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Referee #1 (Remarks to the Author): 

In this paper, the authors proposed an autonomous lab that integrates robotics with 

the use of ab-initio databases, machine learning-driven data interpretation, synthesis heuristics 

learned from text-mined literature data, and active learning to develop synthesis routes for novel 

inorganic materials in the solid state. The authors first proposed 58 target materials by searching 

the ab-initio database and some other constraints in synthesis which were not experimentally 

synthesized previously but predicted to be thermodynamically stable from computations. Then the 

authors showed that within 17 days the A-Lab successfully developed synthesis routes for 41 novel 

compounds from the 58 target materials, with synthesis recipes 

proposed by natural language models trained on the literature and optimized using an active 

learning approach grounded in thermodynamics. The authors also analyzed failed syntheses, which 

enables them to provide direct and actionable suggestions to improve current techniques for 

materials screening and synthesis design. 

As the materials synthesis is traditionally based on trial-and-error style, the efficiency of successful 

novel materials discovery is typically low. In the past one and two decades, with the improved 

accuracy of density functional theory calculations and more powerful computers, high-throughput 

computational screening and the associate ab-initio database can provide candidate materials of 

some target properties for experimental synthesis, and thus accelerate discoveries of novel 

materials in comparison with the traditional approach. However, the gap between the number of 

theoretical candidates and that of experimental realization is still typically large. This paper makes 

one step further by connecting the theoretical candidates with experimental realizations with 

synthesis recipes from text mining of existing literature and experimental characterizations that 

can be improved using active learning and unified within a robotic platform. The A-Lab not only 

delivers excellent successful synthesis rate, but also is able to analyze the failed attempts and 

improve synthesis routes for some target materials to be realized experimentally, both of which 

are very impressive. Most importantly, the A-Lab is autonomous. This suggests that the A-Lab is 

promising for materials discoveries and further accelerates synthesis of novel inorganic materials. 

Also, the paper is well written and easy to follow. I therefore recommend for publication. 

There are two minor suggestions/comments: 

1. For each supplementary note, it might be helpful to readers if a summarizing title is given. 

2. For the failure to synthesize BaGdCrFeO6, could it be due to some entropic effects that can not 

be included in DFT calculations since it has 5 elements and can be regarded as a high-entropy 

compound. 

Referee #2 (Remarks to the Author): 

This is an exciting, very nicely written research article which showcases the possibilities of 

autonomous experiments for the discovery of new materials. By screening a large database of 



predicted compounds feasible candidates were selected and new compounds were synthesized 

with a high success rate in an autonomously working lab setup. This work is novel and highly 

significant for the accelerated development of new materials. 

I suggest to address the following issues: 

In my opinion, the title is too general by using the term “inorganic materials”. The impressive 

results of the article are shown exclusively for oxides and also one specific synthesis and 

processing route leading to powders. What about metals, alloys and intermetallics? What about 

other materials states like bulk materials or thin films. Are the results directly applicable to these 

material classes? If yes, the authors should add evidence and explanations for this. Or if this is 

currently not possible, change the title. Instead of materials: oxide powders. 

Specific experiments on powders (precursors, heating in air) were performed and the authors 

mention “the unique challenges of handling and characterizing solid inorganic powders”. It should 

be explained what is “unique” to this. 

The authors mention several times the total duration of the experiments which was “17 days of 

uninterrupted operation“. Here I have some questions: 

How much preparation days were necessary to perform this successful 17-days, or was this the 

first try? How many failed runs before this? 

How sensitive is the success rate on the pre-selection of targets? The pre-selection of the 58 

targets was done by researchers, not autonomously. If other targets would have been chosen, 

maybe the success rate would have been lower or higher? Could the pre-selection also be 

performed autonomously in the future? 

Can the authors give a prediction what their results means for the future? If the impressive 

success rates would hold true for other materials classes: Are we done with discoveries in a few 

years? Or what do you rate as limits? 

From the materials screening section it reads a bit like that there is not much more to discover as 

you screened all theoretical predictions in the Materials Project and only 146 feasible candidates 

were left from which you showed in 17 days what can be synthesized. I don’t think that is the 

message which should be conveyed . The authors could consider adding some sentences where 

they explain the possibilities which are still open in the materials search space and put their 

approach in the right perspective. 

Any perspective on microstructure, which is also highly relevant for useful materials properties? In 

other words: it is not sufficient to “only” discover new materials but their microstructure is also 

highly important. 

The concept of decomposition energies should be explained a bit more, earlier in the text. Also, 

the meaning of targets in this article should be directly explained in the main text when it first 

appears. 

Where words such as paradigm, synergy, unique are used, it would be good to explain what they 

exactly mean in the context of the article. 

The authors could consider to explain more in the main text on the data interpretation and 

decision making abilities of the experimental agent. 

For multi-component compounds: Is pairwise reaction analysis (Fig. 3) sufficient? 



Fig. 4: Not clear what frequencies means here, cannot find it in the Fig. 

Referee #3 (Remarks to the Author): 

This paper presents an autonomous laboratory for the accelerated synthesis of novel inorganic 

materials, and demonstrate this with the synthesis of 41 novel compounds (out out of a set of 58 

targets). 

The work is ambitious in its concept, aiming to go beyond previous autonomous materials 

experiments (e.g., refs 3-6 in the MS) by folding in literature mining and computational 

predictions. To some degree, most of the individual components in the overall method are known 

but bringing all of them together in a successful experiment is non-trivial indeed, and outcome of 

the work (41 new compounds) is really impressive. I feel it is the kind of proof-of-concept of a new 

way of doing research that might fit in a journal such as this. 

