 52.0, 46.2, 37.7, 35.7, 33.0, 32.3, 28.3, 28.0, 27.2, 25.6, 24.9, 13.6, 13.1 HRMS (ESI-TOF): calc'd for C₂₅H₃₁Cl₃F₃NO₇S [M+H]⁺: 652.0917, found: 652.0919

reaction mixture

hydrolysis

IKA

TLC (left: reaction)

TLC (after hydrolysis)

TLC (under KMnO₄)

pure compound 11

To a solution of compound **11** (3.02 g, 4.62 mmol, azeotroped with benzene to remove residual H_2O) in DCM (30 ml) was added XPhosAuNTf₂ (30.2 mg, 0.032 mmol) under argon. The mixture was refluxed for 2 h. Upon completion (indicated by TLC, 20% Et₂O in DCM), it was cooled to rt, and TEA (0.05 ml) was added to quench the gold catalyst. Subsequently, the solvent was removed under reduced pressure to give a white foam.

The resulting polycyclic compound was dissolved in MeCN/PhMe/H₂O (5:5:1, 112 ml), and TBAI (808 mg, 2.19 mmol) was added in one portion to give a clear solution. Ru(PPh₃)₃Cl₂ (191 mg, 0.2 mmol) was added to this solution subsequently. A gray-green mixture was generated. Subsequently, TBHP (5-6 M in decane, 10.9 ml) was added dropwise. The yellow green solution turned dark (ca. 15 min, protected from light with foil). The reaction was allowed to stir at rt for 1.5 h (open air, water bath to maintain a constant temperature). Upon completion, the reaction was diluted by Et₂O (50 ml), and quenched by a mixture of water (100 ml), NaHSO₃ (12 g) and NaCl (30 g). The resulting cloudy mixture was stirred for 1 h to give a good phase separation. After collecting the organic phase, the aqueous phase was extracted with Et₂O (4x 100 ml). The combined organic phase was dried over MgSO₄, and concentrated under reduced pressure, The crude product was purified by chromatography (DCM to 5% Et₂O in DCM) to yield compound **12** (1.67 g, 2.44 mmol, 53%).

*Note: Compound 12 is light-sensitive and very unstable in solvents (CHCl₃, benzene, etc.). It is necessary to remove the solvents for storage.

Physical state: yellow foam

TLC: $R_f = 0.45$ (20% Et₂O in hexanes, yellow under light, KMnO₄ staining) $[\alpha]^{25}_{D}$: +40.4 (c = 1.0, MeOH)

¹**H-NMR (600 MHz, CD₃CN)** δ 5.57 (m, 1H), 4.82 (d, J = 12.3 Hz, 1H), 4.70 (d, J = 12.3 Hz, 1H), 4.48 (dt, J = 4.9, 2.5 Hz, 1H), 3.78 (ddd, J = 10.1, 6.1, 3.8 Hz, 1H), 3.68 – 3.53 (m, 1H), 3.47 (td, J = 11.1, 7.1 Hz, 1H), 3.15 – 3.06 (m, 1H), 2.77 (dt, J = 12.6, 10.0 Hz, 1H), 2.68 (dddd, J = 13.6, 11.5, 9.7, 1.8 Hz, 1H), 2.63 – 2.54 (m, 1H), 2.38 (ddt, J = 18.3, 5.3, 2.3 Hz, 1H), 2.32 – 2.20 (m, 3H), 2.02 (ddd, J = 13.6, 8.6, 3.0 Hz, 1H), 1.96 – 1.93 (m, 1H), 1.88 (dd, J = 13.2, 7.0 Hz, 1H), 1.81 – 1.73 (m, 1H), 1.72 – 1.64 (m, 3H), 1.63 – 1.53 (m, 2H), 0.83 (d, J = 7.2 Hz, 3H)

¹³C-NMR (150 MHz, CD₃CN) δ 199.8, 199.0, 152.7, 150.6, 119.7 (q, $J_{C-F} = 320$ Hz), 119.0, 117.9, 105.5, 96.9, 84.3, 75.0, 52.4, 45.2, 40.4, 37.6, 37.4, 37.0, 32.9, 29.1, 27.4, 25.4, 25.4, 24.1, 23.8, 18.9 HRMS (ESI-TOF): calc'd for C₂₅H₂₉Cl₃F₃NO₉S [M+H]⁺: 682.0659, found: 682.0668

entry	condition	result (based on 16)
1	NMO, OsO4, then DMSO, (COCl)2 (>10 eq.), TEA	SI-4 as product (83%)
2	NMO, OsO4, then DMSO, TFAA (10 eq.)	trace 12
2	NMO $O_{\rm SO}$, then DMSO TEAA (>45 or)	20% + messy
5	NMO, 0804, <i>then</i> DMSO, 11AA (>45 cq.)	byproducts
4	NMO, OsO4, then CrO3, H2SO4	decomposed
5	NMO, OsO4, then DMP, DCE, 60 °C	SI-4 + SI-5 + trace 12
6	NMO, OsO4, then DMP, Py, DCE, 40 °C	no 12 observed, messy
7	NMO, OsO4, then IBX, DMSO, rt	no 12 observed, SM
8	NaBrO ₃ (excess), RuCl ₃ (10 mol%), buffer ($pH = 8$)	trace 12
9	TBHP, [Ru(cymene)Cl ₂] ₂ (8 mol%), TBAI, MeCN/PhMe/H ₂ O	35-55%
10	TBHP, RuCl ₃ (8 mol%), TBAI, MeCN/PhMe/H ₂ O	trace 12 + decomposed
11	TBHP, Ru(PPh ₃) ₃ Cl ₂ (8 mol%), TBAI, MeCN/PhMe/H ₂ O	50-65%
12	TBHP, Ru(BINAP)Cl ₂ (8 mol%), TBAI, MeCN/PhMe/H ₂ O	50%
13	TBHP, Ru ₃ (CO) ₁₂ (8 mol%), TBAI, MeCN/PhMe/H ₂ O	35%
14	TBHP, Ru(DMSO) ₄ Cl ₂ (8 mol%), TBAI, MeCN/PhMe/H ₂ O	30%
15	TBHP, Ru(PPh ₃) ₃ Cl ₂ (8 mol%), TBAI, MeNO ₂ /PhMe/H ₂ O	sluggish, messy
16	TBHP, Ru(PPh ₃) ₃ Cl ₂ (8 mol%), TBAI, MeCN/PhMe (dry)	sluggish, low conv.
17	TBHP, Ru(PPh ₃) ₃ Cl ₂ (8 mol%), TMAI, MeCN/PhMe/H ₂ O	no 12 observed, SM
18	TBHP, Ru(PPh ₃) ₃ Cl ₂ (8 mol%), MeCN/PhMe/H ₂ O	no 12 observed, SM
19	m-CPBA, Ru(PPh ₃) ₃ Cl ₂ (8 mol%), TBAI, MeCN/PhMe/H ₂ O	no 12 observed, SM
20	H ₂ O ₂ , Ru(PPh ₃) ₃ Cl ₂ (8 mol%), TBAI, MeCN/PhMe/H ₂ O	no 12 observed, SM
21	NaBrO ₃ , Ru(PPh ₃) ₃ Cl ₂ (8 mol%), TBAI, MeCN/PhMe/H ₂ O	no 12 observed, SM
22	K ₂ S ₂ O ₈ , Ru(PPh ₃) ₃ Cl ₂ (8 mol%), TBAI, MeCN/PhMe/H ₂ O	no 12 observed, SM
23	cymene hydroperoxide, Ru(PPh ₃) ₃ Cl ₂ (8 mol%), TBAI,	no 12 observed, SM
	MeCN/PhMe/H ₂ O	
24	IBHP, Ru(PPh ₃) ₃ Cl ₂ (8 mol%), IBAI, MeCN/PhMe/H ₂ O, NaHCO ₃	sluggish, low conv.
25	TBHP, Ru(PPh ₃) ₃ Cl ₂ (8 mol%), TBAI, MeCN/PhMe/H ₂ O, NaH ₂ PO ₄	sluggish, low conv.

Supplementary Table 2. Screened conditions for 1,2-diketone formation. (From compound SI-2)

NMR spectra of **SI-2** (crude ¹H NMR from [Au] step), **SI-3** (¹H NMR, ¹³C NMR, HSQC, HMBC), **SI-4** (¹H NMR, COSY, NOESY), and **SI-5** (¹H NMR, ¹³C NMR, HSQC, HMBC, NOESY) are available.

reaction mixture (w/Au)

crude olefin

dropping TBHP into reaction

dark solution indicates completion

chromatography

pure compound 12

To a solution of compound **12** (2.43 g, 3.53 mmol) in THF (135 ml) was added L-selectride (1.0 M in THF, 6.7 ml) at -78 °C under argon. The yellow solution turned to colorless as completion (usually takes 30 min). The reaction was quenched according to the following procedure:

- i. Adding MeOH (3.8 ml) to the mixture at -78 °C and stirred at this temperature for 5 min.
- ii. The cooling bath was removed, and a mixture of water (50 ml), EtOAc (10 ml) and Na₂CO₃ (3.0 g) was added subsequently. The resulting mixture was allowed to stir for 5 min.
- iii. A solution of H₂O₂ (50 wt% in H₂O, 2 ml) was added dropwise, and the mixture was stirred for 60 min at rt.

After work up, the mixture was extracted with EtOAc (3x 50 ml), and the combined organic layer was dried over MgSO₄. After concentrating under reduced pressure, the residue was dissolved in MeOH (100 ml) and cooled to 0 °C. NaBH₄ (large excess, around 500 mg) was added portionwise at this temperature. The reaction was stirred for 1 h. Upon completion (indicated by TLC), sat. aq. NH₄Cl (50 ml) and water (100 ml) was added, and the mixture was extracted with DCM (3x 150 ml). The combined organic phase was dried over MgSO₄ and concentrated, the crude product was purified by chromatography (5% EtOAc in DCM to 15% EtOAc in DCM) to yield compound **28** (2.03 g, 83%).

