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Referee #1 (Remarks to the Author): 

Manuscript background information 

While various attempts have been made to define “biological age”, the key problem with “clock” 

models - trained to mimic chronologic age - has been in the (sometimes spurious) attribution of 

meaning to the “age gap” - an individual’s deviation from a model’s prediction, and subsequent 

confusion about what kind of health intervention might help compensate for adverse deviations. The 

authors of this study have addressed these problems in a very interesting and novel manner. 

From a larger study of 1,029 participants (the Covance study), for model training they focused on 

353 healthy participants’ plasma, aged from 60-97, measuring ~5000 proteins in each sample using 

the SomaScan modified-aptamer platform. They pre-defined organ-related subsets of these proteins 

(19 subsets involving 793 of the measured proteins) as “organ-enriched” if they had at least 4-fold 

increased RNA expression over any other organ documented in the Genotype-Tissue Expression 

project. They used machine learning (the LASSO algorithm) to select the most important protein 

features and build age-predictive models based on age-associated subsets each organ’s “enriched” 

candidate proteins, as well as an “organismal” age-predictor model using all available proteins as 

candidates without prior enrichment. They then applied these models to plasma samples measured 

using the same proteomic platform to 962 participants in the LonGenity study and 412 participants 

in the S-ARDC study. The relation of the protein models’ organ-predicted age-gaps with adverse 

outcomes related to each organ, and to all-cause mortality, was observed as validating the 

meaningfulness of such gaps. The authors also evaluated the degree of similarity of age-gaps across 

organs in order to evaluate whether there was evidence of differential organ aging. The exception to 

this process was for neurodegeneration; apparently because brain age-gaps derived from the 

training cohort using the gene-expression organ-enrichment did not associate with Alzheimer or 

Parkinson initially, a new selection process was applied to identify proteins within the LonGenity 

cohort related to cognition, and then these proteins were re-trained against age in the Covance 

study. 

The degree of association between chronologic age and each model’s predicted age was variable 

with r-values of 0.2 to 0.7, whereas the organismal model was rather better as a simple “clock”. 

Additionally, the organismal model was the best at predicting overall mortality, with a hazard ratio 

of ~2 compared with the other models’ 1.0-1.5. 

When evaluating the relation of age-gap to organ-related phenotypes, there were significant 

associations between the heart age-gap and arrythmia, coronary artery disease and heart failure. 

For the kidney model age-gap, there were significant associations with estimated glomerular 

filtration rate (eGFR). There was also face-validity in the declared association of diabetes with 



pancreas and kidney age-gaps, motor issues with muscle age-gaps but these associations were not 

shown in any of the main figures or charts. Key proteins involved in these models such as NT-proBNP 

and troponin in the heart model were also plausible. The initial neurodegeneration model’s age-gap 

failed to relate to Alzheimer (AD) or Parkinson (PD), but the re-selected and re-trained model did so 

– individuals with these conditions appeared to have older brains, and correlated to pTau-181, a 

known marker of Alzheimer. For pituitary, esophagus and intestine, there was “insufficient data” to 

evaluate the age-gaps’ relation to phenotype. 

Figure 1 has 7 diagrams and plots, and shows the overall process and the degree of correlation 

between predicted and actual age for the organismal model (r-values of ~0.7-0.9) and the organ-

specific models (r-values of 0.2 to 0.7). The hazard ratios for the age-models’ predictions to 15-year 

mortality ranging from 1.0 to 1.8, and the correlation of age-gaps across different models was 

modest at best, which the authors infer to represent differential organ aging. 

Figure 2 has 19 diagrams and plots, and describes the results for the heart-aging and kidney-aging 

models, their relation to adverse phenotypes and to protein networks, and Figure 3, with 13 

diagrams and plots shows the different approach used and results for the brain age model. 

The extended data shows the origin of the organ-enriched candidate proteins and the proportion 

measured by SomaScan (Figure 1), the proportion of these proteins with a relation to age (figure 2), 

the correlations of each model to chronological age (Figure 3) and the features selected for each 

model (Figure 4). Figure 5 shows the age-gap relation for 8 models with approximately 100 measures 

of phenotype. Figure 6 shows the special process applied to derive a brain aging model that did 

relate to AD and PD and Figure 7 the timing of evaluations for the neurodegeneration program. 

In the methods section, the three cohorts are described (with Covance, the training dataset second, 

should be first), the proteomic platform overview, and imaging methods in S-ADRC. The process for 

defining organ-enriched proteins is described, with a new complexity of the pair-enriched process. 

The LASSO machine-learning process and model-building. The method of relating organ-age gap to 

phenotype was briefly related. Cox proportional hazards models were used to assess the relation of 

age-gaps with mortality, CHF and dementia with age and sex as covariates. 

The supplement contains technical notes on the proteomic assay platform from the manufacturer. 

The premise of this study is very original and creative – that the key weakness of organismal “clock” 

models, namely the attribution of meaning to deviations, can be overcome through the 

development of organ specific models made from a-priori enrichment of a wide selection of 

proteins, and then trained against age. The inclusion of three different data sets of reasonable size, 

and the design using one for model training and two for validation of age-gaps’ relation to 

phenotypes is also rigorous. I think that the program is ultimately publishable, but there are a 

number of major issues that would need to be addressed: 

1) The most important evaluation in this study that actually addresses the thesis of whether the 

organ-enriched age model approach actually advances the field is the relation between age-gaps and 

phenotypes. But the data presented is quite incomplete: there were apparently 19 original organ-

specific models created, and then a new brain model, and the organismal model. That’s 21 models. 

Maybe three more than that if the Cox models were additional. Age-gap to phenotype results are 

only shown for three of them in the main manuscript (heart, kidney and the new brain model). While 

8 models are shown in extended data Figure 5, and three were declared as having insufficient data in 

the text, by my calculation this still leaves 7 models’ age-gap results completely missing. While 16 



models’ results vs. age and mortality are shown in Figure 1, this is not the same as an age-gap and 

again is an inconsistent number vs. the whole. Given the importance of this component, a chart in 

the main text is needed that includes a) all 21 models b) how many candidate phenotypes was each 

model’s age-gap evaluated against in total and c) of the evaluated phenotypes, how many were 

statistically significantly associated with age-gap when corrected for multiple comparisons d) some 

measure of the effect size for the subset that were significant, perhaps borrowed from Extended 

Data Figure 5. Without that data, the selected age gap results in the text and figures seem like 

anecdotes that have been picked because they worked. 

2) Statistical issues: 

a. I am worried about false discovery rates. There are a couple of warning flags that might simply 

need clarification, or alternatively might represent a lack of control, which would make this entire 

program a hypothesis-generating study rather than a validation study. First, it is not clear how many 

phenotypes were evaluated – there are 100 in Extended Data Figure 5. Given this is a nice round 

number, I suspect that is only the most illustrative subset of the whole number of possibilities. Any 

p-values for relations to age-gaps should be corrected for the total number multiple comparisons 

evaluated. This may well be more than 100. It is also not clear from any of the figures whether p-

values were corrected for the multiple comparisons shown, and I didn’t see it in the text. And finally, 

I didn’t see a mention of whether statistical analysis plans and phenotype comparisons for each 

model were defined a-priori. A statistical methods section which addresses the false discovery issue 

should be added. 

b. For the relations of age-gaps to mortality, heart failure and dementia, it appears that age and sex 

were used as covariates in the Cox models (Methods line 11107). Including chronologic age as a 

covariate in the prediction that was itself trained against age seems rather circular, and does not 

help us address the key hypothesis: that organ-specific proteins can relate to phenotype better than 

age alone or an organismal model. If the heart-failure survival curves in figure 2 and the hazard 

ratios quoted use age as a covariate in the Cox model, I think the prognostic claims about organ-

specific proteins for those survival metrics are rather optimistic. 

c. The minimally acceptable performance characteristics of a successful model do not appear to have 

been pre-defined or, aside from Tau, post-hoc related to available alternatives (e.g. measuring 

troponin, NTproBNP, eGFR). Some definition of “how good is good enough” should be mentioned in 

the new statistics section. 

3) My inference is that the development of the second brain model was post-hoc, when the original 

approach failed. While I like the approach, it is an entirely different method of selecting candidate 

features: rather than using the organ-related gene expression data to do so, the features were 

selected for their relation to cognition. Candidate protein feature selection against a functional 

measure or an outcome is a well-recognized approach, but it doesn’t match that of the other models 

and therefore seems like a separate experiment rather than an extension of the others; this method 

could have been used for all models (selecting phenotype-related proteins rather than organ-related 

proteins). If it is included for one model, then the natural question is why not try both approaches 

for all the models and compare them systematically? 

Minor issues 

1) The relation of kidney age-gap to eGFR is on the one hand a nice validation, but it raises the 



question that if you adjusted the age-gap model for eGFR, is there any extra value over and above 

eGFR itself? 

2) LASSO based models are impacted by penalization for feature number and are not fully 

parametric or quantitative. State of the art seems to be to make fully parametric models after 

LASSO. Also, elastic-nets, with its ability to regularize both feature number and the degree of 

correlation allowed might be viewed as more advanced if these models are meant to be final. But if 

these models are archetypes or proof of concept with finalization still in development this is OK, but 

that should be made clear. 

3) The number of tiny plots and diagrams within a figure makes it hard to read – Figure 2 is the worst 

culprit with 19 components but figure 1 is not far behind. Not all of those plots are equally 

important, and especially with the omission of a decent age-gap phenotype chart as in the first 

major issue described above, they seem more trivial than what is currently left out. 

4) The comments about plausibility and the pathway analyses would be more convincing and useful 

if an agnostic selection process had been used. Given that the features were selected from known 

organ related proteins (aside from the second brain model), they are all to some extent plausible 

already. I wonder if the plausibility comments and even the string network diagrams. could be 

sacrificed to make more space/emphasis for truly novel findings 

5) The numbers of participants for the validation cohorts should be included in the text for the main 

section; similarly, the numbers of models developed, evaluated and successful should be clear and 

consistent in the text and in the figures. 

6) In the main text, the “organ enriched” definition seems clear and absolute – RNA expression at 

least four-fold above any other organ. In the methods section there is also mention of a slightly 

different approach where pairs of organs could be closer. Which is it? 

7) In the discussion, an argument for causality is made that includes TNN2 (troponin). Troponin is a 

downstream marker of damage, released from injured myocytes. It cannot be causal. Renin is also 

rather suspect of not usually being primary causal. Including these markers weakens the argument – 

and there’s nothing wrong with downstream markers! 

8) In the discussion, I think the advantages of these organ-specific models vs. the more typical 

organismal single “clock” model could be substantially expanded to include the likely upside of 

making more specific inferences about health interventions (drug and/or lifestyle) that would be 

applicable to the individual’s organs (which are aging differently as shown in this paper) rather than 

guessing what to do from a single deviation from a clock model. 

Referee #2 (Remarks to the Author): 

The paper titled "1 Organ-specific aging signatures in the plasma proteome track health and disease" 

by Hamilton Oh et al out of the Tony Wyss-Coray lab presents a study of blood plasma proteome to 

measure organ-specific aging. Wyss-Coray laboratory is a reputable highly-regarded research group. 

The authors used the human bulk RNASeq data from the different organs and SomaLogic protein 

array with the Covance healthy aging cohort (~353 subjects) to predict "organ-specific" aging. 



Major comments: 

1. Line 282-284. The discussion concludes with a statement, "This framework could serve as a 

blueprint to monitor organ health and aging throughout life, test the effects of rejuvenation 

approaches, and identify novel targets for aging interventions in humans". Unfortunately, the paper 

does not show any examples of target identification, nor it demonstrates a case of testing a 

rejuvenation or aging intervention in humans. 

The authors should consider using the methodology to identify promising protein targets that may 

modulate the aging process and/or disease, provide a protein-level causality hypothesis, and, 

preferably, demonstrate the role of these genes or protein targets in aging and disease. 

2. The number of subjects in the Covance aging cohort, LongGenity and Stanford ADRC cohorts is 

very low, and the R values for the models are very low. Some journals would not publish an aging 

model with r of 0.37 for the kidney, 0.47 for the heart, and 0.39 for the brain. It would be great to 

see a larger sample size and a much better machine learning model and better statistical 

significance. 

Also, the participants in the Covance study are 60 years and older and do not cover the younger 

aging adults. 

3. The subjects in the human healthy cohorts should have basic blood biochemistry data, 

methylation, and imaging data. Each one of these data types has several biological aging clocks 

associated with it. How do the proteomic and organ-specific aging biomarkers presented in the study 

correlate with the more established aging clocks such as DNAm, GrimAge, Levine's PheoAge, 

transcriptomic and proteomic clocks? 

4. The statement on line 54 "Current methods to measure molecular aging in living humans have 

largely measured blood cell age, yet do not provide direct information on the biological age of less 

accessible internal organs such as the heart, kidney, or brain" is not true. There are aging models 

that utilize blood biochemistry data that is linked directly to organ function and is interpretable by a 

physician. 

5. Again, since the subjects in the co-horts should have basic blood biochemistry data (e.g. glucose, 

albumin, AST, ALT, urea...), which can be related to specific organ functions, I would expect a Nature-

level study to should provide a link between the proteomic aging models with blood biochemistry 

and physician-level interpretation of the models. 

6. More research should be perfumed and reported on the role of CPLX1, CPLX2, NRXN3, and 

PPP3R1 in brain aging and disease. Can these proteins be good targets or point to the possible 

protein targets? These were previously implicated in brain aging. Any new findings from the model? 

Any other important features that could be reported and used for target discovery? This question is 

valid for other organs. 

7. Feature importance diagrams for each organ and for the plasma proteomics model should be 

analyzed, interpreted, and presented. Can we derive any new biological hypotheses from these 

models? 

Minor comments: 

1. Only a few authors disclosed competing interests. Usually, it is a good idea to disclose all of the 

commercial affiliations of all authors. 

2. Seminal literature on organismal and tissue-specific biological aging biomarkers is missing. 



Building machine learning models on transcriptomic and proteomic data is not a novel concept, and 

there are even granted patents on multiple technologies in the field with priority dating back to 

2017. 

Referee #3 (Remarks to the Author): 

Major: 

They used 3 different cohorts and a powerful longitudinal approach in which disease was 

characterized. Close to 5000 proteins were assessed to track “organ” aging in ~1500 subject. 

Statistical analysis heavily depends on the healthy aging group. Where people on a structured 

exercise training regime excluded from all the cohorts? This could have provided different results. 

The most challenging aspect is that all plasma proteome is dependent on all tissues. It hard from this 

paper to ensure that the tissue expression (GTEx) project to classify genes as “organ enriched” is 

valid. After proteins expressed at least 4 times higher in one organ compared to any other organ is 

their target of change. I cannot judge if this is a valid approach. Thus the identification of the organ 

enriched plasma proteins to “non-invasively” quantify organ specific biological age is challenging by 

GTEX human tissue bulk-RNA seq data, but it is what is currently available. This is the major 

limitation, but might be minor if this is an accepted standard. In other more statistical wording is 

that they used plasma proteomic markers to predict organ-specific aging signatures (based on GTex) 

using a generic machine learning (LASSO) algorithm and this might not be sufficient. There is only 

one omic marker, not multiomics used in the approach. The prediction performance and potential 

overfitting of the model were not provided and/or fully evaluated. 