My main criticisms would be presentational - I found the manuscript a little difficult to review and 

quite hard to follow. This is, in part, because the authors are trying to pack a lot of concepts 

(automation, chemistry, algorithms, literature scraping) into a rather short format, but 

nonetheless, I genuinely doubt that researchers who are not close to this area will find the paper 

easy to digest, at least beyond the high-level concepts, aims, and outcomes (which are clear 

enough). This is exacerbated, I think, by the fact that the Supporting Information is not very long 

or detailed, as normalised to the complexity of what has been done. I have seen papers in this 

general area with far more technical detail in the ESI, and I think for such new methods this is 

essential. At times, it almost felt like the paper read as a summary or highlight, rather than a 

research paper. I don't think this is really the fault of the authors, who are excellent 

communicators, it is really just a symptom of attempting to explain a really complex and 

multifaceted study in rather little space. Length constraints aside, I think there are some ways that 

the paper might be restructured to address these issues. For example: 

* Give at least one 'walked-through example' of how a single material was discovered. There are 

some details about specific compounds in the main text (e.g., CaFe2P2O9, Mo(PO3)5, 

La5Mn5O16), but they are short, and it rather ends up reading like a potpourri of asides. This is 

partly because the authors report so many new compounds, which is impressive, but it makes for 

a hard read if you really want to understand the methodology. This could be backed up by other 

detailed 'walk throughs' in the ESI - I wouldn't expect that for all compounds, but it would be 

really useful to flesh out the approach, and could include some 'failed' recipes, too, to highlight 

where things can go wrong. 

*Provide more detail about the active learning parts. The experimental aspects are clear enough 

and figure 1 shows the workflow (powder dose --> heat --> XRD), but the recipe generation / 

choice aspects, notwithstanding Figure 2, were harder to follow. 

* While the overall experimental scheme is clear enough (Figure 1), some of the details are not. 

For example, the description of the automated synthesis and PXRD process, which is complicated, 

could be made clearer and augmented with explanatory figures in the ESI.
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Reviewer #1 

 

General Assessment: 

In this paper, the authors proposed an autonomous lab that integrates robotics with the use of ab-initio 

databases, machine learning-driven data interpretation, synthesis heuristics learned from text-mined 

literature data, and active learning to develop synthesis routes for novel inorganic materials in the solid 

state. The authors first proposed 58 target materials by searching the ab-initio database and some other 

constraints in synthesis which were not experimentally synthesized previously but predicted to be 

thermodynamically stable from computations. Then the authors showed that within 17 days the A-Lab 

successfully developed synthesis routes for 41 novel compounds from the 58 target materials, with 

synthesis recipes proposed by natural language models trained on the literature and optimized using an 

active learning approach grounded in thermodynamics. The authors also analyzed failed syntheses, which 

enables them to provide direct and actionable suggestions to improve current techniques for materials 

screening and synthesis design. 

 

As the materials synthesis is traditionally based on trial-and-error style, the efficiency of successful novel 

materials discovery is typically low. In the past one and two decades, with the improved accuracy of 

density functional theory calculations and more powerful computers, high-throughput computational 

screening and the associate ab-initio database can provide candidate materials of some target properties 

for experimental synthesis, and thus accelerate discoveries of novel materials in comparison with the 

traditional approach. However, the gap between the number of theoretical candidates and that of 

experimental realization is still typically large. This paper makes one step further by connecting the 

theoretical candidates with experimental realizations with synthesis recipes from text mining of existing 

literature and experimental characterizations that can be improved using active learning and unified 

within a robotic platform. The A-Lab not only delivers excellent successful synthesis rate, but also is 

able to analyze the failed attempts and improve synthesis routes for some target materials to be realized 

experimentally, both of which are very impressive. Most importantly, the A-Lab is autonomous. This 

suggests that the A-Lab is promising for materials discoveries and further accelerates synthesis of novel 

inorganic materials. Also, the paper is well written and easy to follow. I therefore recommend for 

publication. 

 

 

Author Rebuttals to Initial Comments:
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Response:  

We thank the reviewer for their positive comments. Each suggested change is addressed below. 

 

Comment 1: 

For each supplementary note, it might be helpful to readers if a summarizing title is given. 

 

Response:  

A title has been added to each Supplementary Note. These titles are summarized below. 

 

Supplementary Notes: 

1. Correction of DFT-calculated lattice parameters 

2. Automated Rietveld refinement 

3. Literature-inspired synthesis recipe generation for MgNi(PO3)4 

4. Identification of unique synthesis pathways 

5. Exhausting the search space for BaGdCrFeO6 synthesis 

6. Successful optimization of CaFe2P2O9 synthesis 

7. Synthesis modifications to overcome slow reaction kinetics 

8. Characterization of precursor volatility 

9. Assessing the novelty of target materials 

10. Specifications of robots in the A-Lab 

11. Exceptions to pairwise reaction analysis 

 

Comment 2: 

For the failure to synthesize BaGdCrFeO6, could it be due to some entropic effects that cannot be included 

in DFT calculations since it has 5 elements and can be regarded as a high-entropy compound? 

 

Response:  

While configurational entropy can indeed affect the free energy of disordered materials, BaGdCrFeO6 is 

predicted to adopt a completely ordered structure wherein each cation occupies a distinct crystallographic 

site. Even if it were to disorder, the configurational entropy would only serve to further stabilize the 

compound, and therefore it cannot be the reason as to why BaGdCrFeO6 failed to be synthesized.  
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We would also like to point out that the decomposition energy of BaGdCrFeO6 is computed to be very 

large (-2443 meV/atom) and therefore its predicted stability is unlikely to be affected by configurational 

entropy, whose contributions to the free energy are typically on the order of 10-100 meV/atom. 
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Reviewer #2 

 

General Assessment: 

This is an exciting, very nicely written research article which showcases the possibilities of autonomous 

experiments for the discovery of new materials. By screening a large database of predicted compounds 

feasible candidates were selected and new compounds were synthesized with a high success rate in an 

autonomously working lab setup. This work is novel and highly significant for the accelerated 

development of new materials. 

 

Response:  

We thank the reviewer for their feedback. All questions and suggested revisions are addressed below. 

 

Comment 1: 

In my opinion, the title is too general by using the term “inorganic materials”. The impressive results of 

the article are shown exclusively for oxides and also one specific synthesis and processing route leading 

to powders. What about metals, alloys and intermetallics? What about other materials states like bulk 

materials or thin films. Are the results directly applicable to these material classes? If yes, the authors 

should add evidence and explanations for this. Or if this is currently not possible, change the title. Instead 

of materials: oxide powders. 

 

Response:  

In accordance with the character limitations set by the journal, we have removed “inorganic” from the 

title of our manuscript. We have also made changes throughout the abstract and introduction to more 

clearly state which types of materials the platform can be applied to: air-stable inorganic powders.  