Physical state: white foam

TLC: $R_f = 0.23$ (30% EtOAc in hexanes, KMnO₄ staining)

 $[\alpha]^{25}$ _D: +17.9 (*c* = 1.0, CHCl₃)

¹H-NMR (500 MHz, CDCl₃) δ 5.86 (s, 1H), 4.81 (d, J = 12.0 Hz, 1H), 4.64 (d, J = 12.0 Hz, 1H), 4.06 (td, J = 8.9, 8.3, 4.0 Hz, 1H), 3.92 – 3.82 (m, 1H), 3,60 (t, J = 10.4 Hz, 1H), 3.56 – 3.10 (m, 3H), 3.03 – 2.81 (m, 1H), 2.57 – 2.22 (m, 5H), 2.11 – 1.74 (m, 10H), 1.73 – 1.52 (m, 4H), 0.86 (d, J = 7.2 Hz, 3H) ¹³C-NMR (125 MHz, CDCl₃) δ 152.3, 149.3, 124.0, 118.7 (q, $J_{C-F} = 320$ Hz), 116.2, 106.5, 96.0, 86.2, 81.4, 75.0, 74.6, 66.0, 49.7, 44.8, 38.0, 36.4, 35.8, 34.5, 29.9 (2C), 28.7, 26.6, 25.1, 24.1, 18.1 HRMS (ESI-TOF): calc'd for C₂₅H₃₃Cl₃F₃NO₉S [M-OH]⁺: 668.0866, found: 668.0869

To a solution of compound **28** (1.95 g, 2.84 mmol) in DCM (37 ml) was added TEMPO (55.5 mg, 0.059 mmol), KBr (1.3 g, 10.9 mmol) and sat. NaHCO₃ aq. (9.3 ml), then cooled to 0 °C. The mixture was then stirred for 5 min and a solution of NaOCl (6%, ca. 0.8 M, 5.1 ml) was added dropwise. The resulting red biphasic solution was stirred at the same temperature for 3.5 h, then quenched by adding sat. aq. Na₂S₂O₃ (10 ml). The yellow mixture turned colorless in a few seconds, followed by extraction with DCM for couple of times. The combined organic layer was dried over MgSO₄ and concentrated under reduced pressure to give a white foam (C-14 oxidized product 13).

The crude compound **13** obtained above was mixed with zinc powder (1.7 g, 26 mmol), then dissolved in a mixture of AcOH (70 ml) and H₂O (23 ml), heated at 70 °C under argon. The mixture was stirred for 3 h at the same temperature, then cooled down to 45 °C. After stirring at 45 °C for 2 h, the mixture was cooled down to rt, and dropped into a solution of K₂CO₃ (70 g in 100 ml H₂O). After quenching the acetic acid, the biphasic mixture was extracted with DCM (4x 50 ml), and dried over MgSO₄. After removal of the solvents, the crude product was purified with chromatography (EtOAc to 10% MeOH + 1% TEA in EtOAc) to give compound **15** (1.03 g, 2.10 mmol, 74%).

*Note: Imine 15 is bench-stable.

Physical state: pale yellow powder

TLC: $R_f = 0.23$ (3% MeOH in EtOAc, KMnO₄ staining)

 $[\alpha]^{25}$ D: -35.6 (c = 0.5, CHCl₃)

¹H-NMR (600 MHz, CDCl₃) δ 5.09 (q, J = 1.7 Hz, 1H), 4.29 (dt, J = 10.3, 6.2 Hz, 1H), 4.04 (d, J = 12.0 Hz, 1H), 4.00 – 3.94 (m, 1H), 3.89 – 3.81 (m, 1H), 3.65 – 3.58 (dtt, J = 17.2, 6.9, 3.6 Hz, 1H), 2.74 – 2.56 (m, 3H), 2.55 – 2.43 (m, 4H), 2.38 – 2.28 (m, 1H), 2.19 – 2.07 (m, 2H), 2.00 – 1.80 (m, 4H), 1.79 – 1.68 (m, 3H), 1.49 (dt, J = 12.6, 6.3 Hz, 1H), 1.43 (dd, J = 14.6, 8.1 Hz, 1H), 0.83 (d, J = 7.1 Hz, 3H) ¹³C-NMR (150 MHz, CDCl₃) δ 206.5, 182.0, 148.4, 119.1, 118.6 (q, $J_{C-F} = 320$ Hz), 110.7, 84.6, 75.9, 56.0, 53.6, 48.7, 40.4, 37.2, 36.5, 34.1, 28.6, 28.3, 27.0, 26.3, 24.8, 24.4, 17.7 HRMS (ESI-TOF): calc'd for C₂₂H₂₈F₃NO₆S [M+H]⁺: 492.1668, found: 492.1663

entry	condition	result
1	DMP, DCM, 0 °C	C-15 oxidized only (SI-5)
2	DMP, DCM, rt	SI-5 + 12
3	Collins reagent	messy
4	Jones' reagent	decomposed
5	PCC, DCM, 0 °C	messy
6	Fetizon's reagent, benzene, reflux	no reaction
7	DMSO, (COCl) ₂ , TEA, -78 °C to 0 °C	SM + 13 + SI - 5 + 12 + SI - 4
8	DMSO, (COCl) ₂ , TEA, -78 °C	SM + SI-5:17 (1:1) + 12
9	DMSO, (COCl) ₂ , DIPEA, -78 °C to rt	SI-5 + 13 + 12
10	DMSO, DCC, Py, TFA, benzene, rt	no reaction
11	$Py \cdot SO_3$, DIPEA, DCM:DMSO = 1:1	no reaction
12	Ac ₂ O, DMSO, rt	12 (major)
13	NCS, Me ₂ S, benzene	messy
14	DMSO, TFAA, TEA, -78 °C	12 as major product
15	DMSO, TFAA, DIPEA, -78 °C	SI-5 + 13
16	DMSO, TFAA, morpholine, -78 °C to -50 °C	SI-5 + 13
17	DMSO, (COCl) ₂ , DIPEA, -78 °C to -50 °C	SI-5 + 13
18	DMSO, (COCl) ₂ , morpholine, -78 °C to -50 °C	SI-5 (major) + 13
19	TBSOTf, 2,6-lutidine, DCM	C-14 silylated only
20	DMDO, acetone, 0 °C	decomposed
21	NMO, TPAP, MS 4Å, DCM	12 (major)
22	TEMPO, NaOCl (large excess), KBr, DCM, NaHCO ₃	13 (major) + 12
23	TEMPO, NaOCl (ca. 2.0 eq.), KBr, DCM, NaHCO ₃	13 (93-99%)

Supplementary Table 3. Screened conditions for selective C-14 oxidation from compound 28.

oxidation step

TLC after completion (oxidation)

crude hydroxyl ketone

reaction mixture (ring reconstitution)

TLC of reaction (5% MeOH/EA)

quench by K₂CO₃

crude product

chromatography

pure compound 15

Silylation

To a solution of compound **15** (505 mg, 1.03 mmol) in refluxing DCM (5.0 ml) was added TEA (1.07 ml, 777 mg, 7.68 mmol) and TBSOTf (0.75 ml, 862 mg, 3.26 mmol). The reaction mixture was then allowed to stir for 45 min. Upon completion, the mixture was rinsed with sat. aq. NaHCO₃ (5 ml), followed by extraction with DCM (3x 10 ml). The organic phase was dried over MgSO₄, filtered and concentrated to give crude silyl enol ether as product.

DMDO oxidation

The crude product from above was dissolved in DCM (3 ml), and added DMDO solution (freshly prepared, ca. 0.08 M in acetone, 50 ml) at 0 °C dropwise. After stirring at 0 °C for 1 h, the solvent was removed in vacuo. The residual was redissolved in acetone/H₂O (v/v = 1:1, 20 ml) and added NaHCO₃ solid. Oxone[®] (550 mg) was added to this mixture, and the reaction was stirred at rt for 1 h. Upon completion, a mixture of brine (10 ml) and DCM (5 ml) was added. The aqueous phase was extracted with DCM (4x 10 ml), and the organic layer was dried and concentrated. The crude product was purified by chromatography (EtOAc to 10% MeOH in EtOAc) to give compound **16** (387.1 mg, 0.74 mmol, 73%). **Note: Nitrone* **16** *is stable for long-term storage under -20 °C*.