Minor: 

Line 91 “training” cohort…what is training? Exercise? Or simply control healthy aging cohort. Word 

“trained” throughout is hard to understand exactly L 127. 

Line 47 change molecularly? With age 

Line 51 transformative medicine bit vague 

L188 and “trained”? in healthy aged individuals…. 

L267 reporters or causes of aging……likely both and or reflect necrosis and or tissue and brain/blood 

barrier damage. Some biomarkers have beneficial roles and consider myokines (originating from 

muscle) or from other tissues. 

L278 non-invasively …should be less invisibly….or just state by blood sample? 

Referee #4 (Remarks to the Author): 

Summary 

This manuscript by Oh et al. describes the creation of 19 organ-specific ageing clocks, of which 15 

were able to predict chronological age in two independent testing cohorts. The authors also create 

an organismal ageing clock and compare its performance with those that are organ-specific. Oh et al. 

test the association of the age gaps derived from each of their clocks with all-cause mortality and 

age-related phenotypes relating to the relevant organs. For example, pancreas and kidney clock age 



gaps are associated with diabetes and muscle age gap was associated with gait speed. 

The authors also develop a novel algorithm to determine feature importance and use it to create a 

brain age clock (CognitionBrain model) that is associated with risk of dementia progression. 

While the idea of creating organ-specific ageing clocks has been posited before and indeed, these 

authors have previously explored the performance of clocks built from different subsets of plasma 

proteins on a pathway specific basis (https://doi.org/10.1111/acel.13256). It is exciting to see for the 

first time how organ-specific clocks perform, particularly as the authors have assessed their 

performance using organ-specific follow up outcomes. 

With this approach they have been able to observe the following: the low correlation of age gap 

measures between different clocks, that their organismal age gap is more strongly associated with 

all-cause mortality that organ-specific age gaps, that individuals with a history of heart attacks 

appear biologically older in many organs not just the heart when, in contrast individuals with 

hypertension showed no abnormal ageing in other major organs. Together, these results suggest 

that different ageing phenotypes have different patterns of organ ageing which may be captured by 

different sets of plasma proteins. 

The organ-specific approach and the observations presented would be a step forward for the ageing 

clock field however, revisions need to be made to make the findings reproducible and to ensure the 

validity of the results and conclusions drawn before the manuscript is ready for publication. 

Data & Methodology 

The authors use their three independent cohorts well, having one for model training and two for 

testing allowing them to demonstrate the validity of their models. Additionally, the authors showed 

that sex is not affecting their results by finding that there was similar performance between models 

trained separately within each sex and those that included sex as a covariate. Oh et al. further 

included both chronological age and sex as covariates for all linear association analyses of model age 

gaps with outcome phenotypes thus reporting only the association of biological age independent of 

chronological age. 

However, further reporting is required to make the work reproducible and demonstrate the validity 

of the results and conclusions drawn. 

On the point of validity, there does not appear to be adjustment of p-values to account for multiple 

testing. Given that in several analyses there are multiple clock age gaps being tested against multiple 

outcomes, it would be expected to report: the number of tests performed, the method of p-value 

adjustment (Bonferroni, FDR, Benjamini-Hochberg etc.), the threshold for statistical significance of 

the adjusted p-values (5%, 1% etc.) and the number of tests that pass these criteria and are 

statistically significant clearly for each analysis in the main text. As at present it is not clear which of 

the reported associations are statistically significant. 

For example, multiple times in the manuscript the authors state that “several” age gaps are 



significantly associated, however they should state exactly how many tests were statistically 

significant and at what threshold. 

On a related note, the authors highlight “strong” associations of the heart age gap with multiple 

heart-related phenotypes, both in this instance and in general it would be helpful to the reader to 

report how strong in the main text, by explicitly stating the effect size or hazard ratio and its 

associated standard error or confidence intervals along with a p-value. Even if effect sizes are 

indicated in figures, it is helpful to understand the context of the result presented. Further, reporting 

of effect sizes in the main text makes it easier for others to reproduce and replicate the authors 

results. 

Additionally, it would improve transparency to include full results from all the analysis as 

supplementary or extended data tables. In the manuscript the authors highlight key findings for 

specific organs of interest in figures. Given the number of additional associations run that are not 

explored in the main text, including the full association results of every clock age gap against every 

outcome (effect sizes/hazard ratios, standard errors/confidence intervals, p-values and adjusted p-

values) for each analysis would give readers the opportunity to investigate results of specific interest 

not only those that were significant in this analysis/highlighted by the authors. Further, it would aid 

repeatability and reproducibility if the authors included for each ageing clock the proteins included 

and their model coefficients in supplementary tables as done by many ageing clocks papers. 

The authors describe the creation of their CognitionBrain model using their FIBA algorithm, report its 

age gap’s association with risk of dementia progression and go on to comment on its comparison 

with the gold standard biomarker plasma pTau-181. Clarification is needed in the first sentence of 

this paragraph as to exactly how this was done. As far as I understand the individuals were ranked 

and those in the top 25% based on CognitionBrain age gap who were also in the top 25% when 

ranked based on plasma pTau-181 levels were compared to those individuals who appeared in the 

bottom 25% of both lists? If so, I am unsure if this analysis supports the conclusions stated: “These 

findings indicate that CognitionBrain age gap uncovers novel biology related to AD progression not 

captured by current pathology-based markers.”. In order to evidence this statement, the authors 

could run Cox proportional hazard models for the AD outcome (2-point increase in CDR-SB within 5 

years) with pTau-181 level as the predictor (along with sex and chronological age as covariates) and 

compare it to a model run with both pTau-181 level and CognitionBrain age gap as predictors. If the 

hazard ratio for the CognitionBrain age gap is significant in the combined model, that would indicate 

that their novel marker was capturing additional information over and above what is being provided 

by the current gold standard marker. 

While the authors have multiple independent cohorts and large numbers of plasma proteins 

measured with the SomaLogic assay, there are two limitations of this data which should be caveated 

in the discussion. 

First, compared to previous ageing clock papers the sample size of the cohort used for training 

(n=353) is modest, meaning that there is a greater chance of overfitting of the models (there are 

lower correlations between predicted age and chronological age in the testing cohorts compared to 

the training cohort) and them being less generalisable than models trained with larger sample sizes. 



Second, is the restricted age range, due to the age range in the testing cohorts, the authors were 

limited to training models in individuals over 60 years of age. This does mean that the while the 

performance of the models presented has been demonstrated in older individuals it has not in an 

age range that spans the general population. It has been shown previously that ageing clocks trained 

in an age restricted cohort do not replicate well in wider range of ages 

(https://doi.org/10.1186/s12864-020-07168-8) and given that many ageing clocks are trained in and 

have been successfully replicated in cohorts spanning a much wider age range, this caveat should be 

highlighted in the discussion, or the authors could seek to replicate their clocks in an additional 

cohort with a wider age range. 

Suggested Improvements 

The manuscript shows association between the novel organ-specific age gaps and organ-specific 

outcomes as well as all-cause mortality. If the data were available, it would be nice to see if organ-

specific age gaps were prognostic of (organ-relevant) disease-specific mortality. 

References 

In addition to the groups own previous paper which presents novel plasma proteomics ageing clocks 

as mentioned above, if the authors are keeping to the scope of plasma proteomics rather than 

specifically the SomaLogic platform, they could add the additional two citations for papers which 

present novel ageing clocks built with plasma proteomics from the Olink assay: Enroth et al., 2015 

(https://doi.org/10.1038/srep17282) and Macdonald-Dunlop et al., 2022 

(https://doi.org/10.18632/aging.203847). Both of these papers trained novel proteomic ageing 

clocks that predicted chronological age in both training and testing samples (as well as additional 

independent cohorts in the case of Macdonald-Dunlop et al.) as well as demonstrating that models 

built using a much smaller subset of proteins were as predictive as those containing a much larger 

numbers of proteins. 

In the introduction, the sentence “Current methods to measure molecular ageing in living humans 

have largely measured blood cell age, yet do not provide direct information on the biological age of 

less accessible internal organs”, is the authors point that most ageing clock papers calculate one 

single biological age measure for the whole organism from blood-based measures – equivalent to 

their organismal clock – rather than separate ones for each organ system? If so, this could be clearer 

as it currently reads as though the point is that most clocks are made from blood-based measures 

which of course includes their own plasma proteomics-based clocks. The two DNA methylation-

based clocks papers cited do not help clarify this, as there have been many papers that use a variety 

of different blood-based omics assays (including plasma proteomics) to derive measures of biological 

age.



Referee #1  
 
While various attempts have been made to define “biological age”, the key problem with “clock” models 
- trained to mimic chronologic age - has been in the (sometimes spurious) attribution of meaning to the 
“age gap” - an individual’s deviation from a model’s prediction, and subsequent confusion about what 
kind of health intervention might help compensate for adverse deviations. The authors of this study 
have addressed these problems in a very interesting and novel manner. 
 
The premise of this study is very original and creative – that the key weakness of organismal “clock” 
models, namely the attribution of meaning to deviations, can be overcome through the development of 
organ specific models made from a-priori enrichment of a wide selection of proteins, and then trained 
against age. The inclusion of three different data sets of reasonable size, and the design using one for 
model training and two for validation of age-gaps’ relation to phenotypes is also rigorous. I think that 
the program is ultimately publishable, but there are a number of major issues that would need to be 
addressed 
 
Thank you for this thorough and balanced review. It has helped us strengthen the presentation of our results and 
expand the scope of the work. We believe we have now addressed all your concerns. 
- We now present a comprehensive list of all statistical analyses performed for the paper, and compare all 

models to all phenotypes where the comparison is warranted. We report the number of statistical tests in 
each section and the associated FDR-adjusted q values. We also now provide all results for all tests with 
associated FDR control in supplementary tables, and a supplementary flowchart of statistical testing in the 
study.  

- We’ve added an additional cohort with 3,075 individuals and several disease phenotypes. We are now using 
this cohort for model training, which has further strengthened all our claims and addresses concerns about 
sample size. 

- We are now making all aging models from this study publicly available and easily accessible through a python 
package called organage (https://github.com/hamiltonoh/organage). Users can input sample metadata (Age 
and Sex) and sample protein expression (SomaScan data) to output predicted organ ages and age gaps. 
Coefficients for all bootstrapped aging models are accessible both through the package and listed in 
Supplementary Tables 6 and 16. Additional summary statistics of the models are provided in Supplementary 
Table 7-8,17-18. 

- We provide statistics and visualizations of the changes with age and sex for all ~5,000 proteins on a shinyapp: 
https://twc-stanford.shinyapps.io/aging_plasma_proteome_v2/ 

 
Major 
1) The most important evaluation in this study that actually addresses the thesis of whether the organ-
enriched age model approach actually advances the field is the relation between age-gaps and 
phenotypes. But the data presented is quite incomplete: there were apparently 19 original organ-
specific models created, and then a new brain model, and the organismal model. That’s 21 models. 
Maybe three more than that if the Cox models were additional. Age-gap to phenotype results are only 
shown for three of them in the main manuscript (heart, kidney and the new brain model). While 8 models 
are shown in extended data Figure 5, and three were declared as having insufficient data in the text, 
by my calculation this still leaves 7 models’ age-gap results completely missing. While 16 models’ 

Author Rebuttals to Initial Comments:



results vs. age and mortality are shown in Figure 1, this is not the same as an age-gap and again is an 
inconsistent number vs. the whole. Given the importance of this component, a chart in the main text is 
needed that includes a) all 21 models b) how many candidate phenotypes was each model’s age-gap 
evaluated against in total and c) of the evaluated phenotypes, how many were statistically significantly 
associated with age-gap when corrected for multiple comparisons d) some measure of the effect size 
for the subset that were significant, perhaps borrowed from Extended Data Figure 5. Without that data, 
the selected age gap results in the text and figures seem like anecdotes that have been picked because 
they worked. 
 
We apologize for the lack of clarity on the main analysis plan regarding age gaps versus phenotypes. For the 
revision, we present a systematic evaluation of organ age gap associations with age-related phenotypes and 
provide statistics for all results in the main figures, extended data figures, and supplementary tables. In 
combination with this reviewer’s second point about systematic and FDR-controlled evaluation of all associations 
tested in the manuscript, this is a substantial update to the figures and text, which we felt was warranted given 
these were concerns shared by multiple reviewers. The heart, kidney, and brain results we highlighted in the 
original manuscript remain highly significant and relevant in the context of the systematic analyses now 
presented. We now also present several other interesting significant associations in the revised manuscript for 
additional completeness. Please note that because we have changed the training cohort to address other 
comments from this and other reviewers, the exact values previously reported have all changed, but previously 
made general claims are supported.  Below are the major revisions related to this reviewer concern.  
 
1) Study design flowchart. It is difficult to also incorporate effect sizes here due to the large number of tests, but 

effect sizes are reported in tables and relative strength of highlighted examples is now noted in main text.  
 



 
2) We have decided to restrict our analysis to 11 organ aging models which we have higher confidence in 

evaluating, as well as an organismal model and conventional model, for a total of 13. The meaning of many 
organ-specific models, such as esophagus, adrenal, and male, remain somewhat unclear at this time 
because we do not have data on the phenotypic aging of these organs to test if the age gaps for these models 
is associated with the hypothesized phenotypic organ age. We believe these models are still interesting and 
valid, some surprisingly so, but they are best left for more detailed follow-up work. We have made 
adjustments to the text and figures to clarify the models that are tested.  

3) Lines 96-106: “Based on this concept, we trained a bagged ensemble of least absolute shrinkage and 
selection operator (LASSO) aging models for 11 major organs using the mutually exclusive organ-enriched 
proteins we identified as inputs (Fig. 1a, Extended Data Fig. 2a-b, Supplementary Fig. 3, Supplementary 
Table 6-8). We chose to restrict our analyses to adipose tissue, artery, brain, heart, immune tissue, intestine, 
kidney, liver, lung, muscle, and pancreas because of their relatively well-understood contributions to diseases 
of aging and the availability of relevant age-related phenotype data in the tested cohorts. We also trained an 
“organismal” aging model using the 3,907 organ-nonspecific plasma proteins as inputs to compare the 
contribution of specific organs to an organ-shared aging signature, and a "conventional" proteomic aging 
model using all 4,778 proteins to compare the organ aging models to a global plasma proteomic aging 
signature as previously reported32,33.” 