 

We believe that the robotic methods and AI/ML algorithms developed in our work could be transferred 

to materials that are not air-stable, though this would require handling of the synthesized materials (and 

likely the precursors) in glove boxes.  Metals could in principle be handled by starting from powders. 

 

The changes made to the manuscript are copied below. 
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Abstract, Page 1: To close the gap between the rates of computational screening and experimental 

realization of novel materials1,2, we introduce the A-Lab, an autonomous laboratory for the solid-state 

synthesis of inorganic powders. This platform leverages computations, historical data from the literature, 

machine learning, and active learning to plan and interpret the outcomes of experiments performed using 

robotics. Over 17 days of continuous operation, the A-Lab realized 41 novel compounds from a set of 58 

targets including a variety of oxides and phosphates that were identified using large-scale ab-initio phase 

stability data from the Materials Project and Google Brain. 

 

Introduction, Page 2: In this work, we present the A-Lab, an autonomous laboratory that integrates 

robotics with the use of ab-initio databases, ML-driven data interpretation, synthesis heuristics learned 

from text-mined literature data, and active learning to optimize the synthesis of novel inorganic materials 

in powder form. 

 

Introduction, Page 2: Given a set of air-stable target materials (i.e., desired synthesis products whose 

yield we aim to maximize) screened using the Materials Project14, the A-Lab generates synthesis recipes 

using ML models trained on historical data from the literature, then executes these recipes with robotics. 

 

Comment 2: 

Specific experiments on powders (precursors, heating in air) were performed and the authors mention 

“the unique challenges of handling and characterizing solid inorganic powders”. It should be explained 

what is “unique” to this. 

 

Response:  

Most efforts to automate the synthesis of inorganic compounds have started from water-soluble 

precursors, which are easy to mix but tend to produce small quantities of materials while also limiting 

the chemistries that can be used. Solid-state synthesis is generally more versatile and can produce multi-

gram quantities; however, handling a wide range of solid powders is made difficult by the fact that each 

compound exhibits a different set of physical properties related to its density, flow behavior, particle size, 

hardness, and compressibility. Solid powders also tend to require milling to ensure intimate mixing and 

good reactivity between the precursors (as is done in the A-Lab). These requirements warrant the use of 

hardware that can adapt to the specific properties of the powder at hand.  
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The unique challenges of handling solid powders are now specified in the main text (copied below). 

 

Introduction, Page 2: While autonomous workflows based on liquid handling have been demonstrated 

in organic chemistry10-13, the A-Lab addresses the unique challenges of handling and characterizing solid 

inorganic powders. These often require milling to ensure good reactivity between precursors, which can 

have a wide range of physical properties related to differences in their density, flow behavior, particle 

size, hardness, and compressibility. 

 

Comment 3: 

The authors mention several times the total duration of the experiments which was “17 days of 

uninterrupted operation.” Here I have some questions. How much preparation days were necessary to 

perform this successful 17-days, or was this the first try? How many failed runs before this? 

 

Response:  

For the current project, we spent several weeks planning which targets and precursors to consider.  This 

involved the development of the screening workflow detailed in the main text, the selection of appropriate 

target criteria (e.g., air stability and limits on the energy above hull), and the application of machine 

learning models to generate precursor lists. After ordering and receiving all the precursor powders, we 

manually filled dosing heads that were loaded into the A-Lab along with the necessary consumables 

including plastic containers with ZrO2 balls for mixing and alumina crucibles for heating. From this point 

on, the system required minimal human intervention aside from the refilling of precursor dosing heads 

and the cleaning of reusable consumables.  

 

Prior to the execution of this project, nearly three years were spent developing the hardware and its 

associated algorithms. About two additional months were spent testing the robustness and repeatability 

of experiments performed in the lab involving well-studied chemistries. However, we stress that the 

experiments reported in our manuscript correspond to the first time in which the A-Lab attempted the 58 

target materials being considered. There were no prior runs on any of these targets.  

 

Both points are now clarified in the main text. 
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Robotic synthesis & characterization, Page 17: The synthesis process starts from the precursor 

preparation station, where the necessary consumables (plastic vials, ZrO2 balls, and crucibles) and 

precursor dosing bottles containing between 50 and 100 g of powders are manually loaded prior to 

starting a new experimental campaign. 

 

Robotic synthesis & characterization, Page 18: The UR5e arm transfers each flattened sample into the 

diffractometer for X-ray measurements, which are performed using 8-min scans that range from 2θ = 10° 

to 100°. The XRD sample holders must be cleaned manually when the lab has depleted its stock. 

Precursor powders should also be refilled or replaced, when necessary, though this can be performed 

without halting the lab’s workflow. 

 

Autonomous materials discovery platform, Page 4: All target materials considered in this work are 

new to the lab, i.e., not present in the training data for the algorithms it uses to propose synthesis recipes, 

and 52 of the 58 targets have no prior synthesis reports to the best of our knowledge (Methods). The 

experiments reported in this study represent the first attempts by the A-Lab to synthesize any of these 

targets. 

 
Comment 4: 

How sensitive is the success rate on the pre-selection of targets? The pre-selection of the 58 targets was 

done by researchers, not autonomously. If other targets would have been chosen, maybe the success rate 

would have been lower or higher? Could the pre-selection also be performed autonomously in the future? 

 

Response:  

As detailed in the Methods, we applied strict (and automated) filtering to identify 146 targets for the 

current project. This automated screening process included criteria such as the hull energy, computed 

reactivity with O2, H2O, and CO2 (so that samples could be handled in air), and the exclusion of toxic or 

expensive elements. From this list, we manually selected a subset of 58 compounds for which precursors 

were already available in our laboratory or which could be readily purchased from vendors. This could 

in principle be automated in future iterations of the screening algorithm, e.g., by coupling it with existing 

chemical management systems that track inventory in the lab. Furthermore, one could envision an 

algorithm that scrapes data from the websites of common vendors such as Sigma Aldrich or Alfa Aesar 

to assess the availability and cost of various precursors. 
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The pre-selection process used in our work can indeed be performed autonomously once the user 

provides a set of criteria that include: 1) which elements to consider in the target materials, 2) an upper 

limit on each material’s energy above the convex hull, 3) the atmospheric conditions under which the 

materials will be synthesized, and 4) a threshold on the reaction energies that exist between each material 

and the gaseous species present in the specified atmosphere.  