Physical state: white powder

TLC: $R_f = 0.30$ (10% MeOH in EtOAc, UV active, KMnO₄ staining)

 $[\alpha]^{25}_{D}$: +49.0 (c = 0.1, CHCl₃)

¹**H-NMR (600 MHz, CDCl₃)** δ 5.23 (s, 1H), 4.78 (br s, 1H), 4.59 (d, J = 12.0 Hz, 1H), 4.25 (dt, J = 11.2, 6.0 Hz, 1H), 4.09 – 4.02 (m, 1H), 4.00 (dd, J = 11.3, 2.8 Hz, 1H), 3.95 – 3.86 (dt, J = 13.4, 6.4 Hz, 2H), 3.45 (td, J = 14.3, 7.3 Hz, 1H), 2.60 – 2.43 (m, 3H), 2.30 (dt, J = 14.1, 11.0 Hz, 1H), 2.26 – 2.18 (m, 2H), 2.14 – 2.04 (m, 2H), 2.04 – 1.92 (m, 2H), 1.92 – 1.84 (m, 2H), 1.82 (dd, J = 15.2, 7.2 Hz, 1H), 1.73 (dt, J = 12.7, 7.0 Hz, 1H), 1.59 (dt, J = 12.7, 6.3 Hz, 1H), 1.54 (dd, J = 14.1, 2.8 Hz, 1H), 0.88 (d, J = 6.9 Hz, 3H)

¹³**C-NMR (150 MHz, CDCl₃)** δ 204.2, 153.4, 147.8, 118.6 (q, *J*_{C-F} = 320 Hz), 118.0, 110.7, 84.9, 78.7, 70.9, 59.5, 49.3, 40.2, 37.7, 34.3, 33.9, 33.6, 29.0, 25.6, 24.4, 22.7, 18.4, 17.6

HRMS (ESI-TOF): calc'd for: C₂₂H₂₈F₃NO₈S [M+H]⁺: 524.1561, found: 524.1561

silylation

TLC (5% MeOH in EA, right: SM)

charge SM in flask

silyl enol ether with DMDO

removal of acetone

treated with Oxone®

TLC (under UV, 10% MeOH in EA)

TLC (upon KMnO₄)

chromatography

pure nitrone 16

Compound 17 and 35

Compound **16** (339 mg, 0.65 mmol) was dissolved in DCM (6.0 ml), and TEA (0.9 ml, 660 mg, 6.5 mmol) was added. The mixture was then heated to 35 °C, and Ac₂O (0.34 ml, 365 mg, 3.58 mmol) was added dropwise. The mixture was stirred overnight (monitored with TLC using 5% MeOH in DCM). Upon completion, the reaction was quenched with sat. aq. NaHCO₃ (2.0 ml) at rt. The mixture was extracted with DCM (3x 10 ml), and the combined organic layer was dried over MgSO₄. The solvent was removed under reduced pressure to give crude compound **17** (purity determined by NMR of crude product).

Physical state: white solid

TLC: $R_f = 0.42$ (5% MeOH in DCM, KMnO₄ staining)

$$[\alpha]^{25}_{D}$$
: +5.30 (*c* = 1.0, CHCl₃)

¹**H-NMR (600 MHz, CDCl₃)** δ 5.78 (dd, J = 10.9, 8.0 Hz, 1H), 5.19 (dd, J = 11.1, 2.8 Hz, 1H), 5.05 (q, J = 1.7 Hz, 1H), 4.36 (d, J = 12.0 Hz, 1H), 4.25 (dt, J = 10.0, 6.0 Hz, 1H), 4.18 – 4.08 (m, 1H), 3.92 (dd, J = 16.2, 9.1 Hz, 1H), 3.77 (ddd, 16.2, 10.2, 6.9 Hz, 1H), 2.64 – 2.41 (m, 3H), 2.41 – 2.26 (m, 3H), 2.23-2.13 (m, 1H), 2.12 – 1.95 (m, 2H), 2.08 (s, 3H), 2.05 (s, 3H), 1.93-1.73 (m, 4H), 1.60 (td, J = 12.5, 7.6 Hz, 1H), 1.52 (dd, J = 13.2, 2.8 Hz, 1H), 0.88 (d, J = 6.5 Hz, 3H)

¹³C-NMR (150 MHz, CDCl₃) δ 199.8, 177.2, 169.3, 169.0, 148.8, 118.6 (q, $J_{C-F} = 320$ Hz), 117.8, 108.1, 84.0, 79.9, 73.0, 72.1, 56.4, 53.7, 40.4, 39.1, 36.7, 34.0, 31.6, 29.4, 28.7, 26.5, 24.5, 21.3, 20.9, 17.4 ¹H-¹³C-HSQC, ¹H-¹³C-HMBC spectra are available

HRMS (ESI-TOF): calc'd for C₂₆H₃₂F₃NO₁₀S [M+H]⁺: 608.1777, found: 608.1776

The crude **17** obtained above was dissolved in THF (8.1 ml) and H₂O (0.95 ml), and a solution of LiOH (1.4 M in H₂O, 1.0 ml) was added dropwise at 0 °C. The resulting solution was then stirred at 0 °C, and carefully monitored by TLC (5% MeOH in DCM). The reaction was quenched by a mixture of sat. aq. NaHCO₃ (10 ml) and DCM (10 ml), followed by extraction with DCM (3x 10 ml). The organic layer was combined and dried over MgSO₄. After removal of the solvents, the crude product was purified by chromatography (pure DCM to 5% MeOH in DCM) to afford compound **35** (226 mg, 0.41 mmol, 64%). **Note: Compound 35 was made since it was the start point to all portimine-related analogs described below.*

Physical state: white powder TLC: $R_f = 0.25$ (5% MeOH in DCM, KMnO₄ staining) $[\alpha]^{25}_{D}$: +14.0 (c = 0.1, CHCl₃) ¹H-NMR (600 MHz, CDCl₃) δ 5.19 (dd, J = 11.4, 2.7 Hz, 1H), 5.06 (q, J = 1.7 Hz, 1H), 4.75 (dd, J = 11.1, 7.6 Hz, 1H), 4.34 (d, J = 12.2 Hz, 1H), 4.29 – 4.20 (m, 2H), 3.81 (dd, J = 15.7, 8.9 Hz, 1H), 3.61 (ddt, J = 16.2, 10.5, 5.8 Hz, 1H), 2.72 (dd, J = 14.9, 11.2 Hz, 1H), 2.57 – 2.25 (m, 5H), 2.19 (dd, J = 15.0, 7.6 Hz, 1H), 2.04 (s, 3H), 2.03 – 1.98 (m, 1H), 1.98 – 1.93 (m, 1H), 1.91 – 1.81 (m, 2H), 1.77 (dt, J = 12.1, 7.1 Hz, 1H), 1.70 – 1.67 (m, 1H), 1.58 (dd, J = 12.6, 7.7 Hz, 1H), 1.52 (dd, J = 13.6, 2.8 Hz, 1H), 0.88 (d, J = 6.9 Hz, 3H)

¹³C-NMR (150 MHz, CDCl₃) δ 199.6, 183.2, 169.1, 148.6,118.7 (q, $J_{C-F} = 319$ Hz), 118.0, 108.4, 84.0, 80.0, 72.9, 70.3, 55.4, 53.5, 42.7, 38.9, 37.0, 34.0, 31.5, 29.5, 29.1, 26.5, 24.4, 21.0, 17.5 HRMS (ESI-TOF): calc'd for C₂₄H₃₀F₃NO₉S [M+H]⁺: 566.1666, found: 566.1658

For stereochemistry assignment of compound 35, see spectra data of compound SI-6.

Synthesis of compound SI-6

Procedure I (DMDO oxidation followed by acetylation)

To a solution of compound **15** (3.7 mg, 0.0075 mmol) in DCM (0.1 ml) was added DMDO solution (freshly prepared, ca. 0.08 M in acetone, 0.25 ml) at 0 °C in one portion. After stirring at 0 °C for 1 h, the volatiles were removed in vacuo. The residual was redissolved in DCM (0.2 ml) and added Ac₂O (ca. 0.05 ml) and TEA (ca. 0.05 ml), followed by heating to reflux overnight. The mixture was quenched with sat. aq. NaHCO₃ (1.0 ml) at rt and extracted with DCM (3x 1 ml). The combined organic layer was dried over MgSO₄. The solvent was removed under reduced pressure. Pure compound **SI-6** (2.9 mg, 0.0053 mmol, 71%) was obtained by PTLC (10% MeOH in DCM)

Procedure II (Lead (IV) acetate oxidation)

To a solution of compound **15** (20.1 mg, 0.041 mmol) in benzene (1.0 ml) was added $Pb(OAc)_4$ (25 mg, contains AcOH as stabilizer, white crystals) under argon at room temperature. The reaction mixture was then heated to reflux and stirred for 1 h. The yellow solution was then quenched by adding sat. aq. NaHCO₃ (2 ml) and extracted with DCM (3x 2 ml). The combined organic layer was dried over MgSO₄ and the solvent was removed under reduced pressure. Pure compound **SI-6** (17.3 mg, 0.031mmol, 76%) was obtained by PTLC described above.

Physical state: white powder

TLC: $R_f = 0.35$ (5% MeOH in DCM, KMnO₄ staining)

¹**H-NMR (600 MHz, CDCl₃)** δ 5.79 (dd, J = 10.9, 8.1 Hz, 1H), 5.10 (t, J = 1.7 Hz, 1H), 4.29 (dt, J = 10.2, 6.2 Hz, 1H), 4.15 (d, J = 10.9 Hz, 1H), 4.06 (d, J = 12.0 Hz, 1H), 3.96 – 3.88 (m, 1H), 3.76 (ddd, J = 16.4, 10.3, 6.8 Hz, 1H), 2.68 – 2.58 (m, 2H), 2.49 (dddd, J = 23.0, 14.7, 11.1, 6.0 Hz, 3H), 2.37 – 2.26 (m, 2H),

2.24 - 2.14 (m, 1H), 2.14 - 2.09 (m, 1H), 2.07 (s, 3H), 2.07 - 2.04 (m, 1H), 1.99 - 1.90 (m, 2H), 1.87 (dd, J = 12.6, 6.7 Hz, 1H), 1.78 (dtd, J = 11.6, 6.9, 6.2, 2.7 Hz, 2H), 1.57 (td, J = 12.6, 7.7 Hz, 1H), 1.45 (dd, J = 14.9, 7.8 Hz, 1H), 0.84 (d, J = 7.1 Hz, 3H)

¹³C-NMR (150 MHz, CDCl₃) δ 206.1, 177.6, 169.4, 148.6, 118.8, 118.4 (q, *J*_{C-F} = 320 Hz), 108.1, 84.6, 76.0, 72.1, 56.3, 53.7, 48.7, 40.4, 39.6, 37.1, 36.6, 29.4, 28.7, 26.4, 24.8, 24.6, 21.3, 17.7

¹H-¹³C-HSQC, ¹H-¹³C-HMBC, NOESY spectra are available

To a solution of crude compound **17** (39.3 mg, 0.065 mol, synthesized by the aforementioned procedure) in *n*-PrOH (2.0 ml) was added vinylBF₃K (30 mg, 0.22 mol) and Pd(dppf)Cl₂·DCM (5.1 mg, 0.007 mol) at rt. The mixture was then heated to 90 °C, and TEA (0.05 ml) was added dropwise. The resulting red solution became yellow gradually, ended a brown solution. The reaction was monitored by TLC (40% acetone in hexanes). Upon completion, the volatiles were removed by reduced pressure, and the residue was redissolved in a mixture of THF/H₂O (v/v = 8:1, 1 ml), and added LiOH (1.4 M in H₂O, 0.1 ml) at 0 °C. The reaction was carefully monitored by TLC (5% MeOH in DCM). Upon completion, the reaction was quenched by a mixture of sat. aq. NaHCO₃ (1 ml) and DCM (1 ml), followed by extraction with DCM (3x 1 ml). The organic layer was combined and dried over MgSO₄. After removal of the solvents, the crude product was purified by PTLC (5% MeOH in DCM) to afford compound **18** (15.4 mg, 55%).