4) All statistical tests and the number of statistically significant results after FDR correction are now clearly listed 
in the text, figures, and supplementary tables.  
a) Figure 1b-e, 2i-j, and Extended Data Fig. 4, now show all 13 aging models.  
b) Supplementary tables 9-13 contain all statistics for all statistical tests performed on these 13 models with 

FDR correction across each table.  
c) Lines 109-111: “All 11 organ aging models and the organismal model significantly estimated age in all 

five cohorts after multiple test correction (Supplementary Fig. 3b)” 
d) Lines 131-134 and Lines 143-146: “To assess the relationship between organ age and biological aging, 

we tested whether organ e-ageotypes were associated with nine age-related disease states for which we 
had sufficient data in at least two independent cohorts; Alzheimer's disease, atrial fibrillation, 
cerebrovascular disease, diabetes, heart attack, hypercholesterolemia, hypertension, obesity, and gait 
impairment… At the whole population level, the relationships between organ age gaps and disease 
showed the same trends as ageotypes, but more diseases were significantly associated with age gaps 
due to higher statistical power (65/117, 56%, statistically significant after multiple test correction, 
Extended Data Fig. 4e, Supplementary Table 10).” 

e) Lines 173-180: “we used longitudinal follow-up among healthy participants in the LonGenity cohort to test 
if organ age was significantly associated with future heart failure risk (Fig. 2i, Supplementary Table 11). 
We found that among people with no active disease or clinically abnormal biomarkers at baseline, every 
4.1 years of additional heart age (1 standard deviation) conferred an almost 2.5 fold increased risk of 
heart failure over a 15 year follow-up (23% increased risk per year of heart aging, Fig. 2i). Age gaps from 
multiple other tissues, but not the conventional aging model, also trended towards significance.” 

f) Lines 181-184: “We next tested the associations between organ age gaps and all-cause mortality. We 
found that the age gaps from 10 out of 11 organs, the organismal, and the conventional model were 
significantly associated with future risk of all-cause mortality after multiple test correction in the LonGenity 
cohort over 15 years of follow-up (Fig. 2j, Supplementary Table 12).” 

Supplementary Figure 2. Study design flow chart 



g) Lines 192-194 and Lines 200-202: “we tested the associations between organ age gaps and 43 clinical 
biochemistry and cell count markers in the t2est cohort Covance (Extended Data Fig. 5,  Supplementary 
Fig. 4, see Supplement for additional discussion)... We found 226 out of 559 (40%) associations between 
organ age gaps and clinical biochemistry markers were significant after multiple testing correction 
(Extended Data Fig. 5c, Supplementary Table 13).” 

5) The heart and kidney associations we noted in Figure 2 remain the most statistically significant associations 
when reporting the full unbiased assessment of disease associations. However, to reflect the expanded 
analysis, Figure 2 has changed.   
a) Extended Data Fig. 4e now contains associations between population wide organ age gaps and 9 

morbidities of aging (f). Full statistics are in Supplementary Table 10.  

 

 
 

Extended Data Figure 4.  
f, A cross-cohort meta-analysis of associations between organ age gaps versus diagnosis of 9 major age-related 
diseases annotated in at least 2 independent cohorts, controlling for age and sex (linear model: AgeGap ~ Disease + 
Age + Sex). Disease covariate effects and significance are shown. P-values were Benjamini Hochberg corrected. 
Asterisks represent q-value thresholds: *q < 0.05; **q < 0.01; ***q < 0.001. The strongest associations per disease are 
highlighted with black borders. 



b) Visualization of original Figure 2c,d,k,i,m has now been absorbed into Figure 2a-d. Figure 2a-d show all 
cohorts which we have data for the four most significant associations, and give a more detailed statistical 
presentation of the data than the previous version using a meta-analysis framework.  

 
 

c) Original Fig. 2e has been changed to current Fig. 2i and shows heart failure risk for all models. Full 
statistics are in Supplementary Table 11. Original Fig. 1d was moved to Figure 2j and has been updated 
to FDR-corrected q-values across the 13 models we focus on. Full statistics are in Supplementary Table 
12. 
 
 

 

Figure 2 
a, Forest plot displaying results from a cross-cohort meta-analysis of the association between the kidney age gap and 
hypertension history, controlling for age and sex (linear model: AgeGap ~ Disease + Age + Sex). Per cohort and total 
effect sizes, 95% confidence intervals, Benjamini Hochberg total p-value (q-values) are shown. P-values were 
corrected based on 117 tests of organ age gap associations with major comorbidities (Extended Data Fig. 4e).  
 
b, As in a, but for kidney age gap versus diabetes history.  
 
c, As in a, but for heart age gap versus atrial fibrillation or pacemaker history.  
 
d, As in a, but for heart age gap versus heart attack history.  
 
 
f, A cross-cohort meta-analysis of associations between organ age gaps versus diagnosis of 9 major age-related 
diseases annotated in at least 2 independent cohorts, controlling for age and sex (linear model: AgeGap ~ Disease + 
Age + Sex). Disease covariate effects and significance are shown. P-values were Benjamini Hochberg corrected. 
Asterisks represent q-value thresholds: *q < 0.05; **q < 0.01; ***q < 0.001. The strongest associations per disease are 
highlighted with black borders. 



 
 

6) In response to another major concern from this reviewer, analysis of the cognition-optimized models has 
been expanded to include all organs, and FDR-corrected q-values and complete statistics are now reported. 
This point will be expanded on further below.  

 
2) Statistical issues: 
a. I am worried about false discovery rates. There are a couple of warning flags that might simply need 
clarification, or alternatively might represent a lack of control, which would make this entire program a 
hypothesis-generating study rather than a validation study. First, it is not clear how many phenotypes 
were evaluated – there are 100 in Extended Data Figure 5. Given this is a nice round number, I suspect 
that is only the most illustrative subset of the whole number of possibilities. Any p-values for relations 
to age-gaps should be corrected for the total number multiple comparisons evaluated. This may well 
be more than 100. It is also not clear from any of the figures whether p-values were corrected for the 
multiple comparisons shown, and I didn’t see it in the text. And finally, I didn’t see a mention of whether 
statistical analysis plans and phenotype comparisons for each model were defined a-priori. A statistical 
methods section which addresses the false discovery issue should be added. 
 
We apologize for this oversight and miscommunication. To avoid over-complicating the manuscript submission, 
we did select an illustrative subset of statistical tests to showcase. We also did not report FDR-corrected p-
values in all cases, which was an honest oversight and not meant to obscure or artificially inflate results. We now 
report all tests for all models in this revised manuscript and do appropriate false discovery rate control using the 
Benjamini-Hochberg method. We have made this clear in the text, figures, supplementary tables, and methods, 
as also highlighted above. The major revisions related to this point are summarized below: 
 
1. We have added a detailed statistical methods section specifically to address false discovery rate control. 

a. Lines 596-645: 
2. All statistical tests and the number of statistically significant results after FDR correction are now clearly listed 

in the text, figures, and supplementary tables.  
a) Supplementary tables 9-13 contain all statistics for all statistical tests performed on these 13 models with 

FDR correction across each table.  
b) All figures have clearly labeled q or p values showing the FDR control 
c) All text is now clear on the total testing burden 

 
b. For the relations of age-gaps to mortality, heart failure and dementia, it appears that age and sex 
were used as covariates in the Cox models (Methods line 11107). Including chronologic age as a 

Figure 2 
I, Cox proportional hazard regression analysis in congestive heart failure risk, controlling for age and 
sex (HeartFailureRisk ~ AgeGap + Age + Sex), within 15 years in the LonGenity cohort. 27 events out 
of 812 individuals. Hazard ratios, 95% confidence intervals, and Benjamini Hochberg corrected p-values 
(q-values) for z-scored organ age gaps are shown. 
 
j, Cox proportional hazard regression analysis in mortality risk, controlling for age and sex (MortalityRisk 
~ AgeGap + Age + Sex), within 15 years in the LonGenity cohort. 190 events out of 903 individuals. 
Hazard ratios, 95% confidence intervals, and Benjamini Hochberg corrected p-values (q-values) for z-
scored organ age gaps are shown. 



covariate in the prediction that was itself trained against age seems rather circular, and does not help 
us address the key hypothesis: that organ-specific proteins can relate to phenotype better than age 
alone or an organismal model. If the heart-failure survival curves in figure 2 and the hazard ratios quoted 
use age as a covariate in the Cox model, I think the prognostic claims about organ-specific proteins for 
those survival metrics are rather optimistic. 
 
We apologize for not explaining our methodology more carefully and attribute some of the misunderstanding 
perhaps to the ways different sub-fields use language. The statistics we report are actually more conservative 
than those requested by this comment. It seems that the reviewer believes we reported a metric of combined 
prediction accuracy, like r2, from a multivariate model that includes age. But this is not the case. We reported the 
AgeGap covariate-specific model coefficient and associated q-value. Correcting the model for age in this way is 
both standard and more conservative than reporting the statistics from the univariate model. 
  
To assess age gap associations with disease/mortality risk we tested the cox proportional hazards model: Risk 
~ AgeGap + Age + Sex. The AgeGap coefficient from this model, which is the coefficient we report in the text 
and figures along with the q-value and 95% confidence interval, is the hazard ratio of the age gap in relation to 
disease risk, independent of age and sex. Put another way, this is testing the exact hypothesis we want to know 
about, which is whether differences in organ age gap represent differences in biological aging between two 
individuals of the same chronological age. This cox proportional hazard model with age adjustment is the same 
model used in published landmark aging clock studies1–3. 
 

 
 
In theory, this should be very similar to the univariate model, because the AgeGap is calculated as the residual 
off an age prediction model, so it is by design independent from Age. However, to further ease this reviewer’s 
concerns, here we provide an example where we compare the AgeGap hazard ratios between unadjusted versus 

Belsky et. al. eLife 2022 

Lu et. al. Aging 2019 

Levine et. al. Aging 2018 



adjusted models for mortality risk. As shown below, adjusting for age and sex provides a slightly more 
conservative estimate of the hazard ratio, though they are overall very similar. We chose to report estimates 
from adjusted models for all analyses where age is confounding to be more scientifically rigorous and to conform 
with the age modeling field more broadly. 
 

 

 
 
c. The minimally acceptable performance characteristics of a successful model do not appear to have 
been pre-defined or, aside from Tau, post-hoc related to available alternatives (e.g. measuring troponin, 
NTproBNP, eGFR). Some definition of “how good is good enough” should be mentioned in the new 
statistics section. 
 
We appreciate the suggestion, and we have added some commentary in our statistics and discussion sections, 
however we are open to additional feedback on this point. It is unclear if the reviewer is referring to performance 
on future disease prediction tasks, disease association, or some other element.  
 
The primary focus of the study is to demonstrate that our approach to model aging of different organs using 
plasma proteins is able to capture variance in different organ aging outcomes not captured by other methods, 
and this can be used to understand aging biology in a new way. Since our models are general aging models, we 
do not claim that they are better predictors of specific disease outcomes, for example heart failure risk, than 
training a model to instead directly predict heart failure risk. Since biomarkers for every disease will have different 
performance goals, we have not attempted to provide performance characteristics comprehensively for all 
diseases.  

Reviewer Figure 
a, Cox proportional hazard regression analysis in mortality risk (MortalityRisk ~ AgeGap), within 15 years in the 
LonGenity cohort. 190 events out of 903 individuals. Hazard ratios, 95% confidence intervals, and Benjamini Hochberg 
corrected p-values (q-values) for z-scored organ age gaps are shown. 
 
b, Cox proportional hazard regression analysis in mortality risk, controlling for age and sex (MortalityRisk ~ AgeGap + 
Age + Sex), within 15 years in the LonGenity cohort. 190 events out of 903 individuals. Hazard ratios, 95% confidence 
intervals, and Benjamini Hochberg corrected p-values (q-values) for z-scored organ age gaps are shown. 



 
These general aging models do, however, show what we consider to be strong performance in disease risk 
prediction, which underscores the important contribution of aging to disease. To provide additional context for 
reviewers, we benchmark against a couple models here, however, in the absence of direct comparison data, we 
do not claim our approach is better.  
 
In the case of future risk of heart failure in an independent cohort, the heart age gap is a similar strength predictor 
to the best reported recent models designed specifically to predict heart disease risk. When applied to 
independent aging cohorts, the heart aging clock (HR = 2.40, CI = 1.73-3.33) performs comparably to a 9-protein 
model of cardiovascular outcomes risk (HR = 2.1, CI = 1.86-2.33)4, the adjusted Framingham model (HR = 1.7, 
CI = 1.53-1.97), and a multi-protein model of cardiovascular stress which includes NTproBNP and troponin (HR 
= 1.83, CI = 1.55-2.16)5, at predicting future heart disease. These statistics are all for 1 standard deviation 
difference in a normalized model. We show these comparisons not to make claims of superiority, as these risk 
models were trained and evaluated on different cohorts with different follow-up times, but to show the relevance 
of the heart aging model in heart disease. 

 
In the case of mortality, the organ age gaps predict mortality in an independent cohort with comparable effect 
size to age gaps from methylation aging clocks which are trained specifically to predict mortality and rate of 
aging, such as DNAmPhenoAge (HR = 1.21)1,  DNAmGrimAge (HR = 1.31)2, and DunedinPACE (HR = 1.24)3. 
The heart, adipose, artery, pancreas, brain, liver, muscle, and immune age gaps all predict mortality with similar 
hazard ratios (provided in Supplementary Table 9). These statistics are all for 1 standard deviation difference in 
a normalized model. Because we cannot evaluate these models in the same cohorts, claims of superiority cannot 
be made. However, mortality data in our independent test cohort is collected over a comparable follow-up time 
(ours is 15 years, DNAmPhenoAge is 12 years, DNAmGrimAge is 13.7 years, DuendinPace is 14 years) in an 
American cohort of similar demographic character. 

 
We have added a statement to the discussion section to emphasize these points. Lines 360-364: “Although we 
were unable to perform direct comparisons, our models predict mortality with comparable effect sizes to models 
trained specifically to predict mortality and heart disease in independent cohorts12,15,39,67,68. We demonstrated 
that our approach added increased value to established biomarkers of Alzheimer’s disease, and we expect that 
multimodal aging and disease prediction models may have similar impacts in other diseases” 
 
3) My inference is that the development of the second brain model was post-hoc, when the original 
approach failed. While I like the approach, it is an entirely different method of selecting candidate 
features: rather than using the organ-related gene expression data to do so, the features were selected 
for their relation to cognition. Candidate protein feature selection against a functional measure or an 
outcome is a well-recognized approach, but it doesn’t match that of the other models and therefore 
seems like a separate experiment rather than an extension of the others; this method could have been 
used for all models (selecting phenotype-related proteins rather than organ-related proteins). If it is 
included for one model, then the natural question is why not try both approaches for all the models and 
compare them systematically? 
 
Thank you for the balanced critique. It is true that the method was applied post-hoc because we were specifically 
interested in better understanding brain aging and dementia. It is a reasonable critique that it is unfair to compare 
this model to the previous models since the underlying method is different. We have now expanded the scope 
of the analysis to apply this approach to all organs and compare the results systematically. This is a substantial 



new set of analyses which has resulted in many new additional interesting results, which we have expanded into 
an additional figure 4 and multiple new extended data figures. The brain aging model remains the most 
significant/largest effect model in the context of this larger analysis. We outline the expanded approach and new 
results below: 
 
1. New training cohort 

a. We leveraged the additional cohort we acquired, the Knight ADRC, to do feature selection for these second-
generation models on dementia status, our primary outcome of interest, as opposed to the composite 
cognition measure. We initially opted to use composite cognition in the LonGenity cohort for feature 
selection because we only had one cohort with dementia participants, the SADRC, so we did not have a 
fully independent test cohort if we used dementia status. We have changed the text in Lines 223-226 to 
reflect this. All major findings using this new approach remain consistent with the cognition-optimized brain 
model in the original manuscript, but we believe the strength of our claims is increased now.  

b. Due to the larger sample size, the use of the KADRC cohort as the new training cohort actually led to an 
association between the first-generation brain aging model and Alzheimer’s disease (now shown in 
Extended Data Fig. 4e), which is further strengthened through our FIBA feature selection approach. We 
have thus changed the textual motivation for the FIBA approach to more accurately reflect our thinking in 
Lines 216-223. 