 

As we do not identify a clear trend in the success rate with respect to decomposition energy (Fig. 2), it 

is difficult to say whether the success rate would hold for a broader range of targets arising from loosened 

selection criteria.  

 

The main text has been revised to include additional information on the pre-selection process. We have 

also created a GitHub repository with the scripts used for candidate filtering. Please find the 

corresponding details copied below. 

 

Methods, Materials screening, Pages 16: The algorithm we used for identifying potential synthesis 

targets is available on GitHub (github.com/mattmcdermott/novel-materials-screening). It operates 

autonomously once given the following information: which elements to consider in the target materials, 

how large an upper limit to impose on each material’s energy above the convex hull, the atmospheric 

conditions under which the materials will be synthesized, and a threshold on the reaction energies that 

exist between each material and the gaseous species present in the specified atmosphere. The algorithm 

then scrapes the Materials Project and produces a list of candidate materials that satisfy these criteria. 

Additional filtering may be considered based on the availability and cost of precursors for each target. 

While this is done manually in the current version of the algorithm, potential improvements could 

automate the process by leveraging online data from chemical inventory lists and vendor websites. 

 

Code Availability, Page 20: The screening algorithm we used for identifying potential synthesis targets 

is available at github.com/mattmcdermott/novel-materials-screening. 
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Comment 5: 

Can the authors give a prediction on what their results mean for the future? If the impressive success 

rates would hold true for other materials classes: Are we done with discoveries in a few years? Or what 

do you rate as limits? From the materials screening section it reads a bit like that there is not much more 

to discover as you screened all theoretical predictions in the Materials Project and only 146 feasible 

candidates were left from which you showed in 17 days what can be synthesized. I don’t think that is the 

message which should be conveyed. The authors could consider adding some sentences where they 

explain the possibilities which are still open in the materials search space and put their approach in the 

right perspective. 

 

Response:  

We certainly did not want to give this impression. First of all, the Materials Project (MP) is far from 

complete in its coverage of “novel compounds” as it has never performed an exhaustive search of new 

(unreported) stable compounds across all chemical spaces. Novel compounds in MP most often arise 

serendipitously from research projects carried out in a particular area. Additionally, MP has very limited 

coverage of non-stoichiometric or disordered compounds. We therefore believe that many new and 

synthesizable compounds could be identified if MP was augmented using a more systematic approach, 

e.g., by using machine learning algorithms trained to identify stable materials. So there certainly is much 

left to discover! 

 

We would also like to point out that rather strict filtering criteria were used when identifying targets for 

these initial experiments in the A-Lab. We chose compounds that are stable or very close to the convex 

hull (< 10 meV/atom), have zero thermodynamic driving force to react with any gaseous species present 

in air throughout a wide range of temperatures (600-1100 °C), and contain just a subset of all possible 

elements, excluding those that are toxic, radioactive, or exceedingly rare. Were any of these requirements 

to be loosened, a much larger number of candidate materials would be produced. 

 

We have modified the Outlook section to improve our messaging regarding future opportunities. These 

changes are copied below. 

  



10 
 

Outlook, Page 12:  Our paper demonstrates that autonomous research agents can dramatically accelerate 

the pace of materials research. Researchers initialized the A-Lab by proposing 58 target materials, which 

were successfully realized at a rate of > 2 new materials per day with minimal human intervention. Such 

rapid discovery points to a vast landscape of opportunities in materials synthesis and development. While 

the current work focused on a limited subset of all possible synthesis targets, many new candidates await 

evaluation. As the breadth of ab-initio computations continues to grow, so will this list of novel materials. 

 

Comment 6: 

Any perspective on microstructure, which is also highly relevant for useful materials properties? In other 

words: it is not sufficient to “only” discover new materials, but their microstructure is also highly 

important. 

 

Response:  

We agree that microstructure plays an important role in optimizing the synthesis of materials and their 

properties. While this was not considered in our current project, we believe that it could be incorporated 

in later iterations of the A-Lab. To this end, we have installed a tabletop SEM and plan to integrate it into 

the lab’s workflow to provide characterization of each sample’s microstructure. After the integration of 

SEM, we anticipate that microstructure may be tailored by using standard optimization techniques to 

achieve the desired properties (e.g., particle size and shape) with respect to several control handles 

including temperature, hold time, and heating/cooling rates.   

 

The possibility of optimizing morphology is now mentioned in the Outlook (copied below). 

 

Outlook, Page 12:  The systematic nature of the A-Lab provides a unique opportunity to answer 

fundamental questions regarding the factors that govern the synthesizability of novel materials, serving 

as an experimental oracle to validate predictions made based on data-rich resources such as the Materials 

Project. In future iterations of the platform, such an oracle may be expanded to probe factors beyond 

synthesizability including microstructure and device performance. 
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Comment 7: 

The concept of decomposition energies should be explained a bit more, earlier in the text. Also, the 

meaning of targets in this article should be directly explained in the main text when it first appears. 

 

Response:  

The manuscript has been revised such that the term “decomposition energy” is not introduced until it is 

accompanied by a definition. To further clarify its meaning, we have added a new figure to the SI that 

schematically illustrates the concept of decomposition energy. Please find it copied below. 

 

 
Supplementary Fig. 2 | Schematic illustration of the decomposition energy. A binary convex hull is 

shown, where each circle represents a distinct phase that is thermodynamically stable. The y-axis 

represents the Gibbs free energy (G) while the x-axis represents a composition parameter. The 

decomposition energy (Ed) of a given target phase is determined by calculating the distance between its 

energy and the energy of a tieline formed by the two neighboring phases along the convex hull. 

 

We have also modified the Introduction to elaborate on the meaning of “target materials.” 

  

Introduction, Page 2: Given a set of air-stable target materials (i.e., desired synthesis products whose 

yield we aim to maximize) screened using the Materials Project14, the A-Lab generates synthesis recipes 

using ML models trained on historical data from the literature, then executes these recipes with robotics. 
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Comment 8: 

Where words such as paradigm, synergy, unique are used, it would be good to explain what they exactly 

mean in the context of the article. 