Physical state: white solid

TLC: $R_f = 0.43$ (40% acetone in hexanes, UV active, KMnO₄ staining)

 $[\alpha]^{25}$ D: +18.0 (c = 0.1, CHCl₃)

¹**H-NMR (600 MHz, CDCl₃)** δ 6.18 (dd, J = 17.5, 10.7 Hz, 1H), 5.24 – 5.19 (m, 1H), 5.10 (d, J = 17.5 Hz, 1H), 4.91 – 4.99 (m, 2H), 4.75 (dd, J = 11.2, 7.4 Hz, 1H), 4.31 (d, J = 12.1 Hz, 1H), 4.26 (dt, J = 10.7, 5.6 Hz, 1H), 4.16 (d, J = 12.1 Hz, 1H), 3.76 (dd, J = 16.2, 8.8 Hz, 1H), 3.61 (ddd, J = 16.2, 10.4, 6.8 Hz, 1H), 2.81 (dd, J = 14.8, 11.3 Hz, 1H), 2.42 – 2.22 (m, 5H), 2.19 – 2.14 (m, 1H), 2.07 (s, 3H), 2.03 (dd, J = 12.3, 7.0 Hz, 1H), 1.91 – 1.71 (m, 4H), 1.71 – 1.63 (m, 1H), 1.57 (td, J = 12.5, 7.6 Hz, 1H), 1.53 – 1.46 (m, 1H), 0.87 (d, J = 7.0 Hz, 3H)

¹³C-NMR (150 MHz, CDCl₃) δ 200.1, 184.0, 168.9, 139.0, 135.4, 127.7, 111.6, 108.2, 83.7, 80.1, 73.7, 70.8, 55.4, 54.2, 42.5, 39.8, 36.9, 34.0, 31.6, 29.6, 29.2, 24.3, 22.7, 21.1, 17.4 HRMS (ESI-TOF): calc'd for C₂₅H₃₃NO₆ [M+H]⁺: 444.2381, found: 444.2377

Compound 2 (portimine B)

To a solution of compound **18** (16.7 mg, 0.038 mol) in DCM (0.3 ml) was added DMP (55.1 mg, 0.13 mmol) and NaHCO₃ powder (25 mg). The resulting mixture was allowed to stir at rt for 1 h. Upon completion, sat. aq. K_2CO_3 (0.2 ml) and sat. aq. $Na_2S_2O_3$ (0.2 ml) was added, followed by dilution with DCM (2 ml) and water (2 ml). The biphasic mixture was stirred vigorously for 30 min, and the organic layer was separated. The aqueous phase was extracted with DCM (3x 2 ml), and the combined DCM phase was dried over MgSO₄ and filter. After concentration, the residue was dissolved in MeOH (0.2 ml) and added aq. NH₃ (37%, 0.1 ml). The progress of hydrolysis can be monitored by TLC (5% MeOH in DCM). After completion, the mixture was added brine to facilitate phase separation. DCM was chosen to extract the solution (3x 2 ml), and the combined DCM layer was dried and concentrated. Portimine B (**2**) (13.3 mg, mmol, 88%) was obtained by chromatography (pure DCM to 5% MeOH in DCM).

Physical state: white solid

TLC: $R_f = 0.22$ (3% MeOH in DCM, UV active, KMnO₄ staining)

 $[\alpha]^{25}$ _D: +42.9 (*c* = 0.08, CHCl₃)

¹**H-NMR (600 MHz, CDCl₃)** δ 6.21 (dd, J = 17.4, 10.8 Hz, 1H), 5.11 (d, J = 17.4 Hz, 1H), 5.07 (d, J = 2.0 Hz, 1H), 4.97 (d, J = 10.8 Hz, 1H), 4.62 (d, J = 12.2 Hz, 1H), 4.281 (dt, J = 10.1, 6.0 Hz, 1H), 4.15 (d, J = 11.3 Hz, 1H), 4.08 (dd, J = 16.2, 9.1 Hz, 1H), 3.83 (ddd, J = 16.6, 10.4, 6.7 Hz, 1H), 3.78 (d, J = 12.8 Hz, 1H), 3.43 (d, J = 17.5 Hz, 1H), 2.79 (d, J = 17.5 Hz, 1H), 2.50 (s, 1H), 2.42 – 2.24 (m, 4H), 2.12 (dd, J = 12.5, 7.1 Hz, 1H), 2.03 – 1.90 (m, 2H), 1.87 (dd, J = 12.5, 6.6 Hz, 1H), 1.78 (dt, J = 12.4, 6.4 Hz, 2H), 1.73 – 1.65 (m, 1H), 1.63 – 1.53 (m, 1H), 0.91 (d, J = 7.1 Hz, 3H)

¹³C-NMR (150 MHz, CDCl₃) δ 204.4, 200.9, 182.5, 138.6, 136.0, 126.7, 112.4, 107.1, 84.7, 78.9, 72.2, 58.1, 54.7, 53.0, 40.9, 38.2, 34.3, 34.1, 28.7, 28.6, 24.4, 22.6, 17.7

HRMS (ESI-TOF): calc'd for C₂₃H₂₉NO₅ [M+H]⁺: 400.2119, found: 400.2117

position	chemical shift in reported 2	chemical shift in synthetic 2
C1	58.1	58.4
C2	28.7	28.8
C3	54.7	55.1
C4	182.5	182.9
C5	200.9	201.4
C6	53.0	53.2
C7	107.1	107.2
C8	38.2	38.5
C9	24.4	24.6
C10	84.7	85.0
C11	34.3	34.7
C12	34.1	34.3
C13	78.9	79.1
C14	204.4	204.8
C15	72.2	72.4
C16	40.9	41.2
C17	126.7	126.9
C18	136.0	135.8
C19	22.6	22.8
C20	28.6	28.8
C21	138.6	138.8
C22	112.4	112.5
C23	17.7	18.0

Supplementary Table 4. Comparison of ¹³C shift in CDCl₃ and chemical structure between synthetic 2 and previously reported 2 (Ref. 6).

portimine B (**2**) reported structure

portimine B (2) revised structure

Compound 1 (portimine A)

portimine B (2)

portimine A (1)

To a solution of crude compound **2** (ca. 20 mg, 0.05 mmol) in MeOH (0.5 ml) was added NaBH₃CN (10 mg, 0.16 mol) and AcOH (0.025 ml) at rt. The resulting mixture was stirred at the same temperature for 1.5 h, and quenched with sat. NaHCO₃ aq. The mixture was extracted with DCM (4x), and the organic layer was dried over MgSO₄ and concentrated. The crude product was purified with chromatography (DCM to 10% MeOH in DCM) to obtain compound **1** (19.2 mg, 0.048 mol, 95%).

*Note: Portimine A can be auto-oxidized to portimine B under air.

Physical state: white solid

TLC: $R_f = 0.54$ (10% MeOH in DCM, UV active, KMnO₄ staining)

 $[\alpha]^{25}$ D: +5.8 (*c* = 1.0, CHCl₃)

¹**H-NMR (600 MHz, CDCl₃)** δ 6.21 (dd, J = 17.6, 10.8 Hz, 1H), 5.17 – 5.01 (m, 2H), 4.93 (d, J = 10.8 Hz, 1H), 4.71 (br s, 1H), 4.52 (s, 1H), 4.47 (d, J = 12.0 Hz, 1H), 4.18 (dt, J = 11.2, 5.6 Hz, 1H), 4.08 (dd, J = 11.2, 2.7 Hz, 1H), 3.86 (dd, J = 15.2, 8.8 Hz, 1H), 2.81 (dd, J = 15.9, 5.1 Hz, 1H), 2.43 – 2.19 (m, 4H), 2.09 (d, J = 15.8 Hz, 1H), 2.01 – 1.92 (m, 2H), 1.93 – 1.79 (m, 2H), 1.79 – 1.61 (m, 5H), 1.50 (dd, J = 13.7, 2.6 Hz, 1H), 0.88 (d, J = 6.9 Hz, 3H)

¹³C-NMR (150 MHz, CDCl₃) δ 204.6, 185.0, 138.8, 135.2, 127.8, 111.7, 109.1, 83.2, 79.3, 71.6, 65.6, 54.9, 52.7, 43.1, 40.6, 37.6, 34.3, 33.8, 29.6, 29.0, 24.6, 22.6, 17.6

HRMS (ESI-TOF): calc'd for C₂₃H₃₁NO₅ [M+H]⁺: 402.2275, found: 402.2265

position	chemical shift in authentic 1	chemical shift in synthetic 1
C1	54.9	54.9
C2	29.4	29.6
C3	52.7	52.7
C4	185.0	185.0
C5	65.6	65.6
C6	43.1	43.1
C7	109.1	109.1
C8	37.6	37.6
C9	24.6	24.6
C10	83.2	83.2
C11	34.3	34.3
C12	33.8	33.8
C13	79.3	79.3
C14	204.6	204.6
C15	71.6	71.6
C16	40.7	40.6
C17	127.8	127.8
C18	135.2	135.2
C19	22.6	22.6
C20	29.1	29.0
C21	138.8	138.8
C22	111.7	111.7
C23	17.6	17.6

Supplementary Table 5. Comparison of ¹³C shift in CDCl₃ and chemical structure between synthetic 1 and previously reported 1.

