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 3 
A. Identification of putative organ-derived plasma proteins 4 
We used the Gene Tissue Expression Atlas (GTEx) human tissue bulk RNA-seq database16 to 5 
identify organ-specific genes and plasma proteins. We determined organ-specificity based on a 6 
4-fold cutoff in bulk RNA-seq data for three main reasons: 7 

1. Determining tissue specificity based on a 4-fold increase in RNA-seq expression 8 
(“tissue-enriched”) from GTEx and other databases is a well-accepted approach, 9 
established by the Human Protein Atlas (HPA) in multiple studies81–83. The HPA’s tissue-10 
enriched gene sets are widely trusted and are provided in NCBI, GeneCards, and 11 
enrichment analysis tools such as gprofiler71. We used the same metric but with the 12 
updated, more deeply sequenced GTEx RNA-seq dataset and with a more generalizable 13 
framework for tissue->organ mapping (Supplementary Table 2). 14 

2. We considered determining organ-specificity based on tissue protein levels from a 15 
human tissue proteomics atlas (Jiang et al)84; however, we opted not to because organ 16 
protein levels may be misleading in regard to determining the original organ source of 17 
the protein. Specifically, a protein may be present in an organ because it was trafficked 18 
there after being synthesized by another organ and secreted into the plasma. Albumin 19 
and complement proteins are not enriched at the protein level in the liver even though 20 
they are synthesized there, and there are proteins which are synthesized in the 21 
hypothalamus that are enriched in the pituitary because they are stored there before 22 
release84. Generally, discordance between protein and RNA levels are interpreted as a 23 
result of protein trafficking/export/secretion, while enrichment at the RNA level is 24 
recognized as the tissue of origin for protein synthesis81,82,84,85. It may also be true that 25 
proteins which are present at the protein level in an organ but are not synthesized there 26 
also contain important information about said organ. We believe this idea of cross-organ 27 
communication in aging is an exciting area for future study. For the current manuscript, 28 
our goal was to determine the putative organ source of plasma proteins to infer organ 29 
age. 30 

3. RNA-seq data contains nearly full coverage of the genome, while proteomics data has 31 
much lower coverage. In Jiang et al, only 6320 proteins were detected in >50% of 32 
samples, and these are heavily biased towards abundant proteins, which are detectable 33 
by mass spectrometry. The percentage of these mappable to the SomaScan plasma 34 
proteomics assay is even lower. Determining organ-specificity based on RNA-seq data 35 
increased our coverage of the mappable organ-specific plasma proteome. 36 

 37 
 38 
B. Non-linear associations between organ age gaps and mortality risk. 39 
To better understand potential non-linear associations between age gaps and disease risk, we 40 
performed a binned age gap versus mortality risk analysis in the LonGenity cohort 41 
(Supplementary Figure 4). Specifically, we binned individuals into different age gap groups: 42 

- Bin –2 (–2.5 < age gap < –1.5) 43 
- Bin –1 (–1.5 < age gap < –0.5) 44 
- Bin 0 (–0.5 < age gap < +0.5) 45 
- Bin +1 (+0.5 < age gap < +1.5) 46 
- Bin +2 (+1.5 < age gap < +2.5) 47 
- Bin +3 (+2.5 < age gap < +3.5) 48 
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- Bin –3 and other more extreme bins were removed due to low sample size. 49 
 50 
We then compared every non-zero group with the zero group (denoting the non-zero group as 1 51 
and the zero group as 0) for changes in mortality risk. We did this analysis for each of the aging 52 
models. We did not adjust for multiple comparisons because the assumptions were not met: 53 
each statistical test is done in a different subset of individuals, and tests for different bins in the 54 
same organ are generally correlated. 55 
 56 
Interestingly, the association between the age gap and mortality risk was non-linear for some 57 
organs, such as the heart, brain, pancreas, kidney. The relationship with the heart age gap 58 
seems to be U-shaped where both high (+1, +2, +3) and extremely low heart age gaps (–2) are 59 
associated with increased mortality risk. The kidney age gap was also interesting in that it was 60 
not associated with mortality risk when looking at the whole age gap distribution (Fig. 2j), but the 61 
+3 age gap group was positively associated with mortality, suggesting the “extreme agers” 62 
framework may be more useful for certain organs and traits. Other organs, including the 63 
organismal, adipose, artery, and immune, show a more linear relationship with mortality risk. 64 
Whether these nonlinear dynamics also exist for other aging biomarkers, such as methylation 65 
clocks, is unknown. This analysis points to a need for additional studies on the relationship 66 
between extreme aging and disease risk.  67 
 68 
 69 
C. Relationships between blood biochemistry markers and organ aging. 70 
While a full analysis of all clinical biochemistry markers is challenging, there are a number of 71 
additional interesting relationships in the data.  72 