 

Response:  

To avoid ambiguity, we have removed all such terms and replaced them with clearer phrasing. The 

corresponding revisions are copied below. 

 

Abstract, Page 1: The high success rate demonstrates the effectiveness of AI-driven platforms for 

autonomous materials discovery and motivates further integration of computations, historical knowledge, 

and robotics. 

 

Introduction, Page 2: With its high success rate in validating predicted materials, the A-Lab showcases 

the collective power of ab-initio computations, ML algorithms, accumulated historical knowledge, and 

automation in experimental research. 

 
Outlook, Page 12: The A-Lab demonstrates this by combining modern theory- and data-driven machine 

learning techniques with a modular workflow that can discover novel materials with minimal human 

input. 

 

Comment 9: 

The authors could consider explaining more in the main text on the data interpretation and decision-

making abilities of the experimental agent. 

 

Response:  

While the data interpretation and decision making are both critical to the A-Lab’s operation, their 

explanation in the main text is restricted by the word limit imposed by Nature. To aid the reader in 

understanding these methods while conserving space, the main text has now been revised to include 

clearer references to previous publications where each is described in detail. We have also added several 

notes to the SI with detailed walkthroughs of each method’s application. Please find these notes copied 

in our response to Comment 1 from Reviewer #3.  
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Autonomous materials discovery platform, Page 4: If these literature-inspired recipes fail to produce 

> 50% yield for their desired targets, the A-Lab continues to experiment using ARROWS3, an active 

learning algorithm that integrates ab-initio computed reaction energies with observed synthesis outcomes 

to predict solid-state reaction pathways17. 

 

Autonomous materials discovery platform, Page 5: The phase and weight fractions of the synthesis 

products are extracted from their XRD patterns by probabilistic ML models trained on experimental 

structures from the ICSD following methodology outlined in previous work18,19. 

 

Comment 10: 

For multi-component compounds: Is pairwise reaction analysis (Fig. 3) sufficient? 

 

Response:  

Pairwise reaction analysis can in principle be applied to systems with an arbitrary number of components, 

so long as the corresponding phases react in pairs. Though, we do anticipate there to be more exceptions 

in systems containing many components. For example, multi-component oxides often form eutectic 

mixtures that melt at moderately low temperature, which would cause the associated reaction pathway to 

deviate from a simple pairwise sequence. It may also be more difficult to characterize reaction pathways 

when many precursors are used to synthesize multi-component materials, as their peaks are likely to 

overlap with one another in the corresponding XRD patterns.  

 

We have added a note to the SI (copied below) that outlines these limitations. 

 

Supplementary Note 12. Exceptions to pairwise reaction analysis 

The active learning algorithm (ARROWS3) implemented in the A-Lab learns from synthesis outcomes 

by determining which pairwise reactions led to the formation of any newly observed products. From 

previous studies that utilized in situ XRD12-14, there is an abundance of evidence supporting the idea that 

solid phases generally react in pairs. Such reactions occur locally at the interfaces between precursors, 

where little diffusion is needed to form the resulting product. However, there are likely to be exceptions 

to this rule when precursors or reaction intermediates deviate from the solid state. For example, we 

anticipate that reactions may take place between more than two phases at a time when melting occurs. 

This would enable atoms to travel more freely throughout the sample, thereby alleviating the requirement 
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that two phases react locally at an interface. Indeed, recent work has shown that reactions proceed in a 

non-pairwise sequence when a multi-component oxide forms a eutectic melt15. 

 Pairwise reaction analysis can also be complicated by difficulties in characterization. For 

example, as more precursors are introduced to synthesize targets with many components, it may be 

challenging to interpret their XRD patterns owing to substantial peak overlap. Such cases may therefore 

warrant the use of additional characterization techniques that can spatially resolve distinct phases (e.g., 

SEM/EDS measurements). We note that even in cases where pairwise reaction analysis is insufficient, 

or where the synthesis products are not completely characterized, the active learning algorithm will 

continue to operate. It will simply do so with reduced efficiency as it may not learn which precursors 

contribute to the formation of a desired synthesis product or its competing phases. 

 

Comment 11: 

Regarding Fig. 4, it is not clear what frequencies means here, cannot find it in the Figure. 

 

Response:  

We agree that the use of “frequency” was not clear in the original caption for Fig. 4. The wording has 

now been revised to state the purpose of the figure more clearly. These revisions are copied below. 

 

From the caption of Fig. 4: The 17 target materials that could not be synthesized by the A-Lab, where 

each is categorized by the feature that complicates its synthesis. One target (Ta4PbO11) is excluded from 

this list, as it is metastable and therefore was predictably unobtained in favor of its stable competitors. 

The challenges in synthesizing the remaining 16 stable targets fall under two categories: experimental 

barriers (blue, 13 targets) and computational barriers (green, 3 targets). We distinguish these barriers into 

four distinct failure modes: slow reaction kinetics, precursor volatility, product amorphization, and 

limitations associated with DFT calculations performed at 0 K. A schematic explanation for each failure 

mode is provided. 
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Reviewer #3 

 

General Assessment: 

This paper presents an autonomous laboratory for the accelerated synthesis of novel inorganic materials, 

and demonstrate this with the synthesis of 41 novel compounds (out of a set of 58 targets). 

 

The work is ambitious in its concept, aiming to go beyond previous autonomous materials experiments 

(e.g., refs 3-6 in the MS) by folding in literature mining and computational predictions. To some degree, 

most of the individual components in the overall method are known but bringing all of them together in 

a successful experiment is non-trivial indeed, and outcome of the work (41 new compounds) is really 

impressive. I feel it is the kind of proof-of-concept of a new way of doing research that might fit in a 

journal such as this. 

 

My main criticisms would be presentational - I found the manuscript a little difficult to review and quite 

hard to follow. This is, in part, because the authors are trying to pack a lot of concepts (automation, 

chemistry, algorithms, literature scraping) into a rather short format, but nonetheless, I genuinely doubt 

that researchers who are not close to this area will find the paper easy to digest, at least beyond the high-

level concepts, aims, and outcomes (which are clear enough). This is exacerbated, I think, by the fact that 

the Supporting Information is not very long or detailed, as normalized to the complexity of what has been 

done. I have seen papers in this general area with far more technical detail in the ESI, and I think for such 

new methods this is essential. At times, it almost felt like the paper read as a summary or highlight, rather 

than a research paper. I don't think this is really the fault of the authors, who are excellent communicators, 

it is really just a symptom of attempting to explain a really complex and multifaceted study in rather little 

space. Length constraints aside, I think there are some ways that the paper might be restructured to 

address these issues. 