Compound 29-1

To a solution of amine (16 mg, 0.12 mmol) in DMF (0.2 ml) was added HATU (44 mg, 0.12 mmol) and acid (38 mg, 0.15 mmol). The mixture was stirred at rt, followed by an addition of DIPEA (10 drops). The resulting yellow solution was stirred under argon for 16 h, and diluted with Et₂O (1 ml). Sat. NaHCO₃ aq. (1 ml) was added to this mixture to quench the excess benzoic acid. The resulting biphasic mixture was extracted with Et₂O (3x 1 ml), dried over MgSO₄, and concentrated under reduced pressure. Pure compound **29-1** (32 mg, 0.087 mmol, 73%) was obtained by PTLC (12% Et₂O in DCM).

Physical state: colorless oil **TLC:** *R_f*= 0.55 (30% EtOAc in hexanes, UV active, KMnO₄ staining) ¹**H-NMR (600 MHz, CDCl₃)** δ 7.87 (d, *J* = 8.2 Hz, 2H), 7.77 (d, *J* = 8.2 Hz, 2H), 6.35 (t, *J* = 5.8 Hz, 1H), 3.31 (q, *J* = 6.6 Hz, 2H), 2.03 (td, *J* = 7.2, 2.6 Hz, 2H), 1.98 (t, *J* = 2.6 Hz, 1H), 1.82 (t, *J* = 6.6 Hz, 2H), 1.68 (t, *J* = 7.2 Hz, 2H), 1.35 (s, 12H) ¹³**C-NMR (150 MHz, CDCl₃)** δ 167.7, 136.7, 135.2 (2C), 126.2 (2C), 84.3 (2C), 82.9, 69.6, 35.1, 32.7, 32.3, 29.9, 27.1, 25.0 (4C), 13.4

HRMS (ESI-TOF): calc'd for C₂₀H₂₆BN₃O₃ [M+H]⁺: 368.2140, found: 368.2136

Compound 29-2

To a solution of amine (10.0 mg, 0.12 mmol) in DMF (0.2 ml) was added HATU (36 mg, 0.12 mmol) and acid (16 mg, 0.15 mmol). The mixture was stirred at rt, followed by an addition of DIPEA (0.05 ml). The resulting yellow solution was stirred under argon for 16 h, followed by adding H₂O (1 ml). The resulting biphasic mixture was extracted with EtOAc (3x 1 ml), dried over MgSO₄, and concentrated under reduced pressure. Pure compound **29-2** (17.2 mg, 0.087 mmol, 73%) was obtained by PTLC (60% EtOAc in hexanes).

Physical state: white solid

TLC: $R_f = 0.65$ (60% EtOAc in hexanes, UV active, KMnO₄ staining)

¹**H-NMR (500 MHz, CD₃OD)** δ 7.79 (d, *J* = 7.6 Hz, 2H), 7.70 (d, *J* = 7.8 Hz, 2H), 2.27 (t, *J* = 2.7 Hz, 1H), 2.05 (td, *J* = 7.4, 2.7 Hz, 2H), 1.75 (t, *J* = 7.1 Hz, 2H), 1.68 (t, *J* = 7.4 Hz, 2H)

¹³C-NMR (126 MHz, CD₃OD) δ 169.0, 133.5 (2C), 125.8 (2C), 82.2, 69.0, 37.5, 34.6, 32.1, 31.8, 26.6, 12.5

(1 aromatic carbon was missing in ${}^{13}CNMR$)

HRMS (ESI-TOF): calc'd for C₁₄H₁₆BN₃O₃ [M+H]⁺: 286.1363, found: 286.1354

To a solution of compound **35** (5.0 mg, 0.0088 mmol) and compound **29-2** (5.1 mg, 0.018 mmol) in 1,4-dioxane (0.35 ml) was added Pd(PPh₃)₄ (0.7 mg, 0.00091 mmol) and K₃PO₄ (3 mg). The resulting yellow solution was heated to 85 °C. Upon completion (normally 2 h), H₂O (0.2 mL) was added to the mixture followed by extraction with DCM (3x 1 ml). The pure compound **30** (4.5 mg, 0.0069 mmol, 78%) was obtained by PTLC (45% acetone in hexanes).

Physical state: white solid

TLC: $R_f = 0.25$ (10% MeOH in DCM, UV active, KMnO₄ staining)

¹**H-NMR (600 MHz, CDCl₃)** δ 7.70 (d, *J* = 8.5 Hz, 2H), 7.36 (d, *J* = 8.5 Hz, 2H), 6.29 (t, *J* = 5.9 Hz, 1H), 5.41 (s, 1H), 5.25 – 5.20 (m, 1H), 4.80 (dd, *J* = 11.1, 7.5 Hz, 1H), 4.39 (d, *J* = 12.1 Hz, 1H), 4.29 – 4.20 (m, 2H), 3.82 (dd, *J* = 15.6, 8.6 Hz, 1H), 3.68 (ddd, *J* = 16.0, 10.1, 7.0 Hz, 1H), 3.31 (q, *J* = 6.4 Hz, 2H), 2.84 (dd, *J* = 14.8, 11.2 Hz, 1H), 2.64 – 2.52 (m, 2H), 2.47 – 2.32 (m, 3H), 2.21 (dd, *J* = 14.9, 7.5 Hz, 1H), 2.04 (s, 3H), 2.04 – 2.02 (m, 2H), 1.98 (t, *J* = 2.6 Hz, 2H), 1.98 – 1.84 (m, 3H), 1.82 (t, *J* = 6.6 Hz, 2H), 1.81 – 1.74 (m, 3H), 1.68 (t, *J* = 7.3 Hz, 2H), 1.59 (td, *J* = 12.6, 7.7 Hz, 1H), 1.53 (dd, *J* = 13.1, 2.9 Hz, 1H), 0.89 (d, *J* = 6.2 Hz, 3H)

¹³C-NMR (150 MHz, CDCl₃) δ 200.3, 184.5, 169.1, 167.3, 144.1, 135.6, 133.1 (2C), 127.2, 125.1, 124.9, 108.4, 83.9, 82.9, 80.3, 73.8, 70.8, 69.7, 55.4, 53.8, 42.7, 40.1, 37.0, 35.1, 34.2, 32.7, 32.3, 31.7, 30.1, 29.9, 29.3, 27.1, 26.0, 24.5, 21.3, 17.6, 13.4

HRMS (ESI-TOF): calc'd for C₃₇H₄₄N₄O₇ [M+H]⁺: 657.3283, found: 657.3291

Compound 31-1 (ePA-DA)

To a solution of compound **35** (5.1 mg, 0.0091 mmol) and compound **29-1** (6.6 mg, 0.018 mmol) in DME (0.2 ml) was added Pd(PPh₃)₄ (1.0 mg, 0.00091 mmol). The resulting yellow solution was added sat. aq. NaHCO₃ (0.05 ml) while stirring, followed by heating to 100 °C. Upon completion (normally 2 h), water (0.5 ml) was added and the mixture was extracted with DCM (3x 1ml). The combined organic layer was dried over MgSO₄ and concentrated. The residue was dissolved in MeOH (0.1 ml) and treated with K₂CO₃ (10 mg). After vigorous stirring at rt for 30 min, the mixture was extracted with DCM (3x 1 ml) and purified by PTLC (8% MeOH in DCM) to afford compound **31-1** (4.4 mg, 0.0072 mmol, 79%) as product.

*Note: Hydrolysis of the acetate was occasionally observed under Suzuki condition described here, directly delivered compound **31-1**.

Physical state: white solid

TLC: $R_f = 0.21$ (10% MeOH in DCM, UV active, KMnO₄ staining)

¹**H-NMR (600 MHz, CDCl₃)** δ 7.78 (d, *J* = 8.0 Hz, 2H), 7.46 (d, *J* = 8.0 Hz, 2H), 7.12 (br s, 1H), 5.63 (s, 1H), 4.74 (t, *J* = 9.3 Hz, 1H), 4.62 (d, *J* = 11.9 Hz, 1H), 4.31 (s, 1H), 4.14 – 4.03 (m, 1H), 3.92 (d, *J* = 12.0 Hz, 1H), 3.59 (q, *J* = 6.5 Hz, 1H), 3.54 – 3.45 (m, 1H), 3.42 – 3.30 (m, 1H), 2.96 (q, *J* = 9.1 Hz, 1H), 2.85 (t, *J* = 12.9 Hz, 1H), 2.43 – 2.29 (m, 2H), 2.29 – 2.20 (m, 2H), 2.18 – 2.09 (m, 1H), 2.05 – 1.87 (m, 6H), 1.86 – 1.70 (m, 4H), 1.68 (td, *J* = 7.2, 4.5 Hz, 2H), 1.65 – 1.55 (m, 3H), 1.54 – 1.44 (m, 1H), 0.95 (d, *J* = 6.5 Hz, 3H)