2. As requested, we have expanded this approach to all organs, which now constitutes Figure 4, Extended Data 
Figures 7-10, and Supplementary Tables 14-19,22. Textually, this encompasses the new section we have 
added, from Lines 291-344. To summarize the major discoveries, we found the following.  
a. CognitionBrain, CognitionOrganismal, CognitionPancreas, and CognitionArtery age gaps were 

significantly associated with the presence of/a diagnosis of Alzheimer’s disease in both the KADRC and 
SADRC. The CognitionBrain model had the largest effect size in the larger KADRC cohort, followed by 
CognitionOrganismal. Full effect sizes and statistics for optimized models are in Supplementary Table 19 
and Extended Data Figure 8. 

b. The CognitionArtery and CognitionOrganismal models are specifically associated with future conversion 
from cognitively normal to mild cognitive impairment (MCI) in healthy participants.  

c. We discuss multiple biological processes and proteins which we believe underlie these relationships. The 
data implicate vascular aging, specifically blood brain barrier dysregulation, vascular calcification, and 
extracellular matrix changes as important biological processes underlying cognitive decline and dementia 
onset very early in the temporal sequence of brain aging and Alzheimer’s disease.    

 
Minor 
1) The relation of kidney age-gap to eGFR is on the one hand a nice validation, but it raises the question 
that if you adjusted the age-gap model for eGFR, is there any extra value over and above eGFR itself? 
 
We have addressed this by adjusting the kidney age gap for eGFR in the LonGenity cohort, the only independent 
test cohort where we have both eGFR and the measures of diabetes status and hypertension status. We 
corrected the kidney age gap for eGFR using a linear model in R. We calculated eGFR from the CKD-EPI 
equation using serum creatinine measured in the cohort. The eGFR-adjusted kidney age gap remained 
significantly associated with both diabetes status and hypertension status, as shown below. We have added this 
as Supplementary Fig. 5 and made a note in the text on Lines 207-211.  
 



 

 
 
2) LASSO based models are impacted by penalization for feature number and are not fully parametric 
or quantitative. State of the art seems to be to make fully parametric models after LASSO. Also, elastic-
nets, with its ability to regularize both feature number and the degree of correlation allowed might be 
viewed as more advanced if these models are meant to be final. But if 
these models are archetypes or proof of concept with finalization still 
in development this is OK, but that should be made clear. 
 
We are grateful for the reviewer’s attention to modeling decisions, and we 
agree that there could be additional performance improvements to the 
models by extensively testing alternative algorithms and training schemes. 
However, we believe the paper is better focused on the biology discovered, 
so the models presented are meant as archetypes and to illustrate the 
underlying rationale and robustness of the methods described in the paper. 
We have made this clear in the text and discuss limitations of the current 
approach in the discussion section, Lines 388-389. 
 
We also note here that Elastic Net models perform very similar to our 
bagged LASSO model approach, as shown here summarized across all 
models. Additionally, for the majority of organ aging models which start from 
a small set of possible features (less than 100), nearly identical features are 
selected because a LASSO-like mixing coefficient is optimal. Lastly, LASSO is both fully parametric and fully 
quantitative. Unlike two-stage methylation aging clocks such as DNAmPhenoAge and DNAmGrimAge, which 
are first trained on mortality data using a nonparametric cox model for the purposes of feature selection, and 
then are re-parameterized as Gompertz models our approach is simpler and just trains on chronological age.  

Supplementary Figure 5 
a, Kidney age gap associations with hypertension, adjusted for EGFR in the LonGenity cohort. 
b, Kidney age gap associations with diabetes, adjusted for EGFR in the LonGenity cohort. 
 

Reviewer Figure. Lasso vs 
ElasticNet age gap correlation 
for all models and all samples. 



 
3) The number of tiny plots and diagrams within a figure makes it hard to read – Figure 2 is the worst 
culprit with 19 components but figure 1 is not far behind. Not all of those plots are equally important, 
and especially with the omission of a decent age-gap phenotype chart as in the first major issue 
described above, they seem more trivial than what is currently left out. 
 
Thank you for the comments. We have re-designed figure 2 with less panels and a stronger focus on the truly 
novel results.  
 
4) The comments about plausibility and the pathway analyses would be more convincing and useful if 
an agnostic selection process had been used. Given that the features were selected from known organ 
related proteins (aside from the second brain model), they are all to some extent plausible already. I 
wonder if the plausibility comments and even the string network diagrams. could be sacrificed to make 
more space/emphasis for truly novel findings 
 
We have removed the string diagrams in favor of more analysis on which proteins in our models have the 
strongest relationships to different traits. We are unsure which specific plausibility comments the reviewer refers 
to, but we are open to adjusting the text here. We will note though, that it was not previously obvious before our 
study that organ-specific proteins can be markers of organ aging, though we agree they are all plausibly involved 
the biology of their respective tissues which is part of the appeal of our approach.  
 
5) The numbers of participants for the validation cohorts should be included in the text for the main 
section; similarly, the numbers of models developed, evaluated and successful should be clear and 
consistent in the text and in the figures. 
 
We have fully addressed this as noted for other comments from this reviewer. Main Figure 1a shows the sample 
size of all cohorts. This has been added to the text as well at line 146.   
 
6) In the main text, the “organ enriched” definition seems clear and absolute – RNA expression at least 
four-fold above any other organ. In the methods section there is also mention of a slightly different 
approach where pairs of organs could be closer. Which is it? 
 
We apologize for the confusion. The “organ enriched” definition is clear and absolute – RNA expression at least 
four-fold above any other organ. We have adjusted the methods to be consistent with the text, lines 80-83. 
Methods section Lines 542-552. 
 
7) In the discussion, an argument for causality is made that includes TNN2 (troponin). Troponin is a 
downstream marker of damage, released from injured myocytes. It cannot be causal. Renin is also 
rather suspect of not usually being primary causal. Including these markers weakens the argument – 
and there’s nothing wrong with downstream markers! 
 
We see the reviewer’s point and have removed these two proteins from this statement now.  
 



8) In the discussion, I think the advantages of these organ-specific models vs. the more typical 
organismal single “clock” model could be substantially expanded to include the likely upside of making 
more specific inferences about health interventions (drug and/or lifestyle) that would be applicable to 
the individual’s organs (which are aging differently as shown in this paper) rather than guessing what 
to do from a single deviation from a clock model. 
 
Thank you for the encouragement. We have expanded this slightly in the discussion section, lines 349-351. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Referee #2 
 
The paper titled "1 Organ-specific aging signatures in the plasma proteome track health and disease" 
by Hamilton Oh et al out of the Tony Wyss-Coray lab presents a study of blood plasma proteome to 
measure organ-specific aging. Wyss-Coray laboratory is a reputable highly-regarded research group. 
The authors used the human bulk RNASeq data from the different organs and SomaLogic protein array 
with the Covance healthy aging cohort (~353 subjects) to predict "organ-specific" aging. 

 
We thank this reviewer for their thorough review. We believe the emphasis on biological interpretation and 
comparison to other benchmarks has greatly improved our manuscript and increased our own understanding of 
this approach.  
 
Major 
1. Line 282-284. The discussion concludes with a statement, "This framework could serve as a blueprint 
to monitor organ health and aging throughout life, test the effects of rejuvenation approaches, and 
identify novel targets for aging interventions in humans". Unfortunately, the paper does not show any 
examples of target identification, nor it demonstrates a case of testing a rejuvenation or aging 
intervention in humans. The authors should consider using the methodology to identify promising 
protein targets that may modulate the aging process and/or disease, provide a protein-level causality 
hypothesis, and, preferably, demonstrate the role of these genes or protein targets in aging and 
disease. 
 
We apologize if our concluding statement came across as too strong and we did not mean to suggest that the 
manuscript provided applications of the framework already. The sentence was meant to provide an outlook for 
the future and encourage our peers to test it. Nevertheless, we have now toned down the concluding sentence 
as follows:  

1. “Altogether, we show that large-scale plasma proteomics and machine learning can be leveraged to non-
invasively measure organ health and aging in living people. We show that biologically motivated 
modeling, in which we use sets of organ-specific proteins and the FIBA algorithm to further subset to 
physiological age-related proteins, enables deconvolution of the different rates of aging within an 
individual and measurement of aging at organ-level resolution.”  

We also discuss additional interesting biological observations based on our new methodology, but our study is 
unable to infer causality for any aging model. In this regard it is similar to other published “aging clocks” which 
can provide insight into the biology of aging and help in the generation of new hypothesis but are not able to 
infer causality as we recently discussed in a review article on the subject6. Other changes to the text and figures 
related to this claim are summarized below.  
a. When considering the biology of the proteins in the heart aging model, we note the prominent role of MYL7, 

a component of cardiac myosin and its recent link to heart disease in the literature, lines 170-172: “MYL7 is 
expressed by atrial cardiomyocytes and has recently become a promising target for hypertrophic 
cardiomyopathy38, suggesting that this could be a repurposing target for heart aging more generally.” 

b. We have added a new section, based on this and other reviewer comments, in which we propose aging 
mechanisms and proteins involved in the earliest phases of cognitive decline and future dementia onset. Our 
data are consistent with a model in which changes in the brain vasculature and extracellular matrix, 
particularly vascular calcification and alterations to pericyte function and related blood-brain-barrier integrity, 



may be early contributors to cognitive decline based on the temporal changes observed during aging. 
Relevant section in lines 291-344. 

 
2. The number of subjects in the Covance aging cohort, LongGenity and Stanford ADRC cohorts is 
very low, and the R values for the models are very low. Some journals would not publish an aging 
model with r of 0.37 for the kidney, 0.47 for the heart, and 0.39 for the brain. It would be great to see a 
larger sample size and a much better machine learning model and better statistical significance. 
Also, the participants in the Covance study are 60 years and older and do not cover the younger aging 
adults.  
 
We will address these concerns in order.  
A. “The number of subjects in the Covance aging cohort, LongGenity and Stanford ADRC cohorts is 

very low” 
To address this concern, we have added two new cohorts to our study: the Knight Alzheimer’s Disease 
Research Center (KADRC) cohort (n=3,075) and the Stanford Aging and Memory Study (SAMS) cohort 
(n=192). This means we have increased our number of independent cohorts from three to five and have 
increased our total sample size from 1,727 to 5,678, making our revised study the largest plasma proteomic 
aging clock study to date7–11, and the largest plasma proteomics study of clinically assessed Alzheimer’s 
disease participants to our knowledge12,13.  

 

 
 
We find that this cohort number and sample size is sufficient to discover highly significant and reproducible 
associations between age gaps and chronic diseases in individual cohorts and cross-cohort meta-analyses. 
This is now reflected explicitly in the text. 

1. Lines 131-134 and Lines 143-146: “To assess the relationship between organ age and biological 
aging, we tested whether organ e-ageotypes were associated with nine age-related disease states 
for which we had sufficient data in at least two independent cohorts; Alzheimer's disease, atrial 
fibrillation, cerebrovascular disease, diabetes, heart attack, hypercholesterolemia, hypertension, 
obesity, and gait impairment… At the whole population level, the relationships between organ age 
gaps and disease showed the same trends as ageotypes, but more diseases were significantly 
associated with age gaps due to higher statistical power (65/117, 56%, statistically significant after 
multiple test correction, Extended Data Fig. 4e, Supplementary Table 10).” 

Figure 1 
a, Schematic illustrating the study design of estimating and validating organ-specific biological age (See Methods).  



 
We have also changed the visualization and statistical reporting of results to meta-analysis forest plots, which 
demonstrate the high reproducibility of our results across multiple independent cohorts. Full results of this 
analysis are now in Supplemental Table 10.  

 
 

As sample size concerns are most often concerns about reproducibility/generalizability, we hope that our 
substantial increase in sample size and cross-cohort statistical analyses in the revision, together, sufficiently 
demonstrate that our results are reproducible. 
 
Naturally, our approach will become even more powerful if applied to larger-scale proteomics resources that 
are being generated, such as the UK biobank, and we have now made a note of this in the discussion section, 
Lines 365-367: “We present one of the largest studies of plasma proteome aging to date, but as larger plasma 
proteomics resources are being generated69–72 the power of this approach will further increase.” 
 

B. “the R values for the models are very low. Some journals would not publish an aging model with r 
of 0.37 for the kidney, 0.47 for the heart, and 0.39 for the brain. It would be great to see a larger 
sample size and a much better machine learning model and better statistical significance.”  
This is a very interesting comment the field has increasingly grappled with. What is an “ideal” prediction 
accuracy in a model that is designed to estimate biological age or uncover information about biological aging. 
 
While there clearly must be robust statistically significant correlation between a molecular aging model and 
chronological age, the optimal correlation strength is unknown (and very likely differs for different systems). 
Consider that if an aging model predicted chronological age perfectly, then it would by definition contain no 
extra information about biological aging beyond chronological age itself and would thus be useless as a 
biomarker of biological aging. There is a direct statistical trade-off between chronological age prediction 
accuracy and the ability to detect biological differences in aging between people of the same chronological 
age, which has been repeatedly noted in the field of aging modeling14 as a core challenge and contradiction. 
In fact, the field is rapidly moving away from this way of thinking as most new research uses methods which 

Figure 2 
a, Forest plot displaying results from a cross-cohort meta-analysis of the association between the kidney age gap and 
hypertension history, controlling for age and sex (linear model: AgeGap ~ Disease + Age + Sex). Per cohort and total 
effect sizes, 95% confidence intervals, Benjamini Hochberg total p-value (q-values) are shown. P-values were corrected 
based on 117 tests of organ age gap associations with major comorbidities (Extended Data Fig. 4e).  
 
b, As in a, but for kidney age gap versus diabetes history.  
 
c, As in a, but for heart age gap versus atrial fibrillation or pacemaker history.  
 
d, As in a, but for heart age gap versus heart attack history.  
 
 
f, A cross-cohort meta-analysis of associations between organ age gaps versus diagnosis of 9 major age-related diseases 
annotated in at least 2 independent cohorts, controlling for age and sex (linear model: AgeGap ~ Disease + Age + Sex). 
Disease covariate effects and significance are shown. P-values were Benjamini Hochberg corrected. Asterisks represent 
q-value thresholds: *q < 0.05; **q < 0.01; ***q < 0.001. The strongest associations per disease are highlighted with black 
borders. 



are more informed by the biological factors we care about more than chronological age itself. Two of the 
most recent methylation aging clocks, DunedinPoAm and DunedinPACE, which are among the best-
performing methylation aging clocks for predicting aging phenotypes, have correlations with chronological 
age of just r = 0.1115 and r = 0.323, respectively. Having recently written a comprehensive review on the field 
of aging clocks6, we noted that the majority of recent papers is moving away from chronological age prediction 
accuracy as a justification for the scientific interest or utility of a molecular aging model. Instead, the focus in 
the field is on how well and how generally such models can predict aging phenotypes.  
 