 

Response:  

We thank the reviewer for their feedback. We have made changes to the manuscript that we believe make 

it clearer and more understandable while keeping within the constraint of the Editor’s request to shorten 

the main text. This includes significant additions to the SI and Extended Data. The changes suggested by 

the reviewer are addressed point-by-point below. 
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Comment 1: 

Give at least one 'walked-through example' of how a single material was discovered. There are some 

details about specific compounds in the main text (e.g., CaFe2P2O9, Mo(PO3)5, La5Mn5O16), but they are 

short, and it rather ends up reading like a potpourri of asides. This is partly because the authors report so 

many new compounds, which is impressive, but it makes for a hard read if you really want to understand 

the methodology. This could be backed up by other detailed 'walk throughs' in the ESI - I wouldn't expect 

that for all compounds, but it would be really useful to flesh out the approach, and could include some 

'failed' recipes, too, to highlight where things can go wrong. 

 

Response:  

Two detailed walkthroughs of the decision-making process have been added to the SI and are now 

referenced in the main text. This includes one example of a successful optimization and another example 

demonstrating how a search space can become exhausted. Please find the corresponding notes copied 

below.  

 

Supplementary Note 6. Successful optimization of CaFe2P2O9 synthesis 

The A-Lab’s experimental campaign targeting CaFe2P2O9 began with four synthesis recipes that were 

suggested by the literature-inspired machine learning algorithms. These include the following precursor 

sets, each evaluated at the same temperature (1100 °C) so that one furnace could be shared between them: 

Set A: CaCO3, Fe2O3, (NH4)2HPO4 

Set B: CaO, Fe2O3, (NH4) 2HPO4 

Set C: Ca(OH)2, Fe2O3, (NH4) 2HPO4 

Set D: CaO, Fe3O4, NH4H2PO4 

These produced glassy samples with low target yield and poor signal-to-noise ratio, likely due to melting 

at high temperature and subsequent amorphization upon cooling. As such, the same precursor sets were 

next evaluated at a lower temperature (800 °C). They were all found to produce identical phases: 

Ca3(PO4)2 and FePO4. From these results, the active learning algorithm (ARROWS3) learned five 

pairwise reactions that occurred ≤ 800 °C, each listed below: 

3 CaCO3 + 2 (NH4) 2HPO4 → Ca3(PO4)2 + 4 NH3 + 3 H2O + CO2 

3 Ca(OH)2 + 2 (NH4)2HPO4 → Ca3(PO4)2 + 4 NH3 + 6 H2O 

3 CaO + 2 NH4H2PO4 → Ca3(PO4)2 + 2 NH3 + 3 H2O 

Fe2O3 + 2 (NH4)2HPO4 → 2 FePO4 + 4 NH3 + 3 H2O 
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4 Fe3O4 + 12 NH4H2PO4 + O2 → 12 FePO4 + 12 NH3 + 18 H2O 

Using its interface with the Materials Project, the algorithm also determined that there is little 

thermodynamic driving force (8 meV/atom) remaining to form the target when Ca3(PO4) 2 and FePO4 

precede it. As such, it proposed two new sets of precursors to be tested at 800 °C: 

Set E: CaO, Fe2O3, NH4H2PO4 

Set F: CaO, Fe3O4, (NH4)2HPO4 

In each set, ARROWS3 predicted a reaction between CaO and the phosphate precursor to form Ca3(PO4)2 

at a temperature ≤ 800 °C. However, the algorithm did not predict the formation of FePO4 in either set 

as the below precursor pairs were not yet tested: 

Fe2O3|NH4H2PO4 and Fe3O4|(NH4)2HPO4 

After evaluating both precursor sets at 800 °C, it was found that Set E followed a similar reaction 

pathway as Sets A-D. However, Set F was clearly distinguished by the formation of new peaks in its 

corresponding XRD pattern that could not be attributed to any known phases reported in the Materials 

Project or the ICSD. 

Based on the first six experimental outcomes, ARROWS3 identified two different reaction 

pathways, one originating from Sets A-E, and another originating from Set F. As detailed in 

Supplementary Note 3, each unique reaction pathway only needs to be probed once throughout the full 

range of temperatures to determine whether it will successfully lead to the target’s formation. 

Accordingly, the algorithm chose one precursor set from the first pathway (Set E) and another from the 

second (Set F) to be evaluated at higher temperature (900 °C). While the products from Set E exhibit 

little change from those observed at 800 °C, it was found that Set F produced a new phase, CaFe3P3O13. 

This phase is computed to have a large driving force (77 meV/atom) to react with CaO and form the 

target. Indeed, heating Set F at 900 °C led to the formation of CaFe2P2O9 with a yield of ~70%. The 

experimental campaign was therefore halted as the results satisfied our stopping criterion of > 50% target 

yield.  

 

Supplementary Note 5. Exhausting the search space for BaGdCrFeO6 synthesis 

The A-Lab’s experimental campaign targeting BaGdCrFeO6 began with four literature-inspired synthesis 

recipes that included the following precursor sets with a hold temperature of 1000 °C: 

Set A: BaCO3, Cr2O3, Fe2O3, Gd2O3 

Set B: BaCO3, Cr2O3, Fe3O4, Gd2O3 

Set C: BaO, Cr2O3, Fe2O3, Gd2O3 
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Set D: BaO2, Cr2O3, Fe2O3, Gd2O3 

Sets A and B produced samples that predominantly contained BaCrO4, in addition to minority amounts 

of GdCrO3 and Fe2O3. In contrast, the samples resulting from Sets C and D contained substantially larger 

amounts of GdCrO3 and only small amounts of BaCrO4. These outcomes suggest some differences 

between the reaction pathway of each set. To further investigate these differences, the active learning 

algorithm (ARROWS3) implemented in the A-Lab proposed that all four precursor sets be tested at lower 

temperature (700 °C). The products obtained from Sets A and B contained BaCrO4 in addition to Gd2O3 

and Fe2O3. From these results, the algorithm gained information regarding two reactions: 