¹³C-NMR (150 MHz, CDCl₃) δ 207.8, 185.1, 167.7, 142.3, 133.8, 132.9 (2C), 127.4, 124.7, 124.4, 108.1, 84.3, 82.9, 79.6, 71.5, 70.8, 69.6, 54.7, 53.8, 42.4, 40.3, 37.1, 34.9, 34.6, 33.0, 32.8, 32.3, 29.9, 29.7, 28.9, 27.2, 25.1, 24.4, 17.8, 13.5

HRMS (ESI-TOF): calc'd for C₃₅H₄₂N₄O₆ [M+H]⁺: 615.3177, found: 615.3170

Compound 31-2 (PA-DA)

To a solution of compound **30** (4.5 mg, 0.0069 mmol) in DCM (0.8 ml) was added DMP (5.9 mg, 0.014 mmol) and NaHCO₃ (10 mg) at rt. The mixture was then stirred for 2 h, followed by quenching with sat. aq. Na₂S₂O₃ (0.5 ml) and solid Na₂CO₃ (10 mg). The mixture was then stirred for 30 min to give a clear biphasic liquid. The DCM layer was collected and the aqueous layer was extracted with DCM (3x 1 ml). The organic phase was dried over MgSO₄ and concentrated to give the crude product, which was dissolved in MeOH (0.15 ml) and treated with AcOH (5 drops). The solution was cooled to 0 °C, and NaBH₃CN (ca. 5 mg, large excess) was added in one portion. The colorless solution was stirred at the same temperature for 1.5 h. Upon completion, K₂CO₃ (100 mg) and H₂O (0.1 ml) was added subsequently, which gave a slightly yellow mixture. The hydrolysis was carried out at rt for 1 h, and the mixture was extracted with DCM (4x 1 ml). The combined organic layer was dried over MgSO₄ and concentrated. Pure compound **31-2** (2.1 mg, 0.0034, 49%) was obtained by PTLC (10% MeOH in DCM).

Physical state: white solid

TLC: $R_f = 0.23$ (10% MeOH in DCM, UV active, KMnO₄ staining)

¹**H-NMR (600 MHz, CDCl₃)** δ 7.69 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 6.31 (s, 1H), 5.54 (d, J = 2.2 Hz, 1H), 4.56 (d, J = 12.0 Hz, 1H), 4.43 (s, 1H), 4.21 (dt, J = 11.2, 5.9 Hz, 1H), 4.10 (dd, J = 11.3, 2.7 Hz, 1H), 3.90 – 3.83 (m, 1H), 3.72 – 3.62 (m, 2H), 3.30 (q, J = 6.4 Hz, 2H), 2.80 (dd, J = 15.9, 5.1 Hz, 1H), 2.54 (d, J = 7.8 Hz, 2H), 2.39 – 2.32 (m, 1H), 2.31 – 2.25 (m, 1H), 2.13 (d, J = 15.9 Hz, 1H), 2.07 – 1.96 (m, 5H), 1.92 (dd, J = 12.6, 6.7 Hz, 1H), 1.89 – 1.83 (m, 1H), 1.81 (t, J = 6.6 Hz, 2H), 1.75 (td, J = 12.3, 5.1 Hz, 2H), 1.72 – 1.63 (m, 3H), 1.61 – 1.51 (m, 2H), 0.90 (d, J = 6.9 Hz, 3H)

¹³C-NMR (150 MHz, CDCl₃) δ 205.5, 185.2, 167.3, 143.7, 135.0, 133.0 (2C), 127.1, 125.4, 109.2, 83.5, 82.9, 79.4, 71.6, 69.7, 65.7, 55.0, 52.1, 43.2, 40.8, 37.8, 35.1, 34.5, 33.8, 32.6, 32.3, 29.9, 29.5, 29.3, 27.2, 25.7, 24.8, 17.8. 13.4

HRMS (ESI-TOF): calc'd for C₃₅H₄₂N₄O₆ [M+H]⁺: 615.3177, found: 615.3193

Compound **32** (PhPA)

To a mixture of compound **37** (2.3 mg, 0.0044 mmol), PhB(OH)₂ (1.6 mg, 0.013 mmol), CsOAc (5 mg), and Pd(dppf)Cl₂·DCM (0.18 mg, 0.0002 mmol) was added THF (0.3 ml) and heated to reflux. After 20 h, TLC indicated the full completion (monitored by 40% acetone in hexanes), and a mixture of sat. aq. Na₂CO₃ (0.5 ml) and DCM (1 ml) was added. The mixture was extracted with DCM (4x 1ml), dried over MgSO₄, and concentrated. Pure compound **32** (1.7 mg, 0.0037 mmol, 84%) was obtained by PTLC (10% MeOH in DCM).

Physical state: white powder

TLC: $R_f = 0.46$ (10% MeOH in DCM, UV active, KMnO₄ staining)

¹**H-NMR (600 MHz, CDCl₃)** δ 7.39 (d, J = 7.4 Hz, 2H), 7.29 (t, J = 7.4 Hz, 2H), 7.24 (t, J = 7.4 Hz, 1H), 5.47 (s, 1H), 4.53 (d, J = 12.1 Hz, 1H), 4.37 (s, 1H2), 4.21 (dt, J = 11.2, 6.0 Hz, 1H), 4.09 (dd, J = 11.2, 2.6 Hz, 1H), 3.84 (dd, J = 15.3, 9.0 Hz, 1H), 3.71 – 3.61 (m, 1H), 3.55 (d, J = 12.1 Hz, 1H), 2.78 (dd, J = 15.9, 5.1 Hz, 1H), 2.58 – 2.41 (m, 2H), 2.39 – 2.24 (m, 2H), 2.11 (d, J = 15.9 Hz, 1H), 2.01 – 1.93 (m, 2H), 1.93 – 1.81 (m, 2H), 1.76 – 1.70 (m, 1H), 1.71 – 1.63 (m, 3H), 1.55 (dd, J = 14.1, 2.7 Hz, 1H), 0.91 (d, J = 6.9 Hz, 3H)

¹³C-NMR (150 MHz, CDCl₃) δ 206.1, 140.4, 135.4, 128.5, 127.6, 125.2, 123.4, 109.2, 83.4, 79.6, 71.7, 65.7, 54.8, 52.1, 43.1, 40.5, 37.7, 34.5, 33.5, 29.9, 29.4, 29.1, 25.6, 24.8, 17.8 (1 carbon (C=N) was missing in ¹³C NMR)

HRMS (ESI-TOF): calc'd for C₂₇H₃₃NO₅ [M+H]⁺: 452.2432, found: 452.2435

Compound **33** (6.3 mg, 0.014 mmol) was prepared from compound **18** (9.0 mg, 0.020 mmol) by oxidation with DMP (excess, ca. 10 mg) and reduction with NaBH₃CN (same as the synthesis of **1**). Purified by PTLC (5% *i*-PrOH in DCM).

Physical state: white powder

TLC: $R_f = 0.58$ (10% MeOH in DCM, UV active, KMnO₄ staining)

¹**H-NMR (600 MHz, CDCl₃)** δ 6.16 (dd, J = 17.5, 10.8 Hz, 1H), 5.21 – 5.16 (m, 1H), 5.10 (d, J = 17.5 Hz, 1H), 4.96 (d, J = 10.8 Hz, 1H), 4.90 (s, 1H), 4.52 (t, J = 4.2 Hz, 1H), 4.29 (d, J = 11.9 Hz, 1H), 4.20 (dt, J = 10.8, 5.4 Hz, 1H), 3.88 (dd, J = 15.3, 8.9 Hz, 1H), 3.75 (d, J = 12.4 Hz, 1H), 3.70 (ddd, J = 14.7, 7.1, 3.7 Hz, 1H), 2.81 (dd, J = 16.0, 5.1 Hz, 1H), 2.45 – 2.26 (m, 4H), 2.11 (dd, J = 16.1, 1.9 Hz, 1H), 2.06 (s, 3H), 1.99 (dd, J = 12.2, 7.1 Hz, 2H), 1.93 (dd, J = 12.5, 6.9 Hz, 1H), 1.88 – 1.63 (m, 5H), 1.49 (dd, J = 12.9, 2.8 Hz, 1H), 0.87 (d, J = 6.6 Hz, 3H)

¹³C-NMR (150 MHz, CDCl₃) δ 200.5, 185.8, 169.0, 138.8, 135.6, 127.3, 112.2, 109.4, 83.3, 80.2, 73.6, 65.7, 54.8, 52.8, 43.3, 40.7, 37.8, 34.1, 31.6, 29.5, 29.0, 24.7, 22.7, 21.3, 17.6 HRMS (ESI-TOF): calc'd for C₂₅H₃₃NO₆ [M+H]⁺: 444.2381, found: 444.2379 Compound **34** (ePA)

Compound **35** (2.2 mg, 0.005 mmol) was dissolved in *n*-PrOH (0.1 ml), followed by addition of vinylBF₃K (1.5 mg, 0.011 mmol) and Pd(dppf)Cl₂ (0.4 mg, 0.0005 mmol) under argon. TEA (1 drop) was added to this solution. Subsequently, the reaction was heated to 80 °C for 1 h. Upon completion (monitored by TLC), the solvent was removed under vacuo, and the residue was dissolved in MeOH (0.1 ml). Aq. NH₃ (37%, 0.1 ml) was added to this solution. The resulting solution was stirred for 2 h, and concentrated. The residue was purified by PTLC (10% *i*-PrOH in DCM) to give compound **34** (*epi*-portimine A) (1.8 mg, 0.004 mmol, ca. 80%) as single product.