To evaluate our results in this realm, in addition to the robust disease associations we see, we can use the 
hazard ratio to predict e.g., mortality as an independent measure of the strength of various models. We find 
multiple organ age gaps predict mortality in an independent cohort as good or better than the age gaps from 
methylation aging clocks which are trained specifically to predict mortality and rate of aging, such as 
DNAmPhenoAge (HR = 1.21)1,  DNAmGrimAge (HR = 1.31)2, and DunedinPACE (HR = 1.24)3. The heart, 
adipose, artery, pancreas, brain, liver, muscle, and immune age gaps all predict mortality with larger hazard 
ratios (provided in Supplementary Table 12). These statistics are all for 1 standard deviation difference in a 
normalized model and are directly comparable. We have chosen not to focus on this in the manuscript, 
because this is not a direct comparison and we are unable to do a direct comparison because we do not 
have any cohorts with proteomics and methylation data. However, mortality data in our independent test 
cohort is collected over a comparable follow-up time (ours is 15 years, DNAmPhenoAge is 12 years, 
DNAmGrimAge is 13.7 years, DuendinPace is 14 years) in an American cohort of similar demographic 
character. 
 
Furthermore, in our analyses associating organ age gaps with age-related phenotypes, organ aging models 
with moderate chronological age correlation generally outperform the control and organismal models which 
have high age correlation. This is the case for mortality, all 9 diseases we tested, future heart failure, 39/42 
clinical biochemistry markers, and future Alzheimer’s disease risk. Here we show some examples where we 
compare the kidney model (average r = 0.33) to the conventional model (average test r = 0.91). Clearly, the 
kidney aging model has a much stronger association with kidney disease than the conventional model, 
despite having a lower correlation with chronological age.  

 

 

Reviewer Figure 
a, Forest plot displaying results from a cross-cohort meta-analysis of the association between the kidney age gap and 
diabetes history, controlling for age and sex (linear model: AgeGap ~ Disease + Age + Sex). Per cohort and total effect 
sizes, 95% confidence intervals, Benjamini Hochberg total p-value (q-values) are shown. P-values were corrected 
based on 117 tests of organ age gap associations with major comorbidities (Extended Data Fig. 4e).  
 
b, As in a, but for conventional age gap versus diabetes history.  



 
We do agree with the reviewer that the machine learning could be further refined, and it’s possible, that doing 
so may also lead to a higher chronological age prediction accuracy. Reviewer 1 has also requested that we 
acknowledge that these models are in some sense prototypes and they could possibly be further refined by 
using different algorithms, training schemes, or data. Given that many proteins change with age in nonlinear 
ways, we think a particularly fruitful area for future work will be nonlinear modeling using tree-based methods 
or neural networks. We have now addressed this in the discussion section, Lines 388-389: “More 
sophisticated non-linear machine learning methods such as neural networks or random forests may further 
improve the accuracy and generalizability of this approach in the future”. 
 

C. “the participants in the Covance study are 60 years and older and do not cover the younger aging 
adults”. This is a valid concern which we have attempted to address with substantial additional training data. 
It is also a complex issue that warrants a detailed response with additional literature context, which we now 
provide here and in the revised manuscript.  
a. First and foremost, in our revised study design we 

use the newly added KADRC cohort as our training 
cohort, which expands the sample size and age 
range of our training (age 27-104). We now use the 
entire Covance cohort (age 18-90) as one of the test 
cohorts (Fig. 1a, Supplementary Fig. 3b), and we can 
evaluate the degree to which our models may be 
“overfit” to aged individuals. Overall, we found that 
our models are overfit to some degree in all test 
cohorts, but this was not driven by the different age 
ranges in the cohorts. Some degree of overfitting is 
expected given technical variation in omics assays. 
In many cases, Covance showed the best 
fit (ie. Organismal, Liver, Immune, etc) – 
suggesting that the models selected 
proteins that change consistently across 
the lifespan, making them reproducible in 
both younger and older individuals.  
 

b. However, there is still a larger representation of older adults than younger adults in our training data, as 
the mean age in the KADRC is 75, so we have added an additional statement in the discussion urging 
caution when applying our models to younger populations, lines 386-387. “While our current models 
serve as a proof of principle for this approach, since they are trained and evaluated largely on older adults 
caution should be used when applying them to young people.” 
 
There are clear tradeoffs between optimizing the aging measure for young adults or the elderly. Given 
the test cohorts we analyze in the manuscript are all older cohorts, as are most human datasets for 
diseases of aging, we believe it is important for the training cohort to match the test distributions better 
as this allows for more statistically sound and biologically correct inference.  
 
There are many biomarkers of health which have a nonlinear relationship to aging outcomes, and in the 
elderly many relationships between biomarkers and health/mortality/frailty reverse direction. We believe 

Supplemental Figure 3 
b, Correlations between predicted vs chronological age in healthy 
individuals in the training (Knight-ADRC) and test (Covance, 
LonGenity, Stanford-ADRC, SAMS) cohorts for all aging models. All 
aging models significantly estimated age across five independent 
cohorts. 
 
b, As in a, but for conventional age gap versus diabetes history.  



this is very important to understand, especially when evaluating the relationship between training and 
test cohorts, and noticed that this is largely not discussed or accounted for in models of molecular aging. 
We have now used our analysis of the clinical biochemistry data in the Covance cohort to illustrate the 
nuance of this point. We believe this is an important contribution, and it supports our use of a primarily 
older training cohort to evaluate disease outcomes in older test cohorts which is the primary focus of the 
manuscript. We emphasize this in the newly added Supplemental Text, and in Supplementary Fig. 4, 
where we show U-shaped trait relationships for 3 important traits in the Covance cohort with age that are 
discussed in the text.  

 

 
  
Supplemental text lines 38-62:  

“There are many biomarkers of health which have a nonlinear relationship to aging outcomes, 
and in the elderly many relationships between biomarkers and health/mortality/frailty reverse 
direction compared to young and middle-aged adults. The distribution and mean age of the 
population that an aging model is trained on will thus impact associations with traits.  This is not 
frequently discussed or accounted for in models of molecular aging. 

Such a case is illustrated by diastolic blood pressure, where the strongest association was 
with heart aging (adjusted Pearson r=-0.18, q=2.62e-10). Nine organ age gaps (adipose, brain, 
control, heart, intestine, kidney, liver, muscle, organismal, pancreas) were significantly associated 
with decreases in diastolic blood pressure, while the opposite association was seen with the 
PhenoAge age gap (Supplementary Fig. 5a, Supplementary Table 13). Diastolic blood pressure 
was one of many traits with a U-shaped relationship to aging outcomes (Supplementary Fig. 5b). 
While high blood pressure in young and middle-aged adults is indicative of cardiometabolic 
dysfunction, in the elderly low blood pressure is common and more strongly associated with 
mortality and frailty3–5, though high blood pressure is also detrimental6. The differences between 
PhenoAge and the organ age models could be due to differences in the age distribution of the 
underlying training cohorts for the models. Our models were trained in the KADRC, which has a 
greater proportion of elderly individuals, while PhenoAge was trained in NHANES, which has a 
greater proportion of young individuals.  

 This kind of U-shaped relationship with age and aging outcomes is quite common and 
is also seen with BMI7. Prospective studies in older adults have shown that while obesity slightly 
increases mortality and cardiovascular disease risk, the highest risk groups are those with a BMI 
under 23. Interestingly, the intestine and pancreas age gaps show a negative association with 

Supplemental Figure 4 
b, U-shaped relationship between age and certain traits, including diastolic blood pressure, BMI, 
and alanine transaminase are shown. 
 



BMI and obesity but a positive association with mortality risk, while the kidney age gap shows a 
positive association with BMI, suggesting that the full picture of organ health in aging and disease 
may be more complex than currently understood.” 

 
3. The subjects in the human healthy cohorts should have basic blood biochemistry data, methylation, 
and imaging data. Each one of these data types has several biological aging clocks associated with it. 
How do the proteomic and organ-specific aging biomarkers presented in the study correlate with the 
more established aging clocks such as DNAm, GrimAge, Levine's PhenoAge, transcriptomic and 
proteomic clocks? 

 
This is a great suggestion and we have now used any available biochemistry data in our current cohorts to model 
phenotypic aging. The subjects in the Covance cohort have proteomics and biochemistry, while the subjects in 
the SADRC and SAMS have proteomics and neuroimaging. We have therefore compared the organ-specific 
clocks to previous proteomics, Levine’s PhenoAge, and MRI-based brain age. Overall, we find statistically 
significant but small correlations between the organ aging models and these other clocks. We have also added 
a section to the discussion highlighting the need to compare these new models to additional approaches, such 
as DNA methylation aging clocks. Results and changes to the manuscript are summarized below: 
 
A. We have now made our comparison to previous proteomic clock methods explicit by adding a model labeled 

“conventional” to Figure 1 and Figure 2. The conventional model is trained with a LASSO model and without 
using additional feature selection, the same method used to train previous proteomic aging clocks8,10. Since 
the version of the SomaScan assay is different, this is a more rigorous test than directly applying previously 
developed clocks which perform slightly worse on the new assay version. As highlighted in other comments, 
we find that the control model is the best predictor of chronological age, but is not the best predictor of any 
other aging phenotype. We now distinguish the Conventional model from the “Organismal” model, which is 
trained using only organ non-specific proteins. We have changed all figures to include these models.

 



 
 
B. Comparison to PhenoAge is covered in Extended Data Figure 5a-b, in the text from Lines 194-199, and in 

the supplemental text lines 3-62. The strongest correlation was with the immune age gap, followed by the 
conventional, organismal, kidney, and liver. These correlations make sense, as 6/9 clinical markers that 
underlie PhenoAge are liver (albumin, CRP, ALP), kidney (creatinine), and immune (% lymphocytes, white 
blood cell count, CRP) derived or related. Despite the statistically significant correlations, the majority of 
variance in all organ age gaps is unexplained by PhenoAge, and some organs, such as the heart aging 
model, were not at all correlated with PhenoAge but were predictive of all-cause mortality and aging 
phenotypes (Fig. 2). 
 

 
 

 
 

Figure 1 
b, Comparison of conventional age gap versus organ age gap profile. Examples are shown where three individuals with 
the same conventional age gap, have vastly different distributions of organ age gaps. 
 
c, Pairwise correlation of organ age gaps in all cohorts. Correlations were generally weak, given that all models were 
trained to predict age, suggesting that though organ aging models capture distinct information. Distribution of all pairwise 
correlations is shown in inset histogram. The conventional age gap was highly correlated with the organismal age gap 
(r=0.98). 

Extended Data Figure 5  
a, Phenotypic Age (PhenoAge), a gold-standard clinical marker based aging model, was calculated based on the 
10 requisite clinical markers in the Covance cohort (n=1,026). PhenoAge-based age prediction is shown. 
 
b, The PhenoAge age gap was calculated and correlated with plasma proteomic organ aging model age gaps. 
Pairwise correlations are shown. 
 



We also find that associations between clinical biochemistry markers, PhenoAge, and organ age are 
complementary and interpretable within the context of the model development and scientific literature on 
aging biomarkers. This point is expanded upon in the next reviewer comment.  
 

C. We used matched brain MRI and plasma proteomic data from n=541 samples in SAMS and SADRC to 
compare our plasma proteomics-based brain age to two MRI brain aging clocks. Based on its established 
publication record, we started with the BARACUS model16, a linear support vector machine based aging 
clock trained on brain MRI-based volumetric data from 1,166 cognitively normal individuals aged 20-80. 
However, when assessing predicted versus chronological age correlation, we noticed an odd technical 
artifact: the predicted age had a ceiling near 75, even for individuals with chronological age above 90. Looking 
more closely at the original publication, we found the same issue of an upper ceiling, and also a lower ceiling, 
to predicted age. This leads us to believe that the BARACUS algorithm cannot accommodate all ages in our 
cohort.  

Due to this technical limitation of BARACUS, we also assessed brainageR17, a Gaussian Processes 
based aging clock trained on brain MRI-based volumetric data from n=3,377 cognitively healthy individuals 
aged 18-92, and which has shown better performance than BARACUS in other studies18. The CognitionBrain 
age gap was positively correlated with the brainageR age gap (r=0.16, p=7.51e-4) (Extended Data Fig. 6h), 
but not as strongly as the correlation between CognitionBrain age gap and individual brain volumes (ie. 
hippocampus: adjusted r=-0.21, q=1.36e-4). This is now reflected in the text from lines 244-248 and 
Supplemental text lines 64-93. 

 

 



 
 
4. The statement on line 54 "Current methods to measure molecular aging in living humans have largely 
measured blood cell age, yet do not provide direct information on the biological age of less accessible 
internal organs such as the heart, kidney, or brain" is not true. There are aging models that utilize blood 
biochemistry data that is linked directly to organ function and is interpretable by a physician. 
 

We apologize for this omission and have adjusted the text on line 64-65 in 
our manuscript to acknowledge aging models which have been trained on 
clinical chemistry data, such as Phenotypic Age19, Pace of Aging20, and the 
deep blood chemistry aging clock21 from the Zhavoronkov group. What we 
wished to emphasize was that like other models, these predict a single 
composite aging score for the whole body. To the extent they contain organ-
specific information, this is limited largely to inflammation, liver, and 
metabolic markers. An individual could have a high age gap for multiple 
different reasons that impact these more nonspecific markers, and in the 
absence of one or two particular underlying extreme values, it would be 
unclear what organs were driving the age prediction even if a feature 
importance plot was provided. This is now highlighted more clearly in 
revised Figure 1d-e, where we illustrate “extreme organ agers”, those 
individuals who show large age gaps for one organ compared to the rest of 
the body. It would also not be a complete picture of organ aging, as markers 
from many tissues, such as the brain, are absent from these models. Other 
groups have developed imaging-based aging clocks for specific organs, 
mainly for the brain, which we also did not acknowledge in the first version, 
but now acknowledge in the revised version in lines 67-69. We believe our 
method has many advantages over imaging-based approaches and is 
complementary to them. Hopefully, this is clearer in the text now and is not 

Supplementary Figure 6 
a, CognitionBrain age gaps were associated with brain MRI volume in the Stanford-ADRC and SAMS cohorts 
(n=469). 
  
b, The publicly available brain MRI based aging model, BARACUS Brain-Age, was tested in the Stanford-ADRC 
and SAMS cohorts. The age prediction image from the original publication Liem et. al. 2017 is shown. An age 
prediction ceiling can be observed. 
  
c, The age prediction using BARACUS in the Stanford-ADRC and SAMS cohorts is shown. An age prediction 
ceiling can be observed in both the original publication and when tested in Stanford cohorts. 
  
d, The publicly available brain MRI based aging model, brainageR, was tested in the Stanford-ADRC and SAMS 
cohorts. The age prediction image from the github is shown. No age prediction ceiling can be observed. 
  
e, The age prediction using brainageR in the Stanford-ADRC and SAMS cohorts is shown. No age prediction 
ceiling can be observed. 
 
f, The correlation between the CognitionBrain age gap and brainageR age gap was assessed and is shown. 
 

Figure 1 
d, Identification of extreme agers, 
defined by a 2-standard deviation 
increase or decrease in at least 
one age gap. A kidney ager, heart 
ager, and multi-organ ager are 
shown as examples. 
 