4 BaCO3 + 2 Cr2O3 + 3 O2→ 4 BaCrO4 + 2 CO2 (Trxn ≤ 700 °C) 

4 Fe3O4 + O2 → 6 Fe2O3 (Trxn ≤ 700 °C) 

In contrast, the samples produced by Sets C and D at 700 °C predominantly contained unreacted 

precursors, with just minority amounts of BaCrO4. The formation of GdCrO3, while evident at 1000 °C 

for each set, was not yet initiated at a lower temperature of 700 °C. Accordingly, ARROWS3 learned the 

following information from these outcomes: 

4 BaO + 2 Cr2O3 + 3 O2 → 4 BaCrO4 (Trxn ≤ 700 °C) 

4 BaO2 + 2 Cr2O3 + O2 → 4 BaCrO4 (Trxn ≤ 700 °C) 

Gd2O3 + Cr2O3 → 2 GdCrO3 (700 °C < Trxn ≤ 1000 °C) 

Because the four initially tested precursor sets were found to react and form BaCrO4 at the lower bound 

of the temperature range considered (700-1000 °C), ARROWS3 next suggested a set of precursors that 

was not yet observed to form such intermediates. This set also excludes Fe3O4 as the algorithm learned 

that it simply oxidizes to Fe2O3 at a temperature lower than 700 °C. 

Set E: Ba(OH)2, Cr2O3, Fe2O3, Gd2O3 

However, when evaluated at 700 °C, this precursor combination was found to produce large amounts of 

BaCrO4, appearing similar to the samples made by Sets A and B. The algorithm gleaned the following 

information from this outcome: 

4 Ba(OH)2 + 2 Cr2O3 + 3 O2→ 4 BaCrO4 + 2 H2O (Trxn ≤ 700 °C) 

At this point, ARROWS3 identified two unique reaction pathways characterized by the amount of 

BaCrO4 observed at low temperature: Sets A, B, and E formed BaCrO4 in majority amounts at 700 °C 

while Sets C and D produced only minority amounts of that phase and instead contained a larger weight 

fraction of unreacted precursors. To further investigate these synthesis routes, the algorithm selected one 

representative set (D and E) from each pathway to evaluate at 800 °C. In either case, the products made 

at this temperature appeared similar to those obtained at 1000 °C. Set D (E) contained large (small) 
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amounts of BaCrO4 and small (large) amounts of GdCrO3. From these results, ARROWS3 refined the 

temperature range in which GdCrO3 forms: 

Gd2O3 + Cr2O3 → 2 GdCrO3 (700 °C < Trxn ≤ 800 °C) 

The algorithm also determined that there was no need to probe additional temperatures (900 °C) as the 

products formed at 800 °C appeared similar to those obtained at 1000 °C. At this point, all unique reaction 

pathways had been exhausted. As such, no more experiments were performed, and the synthesis was 

deemed “failed.” 

 

Comment 2: 

Provide more detail about the active learning parts. The experimental aspects are clear enough and figure 

1 shows the workflow (powder dose à heat à XRD), but the recipe generation / choice aspects, 

notwithstanding Figure 2, were harder to follow. 

 

Response:  

To assist the reader in understanding the methods used to generate synthesis recipes, we have added an 

example to the SI (copied below). We have also included clearer references to previous work, where the 

methods are described in detail. 

 

Supplementary Note 3. Literature-inspired synthesis recipe generation for MgNi(PO3)4 

To demonstrate the methods used to generate initial synthesis recipes for novel targets, we provide a 

detailed walkthrough of the process for one target, MgNi(PO3)4. Our literature-inspired recommendation 

engine generates the first recipe by proposing the most common precursors for Mg, Ni, and P in reported 

solid-state synthesis experiments: MgO, NiO, and NH4H2PO4. Additional recipes are then generated 

using a similarity-based strategy16, which operates under the assumption that highly similar target 

materials can be produced using the same (or related) precursors. By using the PrecursorSelector 

encoding model16, we calculated and ranked the similarity between MgNi(PO3)4 and each of the 28,598 

target materials contained in our database of 33,343 solid-state synthesis procedures extracted from 

24,304 publications. BaMg2 (PO4)2 was identified as the target that is most similar to MgNi(PO3)4 and 

which is also synthesized using precursors different from the most common ones. The precursors used 

to synthesize BaMg2(PO4) 2 include BaCO3, MgO, and (NH4) 2HPO4. A masked precursor completion 

model16 was then used to exchange the necessary elements (Ni/Ba) to reach our current target, 
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MgNi(PO3)4. This algorithm identified NiO as the most likely replacement for BaCO3, resulting in the 

following set of precursors: NiO, MgO, and (NH4)2HPO4. 

Following the process outlined above, three more recipes are generated by referring to three less 

similar target materials, Ca8LuMg(PO4)7, Mg1.9Ni0.1TiO4, and Y2MoO6. The corresponding synthesis 

recipes are listed in Supplementary Table 2. For each set of precursors, the synthesis temperature was 

predicted using a pre-trained XGBoost regressor17 based on the composition and thermodynamic 

properties of MgNi(PO3)4 and its precursors. Although the predicted temperature may vary for each 

recipe, we chose to use one fixed temperature for each target to maximize the possibility of batching 

multiple precursor sets in a single furnace. The actual synthesis temperature for MgNi(PO3)4 was 

calculated by averaging the five temperatures proposed across these recipes and rounded to the nearest 

hundred (900 °C). 

 

Supplementary Table 3 | Five precursor sets generated for the synthesis of MgNi(PO3)4 by using a 

literature-inspired recommendation engine. The similarity between MgNi(PO3)4 and each reference 

target is evaluated using the PrecursorSelector encoding model16 and ranges from -1 to 1. The reference 

target does not apply to the precursor set with index of 0 because this precursor set is generated based 

on the most common precursors for Mg, Ni, and P as reported in the literature. 