Physical state: white solid

TLC: $R_f = 0.44$ (10% MeOH in DCM, UV active, KMnO₄ staining)

 $[\alpha]^{25}$ D: -8.0 (c = 0.1, CHCl₃)

¹H-NMR (600 MHz, CDCl₃) δ 6.21 (dd, J = 17.5, 10.8 Hz, 1H), 5.08 (d, J = 17.5 Hz, 1H), 5.04 (s, 1H), 4.93 (d, J = 10.8 Hz, 1H), 4.78 (dd, J = 11.1, 7.5 Hz, 1H), 4.47 (d, J = 12.0 Hz, 1H), 4.23 (dt, J = 10.4, 6.0 Hz, 1H), 4.14 (d, J = 12.0 Hz, 1H), 4.08 (dd, J = 11.2, 2.7 Hz, 1H), 3.75 (dd, J = 16.0, 8.8 Hz, 1H), 3.63 (ddd, J = 16.0, 10.3, 7.0 Hz, 1H), 2.80 (dd, J = 14.6, 11.1 Hz, 1H), 2.40 – 2.21 (m, 5H), 2.15 (dd, J = 14.0, 6.7 Hz, 1H), 2.01 (dd, J = 12.1, 7.1 Hz, 1H), 1.92 – 1.82 (m, 2H), 1.79 (dd, J = 12.5, 6.7 Hz, 1H), 1.76 – 1.66 (m, 2H), 1.58 – 1.49 (m, 2H), 0.88 (d, J = 6.0 Hz, 3H) ¹³C-NMR (150 MHz, CDCl₃) δ 204.7, 184.8, 139.1, 135.3, 128.2, 111.6, 108.2, 83.9, 79.3, 71.9, 70.7, 55.3, 54.5, 42.5, 40.1, 37.0, 34.6, 33.9, 29.8, 29.2, 24.5, 22.8, 17.7

HRMS (ESI-TOF): calc'd for C₂₃H₃₁NO₅ [M+H]⁺: 402.2275, found: 402.2266

Compound **35** (15.4 mg, 0.027 mmol) was dissolved in DCM (0.15 ml), followed by addition of Dess-Martin periodinane (27.2 mg, mmol). After stirring under rt for 1.5 h, the mixture was added DCM and sat. Na₂S₂O₃ aq., and solid Na₂CO₃. The heterogenous, cloudy mixture was stirred at the same temperature for 30 min to give a clear biphasic mixture. The DCM layer was collected, and the aqueous phase was extracted with DCM (3x 1 ml). After concentration, the crude product was dissolved in MeOH (0.3 ml), followed by adding AcOH (0.05 ml) at rt. NaBH₃CN (ca. 10 mg) was added to this solution in one portion, and the resulting clear solution was stirred at the same temperature for 1 h. Upon completion (indicated by TLC, 5% MeOH in DCM), K₂CO₃ (55 mg) was added in one portion to give a slightly yellow mixture. The mixture was stirred for 30 min, then quenched by adding water (0.3 mL). The mixture was extracted with DCM (3x 1 ml) and dried over MgSO₄. Pure compound **36** (11.1 mg, 0.021 mmol, 78%) was obtained by PTLC (6% *i*-PrOH in DCM).

Physical state: white solid

TLC: $R_f = 0.53$ (10% MeOH in DCM, KMnO₄ staining)

¹**H-NMR (600 MHz, CDCl₃)** δ 5.18 (dd, J = 11.3, 2.8 Hz, 1H), 5.04 (s, 1H), 4.66 (br s, 1H), 4.48 (s, 1H), 4.34 (d, J = 12.0 Hz, 1H), 4.21 (dt, J = 11.1, 5.9 Hz, 1H), 3.94 (dd, J = 15.5, 9.0 Hz, 1H), 3.86 (d, J = 12.3 Hz, 1H), 3.79 – 3.70 (m, 1H), 2.74 (dd, J = 16.2, 5.1 Hz, 1H), 2.60 – 2.46 (m, 2H), 2.38 – 2.25 (m, 2H), 2.18 – 2.05 (m, 3H), 2.04 (s, 3H), 2.01 (dt, J = 12.4, 6.3 Hz, 1H), 1.88 – 1.78 (m, 3H), 1.78 – 1.66 (m, 2H), 1.52 (dd, J = 13.6, 2.9 Hz, 1H), 0.88 (d, J = 6.7 Hz, 3H)

¹³C-NMR (150 MHz, CDCl₃) δ 200.0, 169.1, 148.5, 117.9, 109.5, 83.6, 80.0, 72.8, 65.6, 55.0, 52.0, 43.4, 39.6, 37.8, 34.0, 31.5, 29.6, 28.8, 26.4, 24.7, 21.0, 17.6

(2 carbons (C=N and CF_3) were missing in ¹³C NMR but shown in compound **37**) **HRMS (ESI-TOF):** calc'd for C₂₄H₃₀F₃NO₉S [M+H]⁺: 566.1666, found: 566.1641

Compound **36** (15.5 mg, 0.027 mmol) was with MeOH (1.0 ml) and K_2CO_3 (58 mg) in a test tube. Upon completion, DCM (1 ml) was added, and the aqueous phase was extracted by DCM (3x 1 ml). The combined organic phase was dried over MgSO₄, followed by the removal of the solvents *in vacuo*. Pure compound **37** (11.1 mg, 0.021 mmol, 78%) was obtained by PTLC (8% MeOH in DCM).

Physical state: white solid

TLC: $R_f = 0.50$ (10% MeOH in DCM, KMnO₄ staining)

 $[\alpha]^{25}_{D}$: -15.0 (c = 0.1, CHCl₃)

¹**H-NMR (600 MHz, CDCl₃)** δ 5.16 (s, 1H), 4.52 (d, J = 12.0 Hz, 1H), 4.48 (s, 1H), 4.19 (dt, J = 11.1, 5.8 Hz, 1H), 4.08 – 4.00 (m, 1H), 3.92 (dd, J = 15.5, 9.0 Hz, 1H), 3.81 (d, J = 12.0 Hz, 1H), 3.78 – 3.68 (m, 1H), 2.71 (dd, J = 16.1, 5.1 Hz, 1H), 2.63 – 2.52 (m, 1H), 2.50 – 2.42 (m, 1H), 2.32 – 2.20 (m, 2H), 2.15 – 2.04 (m, 2H), 2.04 – 1.93 (m, 2H), 1.84 (dq, J = 13.1, 8.9, 6.2 Hz, 3H), 1.73 (dt, J = 12.2, 6.9 Hz, 1H), 1.66 (td, J = 12.7, 7.6 Hz, 1H), 1.52 (dd, J = 13.2, 2.7 Hz, 1H), 0.89 (d, J = 6.5 Hz, 3H)

¹³**C-NMR (150 MHz, CDCl₃)** δ 204.8, 148.3, 118.7, 118.6 (q, *J*_{C-F} = 320 Hz), 109.3, 83.6, 79.0, 70.6, 65.6, 54.8, 52.0, 43.2, 39.7, 37.7, 34.2, 33.4, 29.9, 29.4, 28.7, 26.2, 24.7, 17.7

HRMS (ESI-TOF): calc'd for C₂₂H₂₈F₃NO₈S [M+H]⁺: 524.1561, found: 524.1547

Gating Strategies:

Gating strategy for Jurkat cell cycle (Figure 3f):

Gating strategy for Jurkat apoptosis assay (Figure 3d):

500K 1.0M 1.5M 2.0M

Gating strategy for PBMC apoptosis assay (Extended figure 3c):

105

50

0

10¹

¹ 10² 10³ 10⁴ 1 OP-Puro-AZ488 FSC-H FSC-H

93.8

500K 1.0M 1.5M 2.0M

Supplementary Fig. 1. Gating strategy for flow cytometry experiments.

Supplementary Fig. 2. Uncropped western blot images in Fig. 3 and 4.

Extended Data Fig. 5h

Supplementary Fig. 3. Uncropped western blot images in Extended Data Fig. 3, 5, 6.

Parameter	i.p. 1 mg kg ⁻¹		p.o. 5 mg kg ⁻¹			
AUC _{0-last} (ng.h/mL)	42.30	±	2.60	5.85	±	2.14
AUC _{0-inf} (ng.h/mL)	45.50	±	2.70	9.35	±	2.09
$t_{\frac{1}{2}}(h)$	0.57	±	0.06	0.59	±	0.15
t _{max} (h)		0.08			0.25	
t _{last} (h)	2.00		1.00			
C _{max} (ng/mL)	118.37	±	21.33	12.40	±	4.86

Supplementary Table 6. Pharmacokinetic (PK) evaluation of portimine A in mice.^a

^aThe value of mice represented the results (mean \pm s.d.) from three independent experiments.

Supplementary Table 7. Chemical proteomics data in Jurkat cells

Proteomics data of PA-DA, PA, ePA, and ePA-DA engagement in Jurkat cells corresponding to Figures 4a. *P*-values for the abundance ratios were calculated using two-tailed *t*-test.

Supplementary Table 8. Chemical proteomics data in MC38 cells

Proteomics data of PA-DA, PA, ePA, and ePA-DA engagement in Jurkat cells corresponding to Figures 4b. *P*-values for the abundance ratios were calculated using two-tailed *t*-test.

Supplementary Table 9. Chemical proteomics data in HCC1806 cells

Proteomics data of PA-DA, PA, ePA, and ePA-DA engagement in Jurkat cells corresponding to Extended Figure 5a. *P*-values for the abundance ratios were calculated using two-tailed *t*-test.