 



dismissing other important contributions in the field, which was not our intention. The new text appears at Lines 
61-69: 

“While many methods to measure molecular aging in humans have been developed10–18, most of them 
provide just a single measure of aging for the whole body. This is difficult to interpret given the complexity 
of human aging trajectories, and no single method so far predicts aging outcomes in all organs. Some 
recent methods have used clinical chemistry markers which include some markers of organ 
function10,16,19. However, these methods still generate a single composite score for the whole body and 
contain many markers with low organ specificity, making them difficult to interpret for organ-specific 
aging. Methods to measure brain aging have used MRI-based brain volume and functional connectivity 
measurements, but they are costly, time-consuming, and do not provide molecular insights.” 

 
5. Again, since the subjects in the cohorts should have basic blood biochemistry data (e.g. glucose, 
albumin, AST, ALT, urea...), which can be related to specific organ functions, I would expect a Nature-
level study to should provide a link between the proteomic aging models with blood biochemistry and 
physician-level interpretation of the models. 
We have addressed this comment with additional analyses of clinical biochemistry in our test cohort Covance, 
which is the only cohort in which we have both clinical biochemistry and proteomics. This analysis is now included 
in Extended Data Fig. 5, Supplementary Table 13, Supplementary Fig. 4. It appears from Lines 191-209:  
 
“Finally, to better understand the relationship between organ age and additional markers of health and disease, 
we tested the associations between organ age gaps and 43 clinical biochemistry and cell count markers in the 
test cohort Covance (Extended Data Fig. 5, Supplementary Fig. 4, see Supplement for additional discussion). 
We also used these markers to calculate Phenotypic age12,19 (PhenoAge), a clinical biochemistry-based aging 
clock which predicts mortality and morbidity risk, for all participants in Covance (Extended Data Fig. 5a). We 
found that the PhenoAge age gap was significantly correlated with multiple organ age gaps, but only a small 
portion of the variance in any model was explained by another (Extended Data Fig. 5b). 

We found 226 out of 559 (40%) associations between organ age gaps and clinical biochemistry markers 
were significant after multiple testing correction (Extended Data Fig. 5c, Supplementary Table 13). The strongest 
associations included associations between liver age gap and blood AST:ALT ratio, a clinical marker of liver 
health and function that is known to change with age (adjusted Pearson r=0.25, q=6.13e-17), and between 
kidney age gap and serum creatinine, the standard clinical marker of kidney function (adjusted Pearson r=0.23, 
q=1.65e-16). While these results are highly significant, they only partially explain the relationship between organ 
age gaps and disease phenotypes. Even after correcting for estimated glomerular filtration rate (eGFR), the 
kidney age gap is still significantly associated with hypertension and diabetes (Supplementary Fig. 5).”  

 
a. It is further expanded upon in the Supplemental Text to address the reviewer comment, lines 4-62: 

“While a full analysis of all clinical biochemistry markers is challenging, there are a number 
of additional interesting relationships in the data.  

• BUN: Kidney, adipose, brain, immune, and muscle age gaps are significantly positively 
associated with BUN, artery age gap is significantly negatively associated. The strongest 
association is with the kidney age gap. While BUN is not specific, it is often considered a 
marker of kidney function clinically.  

• AST: Kidney, heart, and artery age gaps are positively significantly associated with AST, 
while brain is significantly negatively associated. AST variation within the normal range 
is difficult to interpret clinically. Abnormally high AST is often a sign of liver or heart 
disease, and moderately high AST is most often noted as a sign of elevated 
cardiovascular risk in middle aged and elderly populations. 



• ALT: The brain, control, liver, intestine, kidney, organismal, and pancreas age gaps are 
significantly negatively associated with ALT, while the kidney age gap is significantly 
positively associated with ALT. PhenoAge gap is positive but not significant. As 
discussed in the text, this is yet another U-shaped aging biomarker. Low ALT in the 
elderly is associated with increased frailty and reduced survival and has been previously 
suggested as a biomarker of aging1. Abnormally high ALT can be a marker of acute liver 
damage, although it is also produced by other tissues and is not specific.  

• Albumin: The immune, heart, liver, organismal, control, and PhenoAge gaps are 
significantly negatively associated with albumin levels. The strongest association is with 
the liver age gap. Albumin is produced by the liver, although it is not detected by the 
SomaScan assay so it is not a protein in the liver aging model. Clinically, lower albumin 
could be considered as a sign of worse health, and it can be low in a number of liver, 
kidney, and digestive diseases as well as in malnutrition/undernutrition.  

• Plasma glucose is significantly positively associated with PhenoAge age gap and kidney 
age gap, while intestine and liver age gap are significantly negatively associated. The 
strongest association is with PhenoAge, which is unsurprising since plasma glucose is 
the highest weighted input biomarker in the PhenoAge model. Both kidney and intestine 
age gap are positively associated with diabetes incidence but have differential 
associations with plasma glucose. This further supports the hypothesis that different 
organ models could be measuring different aspects of aging, in this case metabolic 
aging. Insulin resistance, glucose response, and glucose levels are all known to degrade 
with age, but insulin levels and glucose response have been noted to change more 
dramatically than fasting blood glucose level2.     
There are many biomarkers of health which have a nonlinear relationship to aging 

outcomes, and in the elderly many relationships between biomarkers and health/mortality/frailty 
reverse direction compared to young and middle-aged adults. The distribution and mean age of 
the population that an aging model is trained on will thus impact associations with traits.  This is 
not frequently discussed or accounted for in models of molecular aging. 

Such a case is illustrated by diastolic blood pressure, where the strongest association 
was with heart aging (adjusted Pearson r=-0.16, q=2.38e-8). Nine organ age gaps (adipose, 
brain, control, heart, intestine, kidney, liver, muscle, organismal, pancreas) were significantly 
associated with decreases in diastolic blood pressure, while the opposite association was seen 
with the PhenoAge age gap (Supplementary Fig. 5a, Supplementary Table 13). Diastolic blood 
pressure was one of many traits with a U-shaped relationship to aging outcomes 
(Supplementary Fig. 5b). While high blood pressure in young and middle-aged adults is 
indicative of cardiometabolic dysfunction, in the elderly low blood pressure is common and more 
strongly associated with mortality and frailty3–5, though high blood pressure is also detrimental6. 
The differences between PhenoAge and the org5. an age models could be due to differences in 
the age distribution of the underlying training cohorts for the models. Our models were trained in 
the KADRC, which has a greater proportion of elderly individuals, while PhenoAge was trained 
in NHANES, which has a greater proportion of young individuals.  
 This kind of U-shaped relationship with age and aging outcomes is quite common and is 
also seen with BMI7. Prospective studies in older adults have shown that while obesity slightly 
increases mortality and cardiovascular disease risk, the highest risk groups are those with a 
BMI under 23. Interestingly, the intestine and pancreas age gaps show a negative association 
with BMI and obesity but a positive association with mortality risk, while the kidney age gap 
shows a positive association with BMI, suggesting that the full picture of organ health in aging 
and disease may be more complex than currently understood.”  
 



 
6. More research should be performed and reported on the role of CPLX1, CPLX2, NRXN3, and 
PPP3R1 in brain aging and disease. Can these proteins be good targets or point to the possible protein 
targets? These were previously implicated in brain aging. Any new findings from the model? Any other 
important features that could be reported and used for target discovery? This question is valid for other 
organs. 
 
We entirely agree with the reviewer that one aspect of our organ specific age modeling is to derive biologically 
and therapeutically relevant information from the proteins in a model. At the same time, as discussed above, any 
such proteins will need to be validated experimentally in future studies. Nevertheless, we have now performed 
additional research on brain model proteins and include here A) a review of existing literature on some of the 
highest weighted CognitionBrain model proteins and B) expanded our computational analyses using publicly 
available datasets to better understand how brain-derived protein levels in plasma may reflect the biology of the 
brain tissue, as these insights would inform their use as biomarkers and drug targets.  
 
A) Literature review 
We surveyed the literature to better understand the roles of highly weighted brain 
model proteins and their relation to brain aging and neurodegeneration (Table 
1). In addition to identifying astrocyte marker ALDOC and age-associated 
synaptic proteins CPLX1, CPLX2, and NRXN3, our model also identified several 
new brain aging proteins including olfactomedin 1 (OLFM1), neuronal pentraxin 
receptor (NPTXR), stathmin 2 (STMN2), LanC like glutathione S-transferase 1 
(LANCL1), fibroblast growth factor 4 (FGF4), and tenascin R (TNR), all of which 
been reported to be causal regulators of neuronal health or cognitive function in 
mice and humans (Table 1). LANCL1 is especially interesting in that brain-
specific overexpression extends lifespan and decelerates disease progression in 
a mouse model of ALS22. The model also identified carnosine dipeptidase 1 
(CNDP1), whose function in the brain is not known. Collectively, these studies 
nominate several new proteins with intriguing links to brain aging and 
neurodegeneration for future investigation. We discuss these potential future 
directions in the discussion, lines 375-380. The table below is also included in 
the Supplemental Text, line 96.  
 
Table 1: Literature review of top CognitionBrain model proteins and their relation to 
brain aging and cognitive function 

Protein Reference Title Organism 

CPLX1 Yu, et. al., JAMA Psychiatry (2020) Cortical Proteins Associated with Cognitive Resilience 
in Community-Dwelling Older Persons 

Human 

CPLX1 Glynn, et. al., Human Molecular Genetics 
(2005) 

Profound ataxia in complexin I knockout mice masks a 
complex phenotype that includes exploratory and 
habituation deficits 

Mouse 

CPLX1,CPL
X2 

Tannenberg, et. al., Neurochemistry 
International (2006) 

Selective loss of synaptic proteins in Alzheimer's 
disease: Evidence for an increased severity with 
APOE ɛ4 

Human 

CPLX2 Begemann, et al. Arch. Gen. Psychiatry Modification of Cognitive Performance in Human 

Highest weighted 
CognitionBrain model proteins 

Reviewer Figure 
Top 15 CognitionBrain model 
coefficients by absolute value. 
 
 



Protein Reference Title Organism 

(2010) Schizophrenia by Complexin 2 Gene Polymorphisms  

CPLX2 Glynn, et. al., Human Molecular Genetics 
(2003) 

Complexin II is essential for normal neurological 
function in mice 

Mouse 

CPLX2 Li, et. al., Oxidative Medicine and Cellular 
Longevity (2020) 

Proteomic Profile of Mouse Brain Aging Contributions 
to Mitochondrial Dysfunction, DNA Oxidative Damage, 
Loss of Neurotrophic Factor, and Synaptic and 
Ribosomal Proteins 

Mouse 

FGF4 Konijnenberg, et. al., Alzheimer’s 
Research & Therapy (2020) 

APOE ε4 genotype-dependent cerebrospinal fluid 
proteomic signatures in Alzheimer’s disease 

Human 

FGF4 Kosaka, et. al., Federation of American 
Societies for Experimental Biology (2006) 

FGF-4 regulates neural progenitor cell proliferation 
and neuronal differentiation 

Mouse 

LANCL1 Drummond, et. al., Brain (2020) Phosphorylated tau interactome in the human 
Alzheimer’s disease brain 

Human 

LANCL1 Huang, Chen, and Peng, et. al., 
Developmental Cell (2014) 

Developmental and Activity-Dependent Expression of 
LanCL1 Confers Antioxidant Activity Required for 
Neuronal Survival 

Mouse 

LANCL1 Tan and Chen, et. al., Cell Death & 
Differentiation (2020) 

LanCL1 promotes motor neuron survival and extends 
the lifespan of amyotrophic lateral sclerosis mice 

Mouse 

NPTXR Begcevic, et. al., F1000Research (2018) Neuronal pentraxin receptor-1 is a new cerebrospinal 
fluid biomarker of Alzheimer's disease progression 

Human 

NPTXR Pelkey, et. al. Neuron (2015) Pentraxins Coordinate Excitatory Synapse Maturation 
and Circuit Integration of Parvalbumin Interneurons 

Mouse 

NRXN3 Hishimoto, et. al., Alzheimer’s Research & 
Therapy (2019) 

Neurexin 3 transmembrane and soluble isoform 
expression and splicing haplotype are associated with 
neuron inflammasome and Alzheimer’s disease 

Human 

NRXN3 Zheng, et. al., Medicine (2018) Low expression of aging-related NRXN3 is associated 
with Alzheimer disease 

Human 

NRXN3 Martinez-Mir, et. al., J Alz Disease (2013) Genetic study of neurexin and neuroligin genes in 
Alzheimer's disease 

Human 

NRXN3 Aoto, et. al. Nature Neuroscience (2015) Distinct circuit-dependent functions of presynaptic 
neurexin-3 at GABAergic and glutamatergic synapses 

Mouse 

OLFM1 Nakaya, et. al., Experimental Neurology 
(2013) 

Deletion in the N-terminal half of olfactomedin 1 
modifies its interaction with synaptic proteins and 
causes brain dystrophy and abnormal behavior in mice 

Mouse 

OLFM1 Nakaya, et. al., Journal of Biological 
Chemistry (2012) 

Olfactomedin 1 Interacts with the Nogo A Receptor 
Complex to Regulate Axon Growth 

Mouse 

STMN2 Theunissen, et. al., Frontiers in Aging 
Neuroscience (2021) 

Novel STMN2 Variant Linked to Amyotrophic Lateral 
Sclerosis Risk and Clinical Phenotype 

Human 

STMN2 Krus, et. al., Cell Reports (2022) Loss of Stathmin-2, a hallmark of TDP-43-associated 
ALS, causes motor neuropathy 

Human 

STMN2 San Juan and Nash, et. al., Neuron (2022) Loss of mouse Stmn2 function causes motor 
neuropathy 

Mouse 



Protein Reference Title Organism 

TNR Wagner, et. al., Genetics in Medicine 
(2020) 

Loss of TNR causes a nonprogressive 
neurodevelopmental disorder with spasticity and 
transient opisthotonus 

Human 

TNR Dankovich, et. al., Nature 
Communications (2021) 

Extracellular matrix remodeling through endocytosis 
and resurfacing of Tenascin-R 

Mouse 

TNR Bauch and Faissner, Cells (2022) 
 

The Extracellular Matrix Proteins Tenascin-C and 
Tenascin-R Retard Oligodendrocyte Precursor 
Maturation and Myelin Regeneration in a Cuprizone-
Induced Long-Term Demyelination Animal Model 

Mouse 

 
B) Plasma protein levels vs tissue protein levels 

We also assessed how the highest weighted 
CognitionBrain proteins change with age and AD in 
plasma (KADRC and SADRC cohorts) and in brain 
tissue using publicly available datasets. We report 
our findings in lines 281-287: “We assessed the 
highest weighted CognitionBrain proteins for their 
changes with age and AD across plasma in the 
Knight-ADRC and Stanford-ADRC cohorts, as well 
as their changes with AD in brain tissue at the 
protein53, bulk RNA53, and single-cell RNA levels 
from publicly available datasets (Fig. 3g). We 
observed a consistent pattern of decreases in AD 
brain tissue and increases in the blood with age and 
AD. This suggests that the increase of synapse and 
neurite growth related protein levels in the blood 
could reflect a loss or alteration in protein processing 
and subsequent shedding of these crucial factors in 
the brain. ” 
 
Lastly, we performed further analyses to identify and 
understand peripheral contributions to cognitive 
decline and dementia which are summarized in a 
new Figure 4 and Extended Data Figures 7-10. This 
section discusses additional proteins of interest, 
lines 291-344.  