Index Reference 
target 

Similarity to 
MgNi(PO3)4 

Precursors for 
reference target 

Suggested precursors 
for MgNi(PO3)4 

0 N/A N/A N/A MgO, NiO, NH4H2PO4 

1 BaMg2(PO4)2 0.901 BaCO3, MgO, (NH4)2HPO4 MgO, NiO, 
(NH4)2HPO4 

2 Ca8LuMg(PO4)7 0.864 CaCO3, Lu2O3, MgCO3, 
NH4H2PO4 

MgCO3, NiO, 
NH4H2PO4 

3 Mg1.9Ni0.1TiO4 0.830 MgCO3, NiO, TiO2 MgCO3, NiO, 
(NH4)2HPO4 

4 Y2MoO6 0.425 Y2(C2O4)3, MoO3 MgCO3, Ni(OH)2, 
(NH4)2HPO4 
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Comment 3: 

While the overall experimental scheme is clear enough (Figure 1), some of the details are not. For 

example, the description of the automated synthesis and PXRD process, which is complicated, could be 

made clearer and augmented with explanatory figures in the ESI. 

 

Response:  

We have substantially expanded the SI and the Extended Data to include additional notes and figures 

detailing the experimental workflow used by the A-Lab. Also included are several videos that show the 

lab in action. Please find these changes copied below and attached with our resubmission. 

 

Supplementary Note 11. Specifications of robots in the A-Lab 

The A-Lab contains three 6-axis robot arms: one Mitsubishi RV7-FL and two Universal Robots (UR5e), 

each with force sensors and bespoke grippers (Extended Data Fig. 2a-c) designed to accommodate 

different types of consumables. Here we refer to the Mitsubishi robot as R1, the first UR5e robot as R2, 

and the second UR5e robot as R3. The Mitsubishi and UR5e robots can handle maximum payloads of 7 

kg and 5 kg, respectively, excluding the tools and grippers mounted on them. The precision of each robot 

is within ±0.02 and ±0.03 mm, respectively. R1 uses two custom grippers to interact with the Quantos 

powder dosing heads, crucibles, and plastic vials/mixing pots (Supplementary Video 1). The grip is 

controlled using pneumatic actuators, regulated by pressure to achieve the specified force setting. R2 

uses a Robotiq Hand-E gripper to handle crucibles and ceramic racks (Supplementary Video 2). R3 uses 

a Robotiq 2F-85 gripper to handle plastic vials, crucibles, acrylic discs, and XRD sample holders 

(Supplementary Video 3). Both UR5e robots use grippers with adjustable force, controlled by electric 

motors. This mechanism is convenient for programming delicate sample transfers, especially for strong 

but brittle alumina crucibles. R1 has a reach of 908 mm while R2 and R3 have a reach of 850 mm, before 

being extended by the grippers.  

R1 and R3 are each mounted on stationary platforms, while R2 is mounted on a linear rail so that 

it can transfer samples from the precursor preparation station to the box furnaces. This linear rail was 

designed and installed in coordination with Olympus Controls. The rail uses a 4000 mm belt-driven 

HMRB15CCD0-4000-CD500K100 from Parker with a precision of ±0.05 mm. Limit sensors are 

employed on both ends of the rail for recalibration (Extended Data Fig. 2d). The belt is driven by 3:1 
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PV60TA-003 (Parker) gearbox connected to LMDCE853C Novanta IMS Lexium stepper motor with 

ethernet connection that directly interfaces with UR teach pendant through URCap program provided by 

Schwarz Automation Inc. The aluminum platform to mount the linear rail is designed and manufactured 

by Olympus Controls. The sub-millimeter repeatability and direct power connection to the wall allows 

for little-to-no downtime required for maintenance and recalibration. While a linear rail only extends the 

work envelope in one axis, it also ensures improved repeatability relative to a system with increased 

degrees of freedom. 

A carousel with four quadrants and a light gate is used in the precursor preparation station to 

arrange samples and place them for collection by the first UR5e robot (R2), as depicted in Extended Data 

Fig. 2e. For most operations, the carousel moves in coordination with the robot (R1) that prepares 

samples prior to heating. However, R2 can also request control when it needs to collect the samples and 

transfer them to the box furnaces. Once control is given, the carousel is directed to rotate such that the 

proper quadrant faces R2 and the samples are accessible from the robot’s side (Supplementary Video 2). 

The use of this carousel ensures that many samples can be made and stored simultaneously in the 

precursor preparation station, allowing some queue to be developed prior to the heating step. 

 

The videos described below can be opened by using the links provided. They are also attached as files in 

the Supplementary Material. 

 

Supplementary Video 1: https://www.youtube.com/watch?v=-XUUI-ThU1Y&feature=youtu.be 

Robot arm R1 (Mitsubishi) handling powders and slurries in the sample preparation station used to 

dispense and mix precursors prior to heating. The video is played at 20-times speed.  

 

Supplementary Video 2: https://youtu.be/26K5r68fzwQ 

Robot arm R2 (UR5e) moving crucibles from the sample preparation station to the box furnaces. The 

video is played at 20-times speed.  

 

Supplementary Video 3: https://www.youtube.com/watch?v=UlLAUEkd06w 

Robot arm R3 (UR5e) retrieving powder samples (post-annealing) and cooperating with an Aeris X-ray 

diffractometer for their characterization. The video is played at 12-times speed. 
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Extended Data Fig. 2 | Robotic installations for sample transfer in the A-Lab. Grippers on the UR5e 

robotic arms that are used for a, sample preparation, b, loading/unloading of crucible racks to/from the 

box furnaces, and c, sample retrieval and characterization. d, Linear rail used to increase the working 

envelope of the robotic arm that loads/unloads crucible racks to/from the furnaces. e, Carousel used to 

organize and move samples in the sample preparation station.  
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Extended Data Fig. 3 | Communication protocols connecting each module in the A-lab. A local area 

network (LAN) is built to connect all the pieces of the A-Lab with a control computer using an RS-485 

interface (or DB-25 for the box furnaces). Each module on the RS-485 interface has an IP assigned to 

enable communication with the computer. For enhanced cybersecurity, only the control computer has 

access to the internet while the LAN is isolated from it. 

 



Reviewer Reports on the First Revision: 

Referees' comments: 

Referee #1 (Remarks to the Author): 

I found that the authors have sufficiently addressed my comments and other reviewers, and I 

therefore recommend for publication of this manuscript in Nature. 

Referee #2 (Remarks to the Author): 

The authors addressed all my questions. I recommend publication as is.
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