Reagent or Resource summary

Reagent or resource	Source	Catalog number			
Antibodies					
Anti-NMD3 antibody (1:5000)	ProteinTech	#16060-1-AP			
Anti-EIF6 antibody (1:1000)	ProteinTech	#10291-1-AP			
Anti-PARP1 antibody (1:2000)	ProteinTech	#66520-1-Ig			
Anti-CASP3 antibody (1:1000)	Cell Signaling Technology	# 9662			
Anti-Mcl-1 antibody (1:1000)	Cell Signaling Technology	# 5453			
Anti-c-Myc antibody (1:1000)	Cell Signaling Technology	# 9402			
Anti-RPS6 antibody (1:2000)	Cell Signaling Technology	#2217			
Anti-GAPDH hFAB (1:10000)	Bio-Rad	#12004168			
Anti-Actin hFAB (1:10000)	Bio-Rad	#12004164			
Anti-Tubulin hFAB (1:10000)	Bio-Rad	#12004165			
Goat anti-Mouse IgG, HRP	Abcam	ab6789			
Goat anti-Rabbit IgG, HRP	Abcam	ab6721			
Cell Lines					
Jurkat	ATCC	CRL-3216			
HCC1806	ATCC	CCL-185			
HeLa	ATCC	CCL-2			
	Derived and provided by				
MC38	the laboratory of Dr. Jeff				
	Schlom, NCI				
Lenti-X TM 293T cells	Takara Bio	632180			
RD	ATCC	CCL-136			
HT-1080	ATCC	CCL-121			
A673	ATCC	CRL-1598			
MCF-7	ATCC	HTB-22			
MDA-MB-231	ATCC	CRM-HTB-26			
SUM150	Laboratory of Dr. Sendurai				
SUM139	Mani, Brown University				
HepG2	ATCC	HB-8065			
B16-F10	ATCC	CRL-6475			
LNCaP	ATCC	CRL-1740			
786-O	ATCC	CRL-1932			
4T1	ATCC	CRL-2539			
	Laboratory of Dr. Stephen				
GBM-A	Skirboll, Stanford Medical				
	Center				
	Laboratory of Dr. Stephen				
GBM-F	Skirboll, Stanford Medical				
	Center				
	Laboratory of Dr. Paul				
U87EGFRvIII	Mischel, Stanford				
	University. Derived by				

	retroviral transduction of	
	U87 cell line with nLPCX	
	construct that contains	
	human FGFRVIII cDNA	
I N/220		CRL-2611
LIN225	ATCC	HTR 15
	AICC	111 D- 15
Critical commercial assays		
Trans-Blot Turbo BTA transfer Kit	BioRad	#1704275
I F PVDF	Dioitad	#170 4 275
CellTiter-Glo Luminescent Cell	Promega	G7570
Viability Assay	Tromega	0/5/0
Reagents		
Biotin-PEG2-Azide	Click Chemistry Tools	A7104
o-propargy nuromycin	Click Chemistry Tools	1407
A 7Dve 488 A zide	Click Chemistry Tools	1775
trie(3_	Click Chemistry Tools	1010
hydroxypronyltriazolylmethyl)amine:	Cher Chemistry 1001s	1010
тнртл		
Rhodamine-azide	Synthesized in lab	
Pierce Strentavidin Agarose	Thermo Fisher Scientific	20353
Pierce High pH Reversed Phase	Thermo Fisher Scientific	84868
Fractionation Kit		01000
PFI MAX	Polysciences Inc	24765-1
Sequencing Grade Modified Trypsin	Promega	V5111
TMT10pleyTM Isobaric I abel	Thermo Fisher Scientific	90406
Reagent Set		20400
TMTpro TM 16pley Label Reagent Set	Thermo Fisher Scientific	A44520
Halt Protease Inhibitor	Thermo Fisher Scientific	78/38
RNaseA	Thermo Fisher Scientific	R1253
Cyclohevimide	RPI Corp	C81040
Tris	Fisher	BD152 5
NaCl	Sigma	S7653
MaCla	Sigma	M8266
DTT	Sigma	D0632
Dipal ook PNasa Inhibitar	Thormo Fisher Scientific	E0032
noulock Kivase IIIIIUIIUI polybrana	Sigma	TP 1003 G
SuperSignalTM Wast Famta	Thermo Fisher Scientific	3/005
Maximum Sensitivity Substrate		JTU7J
Bacombinant DNA		
scrambled shPNA	Addgene	#1864
	Augene	#1004
Software and Algorithms		
Software and Algorithms		

Proteome Discoverer	Thermo Fisher Scientific	Opton
GraphPad 9.0	Dotmatics	-
FlowJo TM v10	FlowJo	-
Phoenix WinNonlin 6.3	Certara	-
BD FACS Diva 6.0	BD Biosciences	-
Illustrator v26.1	Adobe	-
ImageJ v1.53r17	NIH	-

References

- 1. Synthesis of Medium-Sized Cyclic Amines by Selective Ring Cleavage of Sulfonylated Bicyclic Amines. Iradier, F.; Gomez Arrayas, R.; Carretero, J. C. *Org. Lett.* **2001**, *3*, 2957–2960.
- Microwave-Assisted Palladium-Catalyzed Allylation of β-Enaminones. Erray, I.; Rezgui, F.; Oble, J.; Poli, G. Synlett 2014, 25, 2196–2200.
- 3. Activation of Mg Metal for Safe Formation of Grignard Reagents on Plant Scale. Tilstam, U.; Weinmann, H. *Organic Process Research & Development* **2002**, *6*, 906–910.
- The First Syntheses of Single Enantiomers of The Major Methoxymycolic Acid of Mycobacterium Tuberculosis. Al Dulayymi, J. R.; Baird, M. S.; Roberts, E.; Deysel, M.; Verschoor, J. *Tetrahedron* 2007, 63, 2571–2592.
- Convenient and Practical Alkynylation of Heteronucleophiles with Copper Acetylides. Theunissen, C.; Lecomte, M.; Jouvin, K.; Laouiti, A.; Guissart, C.; Heimburger, J.; Loire, E.; Evano, G. Synthesis 2014, 46, 1157–1166.
- Identification of Portimine B, a New Cell Permeable Spiroimine That Induces Apoptosis in Oral Squamous Cell Carcinoma. Fribley, A. M.; Xi, Y.; Makris, C.; Alves-de-Souza, C.; York, R.; Tomas, C.; Wright, J. L. C.; Strangman, W. K. ACS Med. Chem. Lett. 2019, 10, 2, 175–179.

— 197.3	— 154.6	 — 110.0	
Me N CO ₂ Me			
Bn 20			
		<u>l</u>	

	·	' I	'			·	·	·	' I	·		·	'	'			1			·		' I	·	- I
230	220	210	200	190	180	170	160	150	140	130	120	110 f1 (ppm	100)	90	80	70	60	50	40	30	20	10	0	-10

Rawal's diene

— 1.00

— 199.3	√ 154.3√ 152.8	— 129.5	 	28.2
G G OH NBoc ₂				

110 100 f1 (ppm) Ó

f1 (ppm) Ò

fl (ppm)

	 	—79.0	
$ \begin{array}{c} H \\ E \\ E \\ C \\ C \\ M \\ M \\ M \\ M \end{array} $			

110 100 f1 (ppm) Ó

110 100 f1 (ppm) Ò

	—108.4		56.7 47.4		18.8 117.9 16.9 11.4
TIPS					
25					
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7 $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$		90 80 70	60 50	40 30	







	 ∑77.3 76.7 74.6 74.4	<ul> <li>36.4</li> <li>34.1</li> <li>34.1</li> <li>32.0</li> <li>25.0</li> <li>25.0</li> <li>25.0</li> <li>25.0</li> <li>25.0</li> <li>25.0</li> <li>25.0</li> <li>25.0</li> <li>25.0</li> <li>34.1</li> <li>4.5</li> <li>4.5</li> </ul>
OTBS Me Me 9		

110 100 f1 (ppm) Ó











fl (ppm)











f1 (ppm) Ò


























f1 (ppm) Ò





(mqq) fl



















	— 199.8	-177.2 $< 169.3$ $< 169.0$	—148.8	119.7 117.8 117.6 117.6 117.6	— 84.0 — 79.9 ∕_72.1	56.4 53.7	40.4 39.1 36.7 36.7 36.7 34.0 29.4 29.5 29.4 21.3 21.3 21.3 17.4	
TfO	H N OAc 17							
30 220 210	1988 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 19	180 170 160	) 150 140	130 120 110 100	90 80 70	60 50	40 30 20 10 0	-1


























Portimine NMR data_1.1.fid 1H

isolated 1











	/ / 33 33		   / /     2.8   2.6   3.6   3.6	35.1 32.9 29.2 25.0 13.4
29-1	Bpin			
30 220 210 200 190 180 170	160 150 140 1	30 120 110 100 90 f1 (ppm)	80 70 60 50	40 30 20 10 0



	—133.5	— 125.8			<ul> <li>37.5</li> <li>34.6</li> <li>33.1</li> <li>33.1</li> <li>33.1</li> <li>31.8</li> <li>26.6</li> <li>12.5</li> </ul>	
(1 + 1) = (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 + 1) + (1 +	a Maran					
230 220 210 200 190 180 170 160 150 140		30 120 110 100 90 f1 (ppm)	80	70 60 50	40 30 20 10	0 -10















— 206.1	- 140.4 - 135.4 - 135.5 - 128.5 - 128.5 - 128.5 - 128.5 - 123.4 - 109.2		$ \begin{array}{c} - & - & - & - & - & - & - & - & - & - $
$\begin{array}{c} & & & OH \\ & & & & H \\ & & & & H \\ & & & & H \\ & & & &$			
~~~~#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
230 220 210 200 190 180 170 160	150 140 130 120 110 100 9 f1 (ppm)	90 80	70 60 50 40 30 20 10 0 -10

	200.5 200.4	—185.8	— 169.0		—138.8 —135.6	—127.3		—83.3 —80.2		54.8 54.8 54.8 52.8 31.7 31.7 31.7 29.5 29.5 17.6 17.6 17.6 17.6
Luuri L		OAc H	[∼] Me H							
30 220 210	0 200	190 180	170 160) 150	140	130 120	0 110 100 f1 (ppm)	90 80	70	60 50 40 30 20 10 0