Figure 3 
g, Changes with age and AD of top CognitionBrain proteins 
across tissues (plasma, brain) and molecular layers (protein, 
bulk RNA, single-cell RNA). Proteins with significant 
changes in both fluid and solid tissues shown. Plasma 
changes with age and AD were assessed using the linear 
model: Protein ~ Age + AD + Sex in the Knight-ADRC cohort. 
Brain protein and bulk RNA changes with AD were derived 
from Johnson et. al. 2022 supplementary tables.. Brain 
single-cell RNA changes with AD were from Haney et. al. 
2023. 
 



 

 
Lines 313-344: “To understand the biological processes and proteins involved in early cognitive decline, we plotted 
the aging trajectory of all model proteins and found that highly weighted CognitionOrganismal and CognitionArtery 
proteins changed with age earlier and at a faster rate than CognitionBrain and CognitionPancreas proteins (Fig. 4e). 
The earliest changes occurred in a highly correlated cluster of CognitionOrganismal proteins: pleiotrophin (PTN), 
transgelin (TAGLN), WNT1 Inducible Signaling Pathway Protein 2 (WISP2), CUB Domain Containing Protein 1 
(CDCP1), and chordin like 1 (CHRDL1; Fig. 4f). Though not organ-specific, these genes were all highly expressed in 
the arteries and brain (Extended Data Fig. 10a). Single-cell expression of these genes in human vasculature55,56, 
indicated these genes are expressed primarily by smooth muscle cells, pericytes, and fibroblasts (Fig. 4g; Extended 
Data Fig. 10b). Loss of brain pericytes, smooth muscle cells, and perivascular fibroblasts is associated with age and 
AD56–58 (Fig. 4g), and pericyte-specific deletion of PTN renders neurons prone to ischemic and excitotoxic injury59. 
This early-changing signature in the CognitionOrganismal model may thus represent degenerative changes to the 
cellular integrity of the brain vasculature and the loss of its neuroprotective functions with aging (Fig. 4h). 

The five proteins composing the CognitionArtery model, TNF receptor superfamily member 11b 
(TNFRSF11B), sclerostin (SOST), melanocortin 2 receptor accessory protein  (MRAP2), frizzled related protein 
(FRZB), and matrix gla protein (MGP) were also primarily expressed in vascular smooth muscle cells, pericytes and 
fibroblasts55 (Extended Data Fig. 10c) and are all strongly implicated in vascular calcification. TNFRSF11B/APOE 
double knockout mice show increased calcium deposition by vascular smooth muscle cells60, MGP deficiency causing 
mutations in humans leads to Keutel syndrome, a disease characterized by soft tissue calcification61, and SOST and 

Figure 4 
f, Changes with age of cognition-optimized aging model proteins (linear model: Protein ~ Age + Sex). Age effect and 
negative log10 Benjamini Hochberg corrected p-values (q-values) are shown. Size of bubbles are scaled by the 
absolute value of the average model weight.  
 
g, Single-cell RNA expression of top 5 CognitionOrganismal protein encoding genes in human brain vasculature. 
Mean normalized expression values and fraction of cells expressing the genes are shown. Also shown are cell 
composition differences in the human brain vasculature between Alzheimer’s and control, based on the same single-
cell RNA-sequencing dataset.  
 
h, Model of age-related cellular degradation of the human brain vasculature reflected in the plasma proteome. 
 
i, StringDB protein-protein-interaction network of CognitionArtery and interacting proteins, as well as pathway 
enrichment of these proteins. 
 
j, Model of age-related vascular calcification and extracellular matrix alterations reflected in the plasma proteome. 
 



FRZB are negative regulators of WNT signaling that drive calcification and are increased in the plasma of people with 
vascular calcification62,63.  We found that CognitionArtery proteins and the vascular signature in the 
CognitionOrganismal proteins form an interaction network using StringDB (Fig. 4i). Additional model proteins in this 
interaction network included integrin binding sialoprotein (IBSP), osteoglycin (OGN), collagen type III alpha 1 chain 
(COL3A1), proline rich and gla domain 1 (PRRG1), and growth arrest specific 6 (GAS6). Together these proteins are 
enriched in extracellular matrix, cartilage development, and osteoblast signaling pathways and implicate vascular 
calcification and extracellular matrix alterations as a major component of aging that underlies the early phases of 
cognitive decline and neurodegenerative disease (Fig. 4i-j).” 
 
6b. Any other important features that could be reported and used for target discovery?  
As our model weights and associations with diseases may help drug target prioritization efforts in the community, 
we have extensively updated our extended data figures and supplementary tables to provide all results from the 
study. Feature importance plots for all models are in Extended Data Figure 3. We have also made all aging 
models from this study publicly available and easily accessible through a python package called organage 
(https://github.com/hamiltonoh/organage). Users can input sample metadata (Age and Sex) and sample protein 
expression (SomaScan data) to output predicted organ ages and age gaps. Coefficients for all bootstrapped 
aging models are accessible both through the package and listed in Supplementary Tables 6,16. Additional 
summary statistics of the models are provided in Supplementary Table 7-8,17-18. Lastly, we provide statistics 
and visualizations of the changes with age and sex for all ~5,000 proteins on a shinyapp: https://twc-
stanford.shinyapps.io/aging_plasma_proteome_v2/ 
 
6c. This question is valid for other organs. 
We chose to focus the majority of our new target identification analyses to brain aging and cognitive decline, 
where these discoveries are novel, of high interest to the aging and neuroscience communities, and where we 
have extensive functional validation of the models from the Knight and Stanford ADRC cohorts. We also now 
investigate organismal and artery proteins more deeply in the context of cognitive decline, as discussed above. 
We hope future studies perform additional in-depth analyses for other organs and diseases. 
 
7. Feature importance diagrams for each organ and for the plasma proteomics model should be 
analyzed, interpreted, and presented. Can we derive any new biological hypotheses from these 
models? 
We now present feature importance diagrams for all organ aging models in Extended Data Figure 3 and their 
provide values in Supplementary Tables 6-8,16-18. We analyze and interpret proteins from the kidney and heart 
in Figure 2, the brain in Figure 3, and the brain, organismal, and artery models in Figure 4. As discussed above, 
the revised manuscript now includes multiple new hypotheses for future studies. 
 
Minor 
1. Only a few authors disclosed competing interests. Usually, it is a good idea to disclose all of the 
commercial affiliations of all authors. 
 
All authors have declared their competing interests relevant to this manuscript in accordance with Nature 
publishing policies.   
 



2. Seminal literature on organismal and tissue-specific biological aging biomarkers is missing. Building 
machine learning models on transcriptomic and proteomic data is not a novel concept, and there are 
even granted patents on multiple technologies in the field with priority dating back to 2017. 
 
Thank you for the additional literature suggestions, we are open to specific suggestions on papers the reviewer 
believes are relevant and should be cited. Based on the commentary on patents, we now cite studies, for 
example, from Dr. Alex Zhavoronkov’s group, which are linked to granted patents mentioned by the reviewer. If 
they believe we are missing other important literature, we are open to citing additional sources.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Referee #4 
 
This manuscript by Oh et al. describes the creation of 19 organ-specific ageing clocks, of which 15 
were able to predict chronological age in two independent testing cohorts. The authors also create an 
organismal ageing clock and compare its performance with those that are organ-specific. Oh et al. test 
the association of the age gaps derived from each of their clocks with all-cause mortality and age-
related phenotypes relating to the relevant organs.  
 
It is exciting to see for the first time how organ-specific clocks perform, particularly as the authors have 
assessed their performance using organ-specific follow up outcomes. The organ-specific approach and 
the observations presented would be a step forward for the ageing clock field however, revisions need 
to be made to make the findings reproducible and to ensure the validity of the results and conclusions 
drawn before the manuscript is ready for publication. 
 
We appreciate this reviewer’s excitement for our work and thank them for their thorough review. Their critique 
on the statistical validity and reproducibility of the results were valid and well taken. We believe we have 
addressed these concerns and greatly improved the manuscript with the help of this reviewer’s suggestions. 
 
Major 
 
1. On the point of validity, there does not appear to be adjustment of p-values to account for multiple 
testing. Given that in several analyses there are multiple clock age gaps being tested against multiple 
outcomes, it would be expected to report: the number of tests performed, the method of p-value 
adjustment (Bonferroni, FDR, Benjamini-Hochberg etc.), the threshold for statistical significance of the 
adjusted p-values (5%, 1% etc.) and the number of tests that pass these criteria and are statistically 
significant clearly for each analysis in the main text. As at present it is not clear which of the reported 
associations are statistically significant. For example, multiple times in the manuscript the authors state 
that “several” age gaps are significantly associated, however they should state exactly how many tests 
were statistically significant and at what threshold. 
 
We apologize for this oversight and miscommunication. We now report all tests for all models in this revised 
manuscript and report false discovery rate control using the Benjamini Hochberg method. We have made this 
clear in the text by removing vague language such as “several” age gaps and now explicitly enumerate which 
models are significant on which tests. We have also made this clear in the figures and provide more 
comprehensive supplementary tables. This is also highlighted in response to Reviewer 1. The major revisions 
related to this point are summarized below.  
 
1. We include here a study design flowchart detailing on statistical testing for the reviewers.  
 



 

 

 
 
2. We have added a detailed statistical methods section specifically to address false discovery rate control. 

Lines 590-638. 
3. All statistical tests and the number of statistically significant results after FDR correction are now clearly listed 

in the text, figures, and supplementary tables.  
a. Figure 1b-e, 2i-j, and Extended Data Fig. 4, now show all 13 aging models.  
b. Supplementary tables 9-13 contain all statistics for all statistical tests performed on these 13 models 

with FDR correction across each table.  
c. Lines 109-111: “All 11 organ aging models and the organismal model significantly estimated age in all 

five cohorts after multiple test correction (Supplementary Fig. 3b)” 
d. Lines 131-134 and Lines 143-146: “To assess the relationship between organ age and biological aging, 

we tested whether organ e-ageotypes were associated with nine age-related disease states for which 
we had sufficient data in at least two independent cohorts; Alzheimer's disease, atrial fibrillation, 
cerebrovascular disease, diabetes, heart attack, hypercholesterolemia, hypertension, obesity, and gait 
impairment… At the whole population level, the relationships between organ age gaps and disease 
showed the same trends as ageotypes, but more diseases were significantly associated with age gaps 
due to higher statistical power (65/117, 56%, statistically significant after multiple test correction, 
Extended Data Fig. 4e, Supplementary Table 10).” 

e. Lines 173-180: “we used longitudinal follow-up among healthy participants in the LonGenity cohort to 
test if organ age was significantly associated with future heart failure risk (Fig. 2i, Supplementary Table 

Supplementary Figure 2. Study design flow chart 



11). We found that among people with no active disease or clinically abnormal biomarkers at baseline, 
every 4.1 years of additional heart age (1 standard deviation) conferred an almost 2.5 fold increased risk 
of heart failure over a 15 year follow-up (23% increased risk per year of heart aging, Fig. 2i). Age gaps 
from multiple other tissues, but not the conventional aging model, also trended towards significance.” 

f. Lines 181-184: “We next tested the associations between organ age gaps and all-cause mortality. We 
found that the age gaps from 10 out of 11 organs, the organismal, and the conventional model were 
significantly associated with future risk of all-cause mortality after multiple test correction in the 
LonGenity cohort over 15 years of follow-up (Fig. 2j, Supplementary Table 12). ” 

g. Lines 187-189 and Lines 195-197: “we tested the associations between organ age gaps and 43 clinical 
biochemistry and cell count markers in the test cohort Covance (Extended Data Fig. 5,  Supplementary 
Fig. 4, see Supplement for additional discussion)... We found 226 out of 559 (40%) associations between 
organ age gaps and clinical biochemistry markers were significant after multiple testing correction 
(Extended Data Fig. 5c, Supplementary Table 13).” 

 
2. On a related note, the authors highlight “strong” associations of the heart age gap with multiple heart-
related phenotypes, both in this instance and in general it would be helpful to the reader to report how 
strong in the main text, by explicitly stating the effect size or hazard ratio and its associated standard 
error or confidence intervals along with a p-value. Even if effect sizes are indicated in figures, it is helpful 
to understand the context of the result presented. Further, reporting of effect sizes in the main text 
makes it easier for others to reproduce and replicate the authors results. 
 
We agree with the reviewer, and we have no removed all such subjective language on the “strength” of 
associations. Instead, we have now included detailed statistics for all tests in supplementary tables. It is our 
understanding that it is not in the Nature style guidelines to include effect and p-value stats in the main text. 
However, we are certainly open to doing so in consultation with the editor.  
 
3. Additionally, it would improve transparency to include full results from all the analysis as 
supplementary or extended data tables. In the manuscript the authors highlight key findings for specific 
organs of interest in figures. Given the number of additional associations run that are not explored in 
the main text, including the full association results of every clock age gap against every outcome (effect 
sizes/hazard ratios, standard errors/confidence intervals, p-values and adjusted p-values) for each 
analysis would give readers the opportunity to investigate results of specific interest not only those that 
were significant in this analysis/highlighted by the authors.  
 
This is a valid point and we have now extensively expanded our supplementary tables to include effect 
sizes/hazard ratios, confidence intervals, p-values, and adjusted p-values from all analyses. We now provide 23 
supplementary tables for this purpose.  
 
4. Further, it would aid repeatability and reproducibility if the authors included for each ageing clock the 
proteins included and their model coefficients in supplementary tables as done by many ageing clocks 
papers. 
 
We now provide all this information. Coefficients for all bootstrapped aging models are accessible both through 
the package and listed in Supplementary Tables 6,16. Additional summary statistics of the models are provided 
in Supplementary Table 7-8,17-18. We have also made all aging models from this study publicly available and 



easily accessible through a python package called organage (https://github.com/hamiltonoh/organage). Users 
can input sample metadata (Age and Sex) and sample protein expression (SomaScan data) to output predicted 
organ ages and age gaps.  

 
5. The authors describe the creation of their CognitionBrain model using their FIBA algorithm, report its 
age gap’s association with risk of dementia progression and go on to comment on its comparison with 
the gold standard biomarker plasma pTau-181. Clarification is needed in the first sentence of this 
paragraph as to exactly how this was done. As far as I understand the individuals were ranked and 
those in the top 25% based on CognitionBrain age gap who were also in the top 25% when ranked 
based on plasma pTau-181 levels were compared to those individuals who appeared in the bottom 
25% of both lists? If so, I am unsure if this analysis supports the conclusions stated: “These findings 
indicate that CognitionBrain age gap uncovers novel biology related to AD progression not captured by 
current pathology-based markers.”. In order to evidence this statement, the authors could run Cox 
proportional hazard models for the AD outcome (2-point increase in CDR-SB within 5 years) with pTau-
181 level as the predictor (along with sex and chronological age as covariates) and compare it to a 
model run with both pTau-181 level and CognitionBrain age gap as predictors. If the hazard ratio for 
the CognitionBrain age gap is significant in the combined model, that would indicate that their novel 
marker was capturing additional information over and above what is being provided by the current gold 
standard marker. 
 