• BUN: Kidney, adipose, brain, immune, and muscle age gaps are significantly positively 73 
associated with BUN, artery age gap is significantly negatively associated. The strongest 74 
association is with the kidney age gap. While BUN is not specific, it is often considered a 75 
marker of kidney function clinically.  76 

• AST: Kidney, heart, and artery age gaps are positively significantly associated with AST, 77 
while brain is significantly negatively associated. AST variation within the normal range 78 
is difficult to interpret clinically. Abnormally high AST is often a sign of liver or heart 79 
disease, and moderately high AST is most often noted as a sign of elevated 80 
cardiovascular risk in middle aged and elderly populations. 81 

• ALT: The brain, control, liver, intestine, kidney, organismal, and pancreas age gaps are 82 
significantly negatively associated with ALT, while the kidney age gap is significantly 83 
positively associated with ALT. PhenoAge gap is positive but not significant. As 84 
discussed in the text, this is yet another U-shaped aging biomarker. Low ALT in the 85 
elderly is associated with increased frailty and reduced survival and has been previously 86 
suggested as a biomarker of aging86. Abnormally high ALT can be a marker of acute 87 
liver damage, although it is also produced by other tissues and is not specific.  88 

• Albumin: The immune, heart, liver, organismal, control, and PhenoAge gaps are 89 
significantly negatively associated with albumin levels. The strongest association is with 90 
the liver age gap. Albumin is produced by the liver, although it is not detected by the 91 
SomaScan assay so it is not a protein in the liver aging model. Clinically, lower albumin 92 
could be considered as a sign of worse health, and it can be low in a number of liver, 93 
kidney, and digestive diseases as well as in malnutrition/undernutrition.  94 

• Plasma glucose is significantly positively associated with PhenoAge age gap and kidney 95 
age gap, while intestine and liver age gap are significantly negatively associated. The 96 
strongest association is with PhenoAge, which is unsurprising since plasma glucose is 97 
the highest weighted input biomarker in the PhenoAge model. Both kidney and intestine 98 



 3 

age gap are positively associated with diabetes incidence but have differential 99 
associations with plasma glucose. This further supports the hypothesis that different 100 
organ models could be measuring different aspects of aging, in this case metabolic 101 
aging. Insulin resistance, glucose response, and glucose levels are all known to degrade 102 
with age, but insulin levels and glucose response have been noted to change more 103 
dramatically than fasting blood glucose level87.     104 
There are many biomarkers of health which have a nonlinear relationship to aging 105 

outcomes, and in the elderly many relationships between biomarkers and health/mortality/frailty 106 
reverse direction compared to young and middle-aged adults. The distribution and mean age of 107 
the population that an aging model is trained on will thus impact associations with traits.  This is 108 
not frequently discussed or accounted for in models of molecular aging. 109 

Such a case is illustrated by diastolic blood pressure, where the strongest association 110 
was with heart aging (adjusted Pearson r=-0.18, q=2.62e-10). Nine organ age gaps (adipose, 111 
brain, control, heart, intestine, kidney, liver, muscle, organismal, pancreas) were significantly 112 
associated with decreases in diastolic blood pressure, while the opposite association was seen 113 
with the PhenoAge age gap (Supplementary Fig. 5a, Supplementary Table 14). Diastolic blood 114 
pressure was one of many traits with a U-shaped relationship to aging outcomes 115 
(Supplementary Fig. 5b). While high blood pressure in young and middle-aged adults is 116 
indicative of cardiometabolic dysfunction, in the elderly low blood pressure is common and more 117 
strongly associated with mortality and frailty88–90, though high blood pressure is also 118 
detrimental91. The differences between PhenoAge and the organ age models could be due to 119 
differences in the age distribution of the underlying training cohorts for the models. Our models 120 
were trained in the KADRC, which has a greater proportion of elderly individuals, while 121 
PhenoAge was trained in NHANES, which has a greater proportion of young individuals.  122 
 This kind of U-shaped relationship with age and aging outcomes is quite common and is 123 
also seen with BMI92. Prospective studies in older adults have shown that while obesity slightly 124 
increases mortality and cardiovascular disease risk, the highest risk groups are those with a 125 
BMI under 23. Interestingly, the intestine and pancreas age gaps show a negative association 126 
with BMI and obesity but a positive association with mortality risk, while the kidney age gap 127 
shows a positive association with BMI, suggesting that the full picture of organ health in aging 128 
and disease may be more complex than currently understood.   129 
 130 
 131 
D. Relationship between CognitionBrain age gap and brain volume.  132 

To further examine the relationship between the CognitionBrain age model and brain 133 
aging, we tested associations between CognitionBrain age gap and changes in brain volume. We 134 
used plasma-matched brain MRI data from 469 individuals in the Stanford-ADRC and SAMS 135 
cohorts to assess the relationship between the CognitionBrain age gap and brain region-specific 136 
volumes (Extended Data Fig. 7c, Supplementary Table 22). 39 out of 65 (60%) associations were 137 
significant after multiple hypothesis correction. The most significant associations were negative 138 
associations with the superior frontal cortex (adjusted r=-0.20, q=8.49e-5), hippocampus 139 
(adjusted r=-0.21, q=1.36e-4), and total cortex (adjusted r=-0.20, q=1.39e-4), whereby individuals 140 
with smaller brain region volumes appeared older based on their CognitionBrain age gaps. We 141 
also found a negative association with the AD signature region (adjusted r=-0.16, q=3.61e-3), a 142 
composite measure of the parahippocampal gyrus, entorhinal cortex, inferior parietal lobes, 143 
hippocampus, and precuneus93.  144 

We then compared our plasma proteomics-based brain age to two MRI brain aging clocks. 145 
Based on its established publication record, we started with the BARACUS model78, a linear 146 
support vector machine based aging clock trained on brain MRI-based volumetric data from 1,166 147 
cognitively normal individuals aged 20-80. However, when assessing predicted versus 148 
chronological age correlation, we noticed an odd technical artifact: the predicted age had a ceiling 149 
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near 75, even for individuals with chronological age above 90. Looking more closely at the original 150 
publication, we found the same issue of an upper ceiling, and also a lower ceiling, to predicted 151 
age. This leads us to believe that the BARACUS algorithm cannot accommodate all ages in our 152 
cohort.  153 

Due to this technical limitation of BARACUS, we also assessed brainageR14, a Gaussian 154 
Processes based aging clock trained on brain MRI-based volumetric data from n=3,377 155 
cognitively healthy individuals aged 18-92, and which has shown better performance than 156 
BARACUS in other studies94. The CognitionBrain age gap was positively correlated with the 157 
brainageR age gap (r=0.16, p=7.51e-4) (Extended Data Fig. 6h), but not as strongly as the 158 
correlation between CognitionBrain age gap and individual brain volumes (ie. hippocampus: 159 
adjusted r=-0.21, q=1.36e-4). This is likely due to the fact that BARACUS and brainageR do not 160 
take into account total intracranial volume and thus capture more noise.  161 
 162 
 163 
E. Literature review of highly weighted brain aging proteins. 164 

Protein Reference Title Organism 

CPLX1 Yu, et. al., JAMA Psychiatry (2020) Cortical Proteins Associated with Cognitive Resilience in 
Community-Dwelling Older Persons 

Human 

CPLX1 Glynn, et. al., Human Molecular Genetics 
(2005) 

Profound ataxia in complexin I knockout mice masks a 
complex phenotype that includes exploratory and 
habituation deficits 

Mouse 

CPLX1,CPLX2 Tannenberg, et. al., Neurochemistry 
International (2006) 

Selective loss of synaptic proteins in Alzheimer's disease: 
Evidence for an increased severity with APOE ɛ4 

Human 

CPLX2 Begemann, et al. Arch. Gen. Psychiatry (2010) Modification of Cognitive Performance in Schizophrenia by 
Complexin 2 Gene Polymorphisms  

Human 

CPLX2 Glynn, et. al., Human Molecular Genetics 
(2003) 

Complexin II is essential for normal neurological function in 
mice 

Mouse 

CPLX2 Li, et. al., Oxidative Medicine and Cellular 
Longevity (2020) 

Proteomic Profile of Mouse Brain Aging Contributions to 
Mitochondrial Dysfunction, DNA Oxidative Damage, Loss of 
Neurotrophic Factor, and Synaptic and Ribosomal Proteins 

Mouse 

FGF4 Konijnenberg, et. al., Alzheimer’s Research & 
Therapy (2020) 

APOE ε4 genotype-dependent cerebrospinal fluid 
proteomic signatures in Alzheimer’s disease 

Human 

FGF4 Kosaka, et. al., Federation of American 
Societies for Experimental Biology (2006) 

FGF-4 regulates neural progenitor cell proliferation and 
neuronal differentiation 

Mouse 

LANCL1 Drummond, et. al., Brain (2020) Phosphorylated tau interactome in the human Alzheimer’s 
disease brain 

Human 

LANCL1 Huang, Chen, and Peng, et. al., 
Developmental Cell (2014) 

Developmental and Activity-Dependent Expression of 
LanCL1 Confers Antioxidant Activity Required for Neuronal 
Survival 

Mouse 

LANCL1 Tan and Chen, et. al., Cell Death & 
Differentiation (2020) 

LanCL1 promotes motor neuron survival and extends the 
lifespan of amyotrophic lateral sclerosis mice 

Mouse 

NPTXR Begcevic, et. al., F1000Research (2018) Neuronal pentraxin receptor-1 is a new cerebrospinal fluid 
biomarker of Alzheimer's disease progression 

Human 

NPTXR Pelkey, et. al. Neuron (2015) Pentraxins Coordinate Excitatory Synapse Maturation and 
Circuit Integration of Parvalbumin Interneurons 

Mouse 

NRXN3 Hishimoto, et. al., Alzheimer’s Research & 
Therapy (2019) 

Neurexin 3 transmembrane and soluble isoform expression 
and splicing haplotype are associated with neuron 
inflammasome and Alzheimer’s disease 

Human 

NRXN3 Zheng, et. al., Medicine (2018) Low expression of aging-related NRXN3 is associated with 
Alzheimer disease 

Human 

NRXN3 Martinez-Mir, et. al., J Alz Disease (2013) Genetic study of neurexin and neuroligin genes in 
Alzheimer's disease 

Human 

NRXN3 Aoto, et. al. Nature Neuroscience (2015) Distinct circuit-dependent functions of presynaptic 
neurexin-3 at GABAergic and glutamatergic synapses 

Mouse 
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Protein Reference Title Organism 

OLFM1 Nakaya, et. al., Experimental Neurology 
(2013) 

Deletion in the N-terminal half of olfactomedin 1 modifies 
its interaction with synaptic proteins and causes brain 
dystrophy and abnormal behavior in mice 

Mouse 

OLFM1 Nakaya, et. al., Journal of Biological Chemistry 
(2012) 

Olfactomedin 1 Interacts with the Nogo A Receptor 
Complex to Regulate Axon Growth 

Mouse 

STMN2 Theunissen, et. al., Frontiers in Aging 
Neuroscience (2021) 

Novel STMN2 Variant Linked to Amyotrophic Lateral 
Sclerosis Risk and Clinical Phenotype 

Human 

STMN2 Krus, et. al., Cell Reports (2022) Loss of Stathmin-2, a hallmark of TDP-43-associated ALS, 
causes motor neuropathy 

Human 

STMN2 San Juan and Nash, et. al., Neuron (2022) Loss of mouse Stmn2 function causes motor neuropathy Mouse 

TNR Wagner, et. al., Genetics in Medicine (2020) Loss of TNR causes a nonprogressive neurodevelopmental 
disorder with spasticity and transient opisthotonus 

Human 

TNR Dankovich, et. al., Nature Communications 
(2021) 

Extracellular matrix remodeling through endocytosis and 
resurfacing of Tenascin-R 

Mouse 

TNR Bauch and Faissner, Cells (2022) 
 

The Extracellular Matrix Proteins Tenascin-C and Tenascin-
R Retard Oligodendrocyte Precursor Maturation and 
Myelin Regeneration in a Cuprizone-Induced Long-Term 
Demyelination Animal Model 

Mouse 

 165 
 166 
 167 
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