We apologize for the confusion, and we appreciate the suggestion of testing a multivariate model with “pTau-
181 level and CognitionBrain age gap as predictors”. For the revised manuscript, we have implemented this 
reviewer’s suggestion into the main figure (Fig. 3d-e). We tested a multivariate cox model of dementia 
progression risk with plasma pTau181 and the CognitionBrain (renamed since optimized on dementia status 
instead of cognition) age gap as covariates. To be even more rigorous, we also added an AD polygenic risk 
score, baseline dementia status, and age as additional covariates. As shown, the CognitionBrain age gap 
covariate is significant and has a slightly larger adjusted hazard ratio than plasma pTau181, indicating that our 
model captures additional information over and above what is provided by the current gold standard proteomic 
and genomic AD biomarkers.  

 



 
 
 
6. First, compared to previous ageing clock papers the sample size of the cohort used for training 
(n=353) is modest, meaning that there is a greater chance of overfitting of the models (there are lower 
correlations between predicted age and chronological age in the testing cohorts compared to the 
training cohort) and them being less generalisable than models trained with larger sample sizes. 
 
To address this concern, we have added two new cohorts to our study: the Knight Alzheimer’s Disease Research 
Center (KADRC) cohort (n=3,075) and the Stanford Aging and Memory Study (SAMS) cohort (n=192). We also 
changed our training cohort from Covance aged 60+ (n=353) to the healthy individuals in the KADRC cohort 
(n=1,398). This means we have increased our number of independent cohorts from three to five, nearly 
quadrupled our training data sample size, and increased our total sample size from 1,727 to 5,678, making our 
revised study the largest plasma proteomic aging clock study to date and the largest plasma proteomics study 
of clinically assessed Alzheimer’s disease participants to our knowledge.  
 

 

 
 

With the addition of these cohorts, we saw improvements in model accuracy and fit across the board (Fig. 1b). 
More importantly, we find that this cohort number and sample size is sufficient to discover highly significant and 

Figure 3 
d, Cox proportional hazard model of dementia progression risk, including biomarkers of AD and predictors of cognitive 
decline as covariates (2pt increase in CDR-Sum of Boxes ~ CognitionBrainAgeGap + CDR-Global + PlasmaPTau181 + 
ADPolygenicRiskScoreAD + Age) within 5 years in the Stanford-ADRC cohort. 48 events out of 325 individuals. Hazard 
ratios, 95% confidence intervals, and p-values for all covariates are shown. 
 
e, Cumulative incidence plot derived from hazard model in f. Shown are predicted trajectories based on changing levels 
of the two significant biomarker covariates, CognitionBrainAgeGap and PlasmaPTau181, while all other covariates 
remain constant. Individuals with biomarker levels 2 standard deviations above average had over a 75% probability of 
dementia progression, while individuals with levels 2 standard deviations below average had a 10% probability of 
dementia progression within 5 years in the Stanford-ADRC cohort. 
 

Figure 1 
a, Schematic illustrating the study design of estimating and validating organ-specific biological age (See Methods).  



reproducible associations between age gaps and chronic diseases in multiple individual cohorts and cross-cohort 
meta-analyses. This is reflected in the text in Lines 130-213 (lines 131-146 excerpted here):  
a. “To assess the relationship between organ age and biological aging, we tested whether organ e-ageotypes 

were associated with nine age-related disease states for which we had sufficient data in at least two 
independent cohorts; Alzheimer's disease, atrial fibrillation, cerebrovascular disease, diabetes, heart attack, 
hypercholesterolemia, hypertension, obesity, and gait impairment. Organ e-ageotypes were associated with 
specific disease states with known high impact on their respective organs (23/117, 20%, associations 
significant in a meta-analysis after multiple testing correction, Extended Data Fig. 4d, Supplementary Table 
9). The kidney ageotype was the most significantly associated with metabolic diseases (diabetes, obesity, 
hypercholesterolemia, hypertension), the heart ageotype was the most significantly associated with heart 
diseases (atrial fibrillation, heart attack), the muscle ageotype was the most significantly associated with gait 
impairment, the brain ageotype was the most significantly associated with cerebrovascular disease, and the 
organismal ageotype was the most significantly associated with Alzheimer’s disease. At the whole population 
level, the relationships between organ age gaps and disease showed the same trends as ageotypes, but 
more diseases were significantly associated with age gaps due to higher statistical power (65/117, 56%, 
statistically significant after multiple test correction, Extended Data Fig. 4e, Supplementary Table 10).” 

 
We have also changed the visualization and statistical reporting of results to meta-analysis forest plots, which 
demonstrate the high reproducibility of our results across multiple independent cohorts. Full results of this 
analysis are now in Supplemental Table 10.  
 

 

 
 
7. Second, is the restricted age range, due to the age range in the testing cohorts, the authors were 
limited to training models in individuals over 60 years of age. This does mean that while the 
performance of the models presented has been demonstrated in older individuals it has not in an age 
range that spans the general population. It has been shown previously that ageing clocks trained in an 
age restricted cohort do not replicate well in wider range of ages (https://doi.org/10.1186/s12864-020-

Figure 2 
a, Forest plot displaying results from a cross-cohort meta-analysis of the association between the kidney age gap and 
hypertension history, controlling for age and sex (linear model: AgeGap ~ Disease + Age + Sex). Per cohort and total 
effect sizes, 95% confidence intervals, Benjamini Hochberg total p-value (q-values) are shown. P-values were corrected 
based on 117 tests of organ age gap associations with major comorbidities (Extended Data Fig. 4e).  
 
b, As in a, but for kidney age gap versus diabetes history.  
 
c, As in a, but for heart age gap versus atrial fibrillation or pacemaker history.  
 
d, As in a, but for heart age gap versus heart attack history.  
 
 
f, A cross-cohort meta-analysis of associations between organ age gaps versus diagnosis of 9 major age-related 
diseases annotated in at least 2 independent cohorts, controlling for age and sex (linear model: AgeGap ~ Disease + 
Age + Sex). Disease covariate effects and significance are shown. P-values were Benjamini Hochberg corrected. 
Asterisks represent q-value thresholds: *q < 0.05; **q < 0.01; ***q < 0.001. The strongest associations per disease are 
highlighted with black borders. 



07168-8) and given that many ageing clocks are trained in and have been successfully replicated in 
cohorts spanning a much wider age range, this caveat should be highlighted in the discussion, or the 
authors could seek to replicate their clocks in an additional cohort with a wider age range. 
 
This is a valid concern which we have attempted to address with substantial additional training data. It is also a 
complex issue that warrants a detailed response with additional literature context, which we now provide here 
and in the revised manuscript.  
a. First and foremost, in our revised study design we use 

the newly added KADRC cohort as our training cohort, 
which expands the sample size and age range of our 
training (age 27-104). We now use the entire Covance 
cohort (age 18-90) as one of the test cohorts (Fig. 1a, 
Supplementary Fig. 3b), and we can evaluate the degree 
to which our models may be “overfit” to aged individuals. 
Overall, we found that our models are overfit to some 
degree in all test cohorts, but this was not driven by the 
different age ranges in the cohorts. Some degree of 
overfitting is expected given technical variation in omics 
assays. In many cases, Covance showed the best fit (ie. 
Organismal, Liver, Immune, etc) – suggesting that the 
models selected proteins that change 
consistently across the lifespan, making them 
reproducible in both younger and older 
individuals.  

 
b. However, there is still a larger representation 

of older adults than younger adults in our 
training data, as the mean age in the KADRC is 75, so out of an abundance of caution we have added an 
additional statement in the discussion urging caution when applying our models to younger populations, lines 
386-387: “While our current models serve as a proof of principle for this approach, since they are trained and 
evaluated largely on older adults caution should be used when applying them to young people.” 

 
There are clear tradeoffs between optimizing the aging measure for young adults or the elderly. Given the test 
cohorts we analyze in the manuscript are all older cohorts, as are most human datasets for diseases of aging, 
we believe it is important for the training cohort to match the test distributions better as this allows for more 
statistically sound and biologically correct inference.  

There are many biomarkers of health which have a nonlinear relationship to aging outcomes, and in the 
elderly many relationships between biomarkers and health/mortality/frailty reverse direction. We believe this is 
very important to understand, especially when evaluating the relationship between training and test cohorts, and 
noticed that this is largely not discussed or accounted for in models of molecular aging. We have now used our 
analysis of the clinical biochemistry data in the Covance cohort to illustrate the nuance of this point. We believe 
this is an important contribution, and it supports our use of a primarily older training cohort to evaluate disease 
outcomes in older test cohorts which is the primary focus of the manuscript. We emphasize this in the newly 
added Supplemental Text, and in Supplementary Fig. 4, where we show U-shaped trait relationships for 3 
important traits in the Covance cohort with age that are discussed in the text.  

Supplemental Figure 3 
b, Correlations between predicted vs chronological age in healthy 
individuals in the training (Knight-ADRC) and test (Covance, 
LonGenity, Stanford-ADRC, SAMS) cohorts for all aging models. All 
aging models significantly estimated age across five independent 
cohorts. 
 
b, As in a, but for conventional age gap versus diabetes history.  



 

 
  

1. Supplemental text lines 38-62: “There are many biomarkers of health which have a 
nonlinear relationship to aging outcomes, and in the elderly many relationships between 
biomarkers and health/mortality/frailty reverse direction compared to young and middle-aged 
adults. The distribution and mean age of the population that an aging model is trained on will 
thus impact associations with traits.  This is not frequently discussed or accounted for in models 
of molecular aging. 

Such a case is illustrated by diastolic blood pressure, where the strongest association 
was with heart aging (adjusted Pearson r=-0.18, q=2.62e-10). Nine organ age gaps (adipose, 
brain, control, heart, intestine, kidney, liver, muscle, organismal, pancreas) were significantly 
associated with decreases in diastolic blood pressure, while the opposite association was seen 
with the PhenoAge age gap (Supplementary Fig. 5a, Supplementary Table 13). Diastolic blood 
pressure was one of many traits with a U-shaped relationship to aging outcomes 
(Supplementary Fig. 5b). While high blood pressure in young and middle-aged adults is 
indicative of cardiometabolic dysfunction, in the elderly low blood pressure is common and more 
strongly associated with mortality and frailty3–5, though high blood pressure is also detrimental6. 
The differences between PhenoAge and the organ age models could be due to differences in 
the age distribution of the underlying training cohorts for the models. Our models were trained in 
the KADRC, which has a greater proportion of elderly individuals, while PhenoAge was trained 
in NHANES, which has a greater proportion of young individuals.  
 This kind of U-shaped relationship with age and aging outcomes is quite common and is 
also seen with BMI7. Prospective studies in older adults have shown that while obesity slightly 
increases mortality and cardiovascular disease risk, the highest risk groups are those with a 
BMI under 23. Interestingly, the intestine and pancreas age gaps show a negative association 
with BMI and obesity but a positive association with mortality risk, while the kidney age gap 
shows a positive association with BMI, suggesting that the full picture of organ health in aging 
and disease may be more complex than currently understood.” 

 
 
Suggested Improvements 
 

Supplemental Figure 4 
b, U-shaped relationship between age and certain traits, including diastolic blood pressure, BMI, 
and alanine transaminase are shown. 
 



The manuscript shows association between the novel organ-specific age gaps and organ-specific 
outcomes as well as all-cause mortality. If the data were available, it would be nice to see if organ-
specific age gaps were prognostic of (organ-relevant) disease-specific mortality. 
 
This is a great suggestion that we would have loved to implement if we had the data, but we unfortunately do 
not have access to disease-specific mortality information in any cohort.  
 
References 
 
In addition to the groups own previous paper which presents novel plasma proteomics ageing clocks 
as mentioned above, if the authors are keeping to the scope of plasma proteomics rather than 
specifically the SomaLogic platform, they could add the additional two citations for papers which present 
novel ageing clocks built with plasma proteomics from the Olink assay: Enroth et al., 2015 
(https://doi.org/10.1038/srep17282) and Macdonald-Dunlop et al., 2022 
(https://doi.org/10.18632/aging.203847). Both of these papers trained novel proteomic ageing clocks 
that predicted chronological age in both training and testing samples (as well as additional independent 
cohorts in the case of Macdonald-Dunlop et al.) as well as demonstrating that models built using a 
much smaller subset of proteins were as predictive as those containing a much larger numbers of 
proteins. 
 
We have added the citations to the text. 
 
In the introduction, the sentence “Current methods to measure molecular ageing in living humans have 
largely measured blood cell age, yet do not provide direct information on the biological age of less 
accessible internal organs”, is the authors point that most ageing clock papers calculate one single 
biological age measure for the whole organism from blood-based measures – equivalent to their 
organismal clock – rather than separate ones for each organ system? If so, this could be clearer as it 
currently reads as though the point is that most clocks are made from blood-based measures which of 
course includes their own plasma proteomics-based clocks. The two DNA methylation-based clocks 
papers cited do not help clarify this, as there have been many papers that use a variety of different 
blood-based omics assays (including plasma proteomics) to derive measures of biological age. 
 
We are sorry this statement was unclear to multiple reviewers, and we have changed the language in the 
introduction to be clearer. We have also expanded the citations to more accurately reflect the prior work in the 
field which motivated our approach. Lines 61-73:  
 
“While many methods to measure molecular aging in humans have been developed10–18, most of them provide 
just a single measure of aging for the whole body. This is difficult to interpret given the complexity of human 
aging trajectories, and no single method so far predicts aging outcomes in all organs. Some recent methods 
have used clinical chemistry markers which include some markers of organ function10,16,19. However, these 
methods still generate a single composite score for the whole body and contain many markers with low organ 
specificity, making them difficult to interpret for organ-specific aging. Methods to measure brain aging have 
used MRI-based brain volume and functional connectivity measurements, but they are costly, time-consuming, 
and do not provide molecular insights20,21. Building off the wealth of literature and clinical practice that uses 



certain organ-specific plasma proteins to non-invasively assess aspects of organ health, such as troponin T for 
heart damage22 and alanine transaminase for liver damage23, we hypothesized that comprehensive 
quantification of organ-specific proteins in plasma could enable minimally invasive assessment and tracking of 
human aging for any organ.” 
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Reviewer Reports on the First Revision: 

Referees' comments: 

Referee #1 (Remarks to the Author): 

The authors have gone to extraordinary lengths to address my earlier comments; they have clarified 

the text and figures, corrected for multiple comparisons and indluded some new and stronger 

analyses. 

I congratulate them on a really exciting paper that deserves to be published. 

Referee #2 (Remarks to the Author): 

I don't see a reason to delay the publication of this study 

Referee #4 (Remarks to the Author): 

In the revised manuscript by Oh et al., the authors have done extensive work to address comments 

from myself and other reviewers: the addition of two cohorts, both increasing the number of 

validation cohorts and increasing the sample size in the training cohort, as well as the addition of 

new analyses. 

The authors have also addressed the issue of statistical reporting that was highlighted by multiple 

reviewers. They have expanded the reporting of statistical tests in the: main text, figure legends, 

supplementary and extended materials, as well as adding specific sections to the methods. The total 

number of tests run, statistical significance thresholds and correction for multiple testing are all 

outlined for each of the analyses presented. 

The authors addressed my specific comment on the comparison of the performance of the 

CognitionBrain age gap with the gold standard biomarker p-Tau 181 level in predicting AD 

progression. They used the suggested cox proportional hazard model approach and extended it, to 

not only show that their CognitionBrain age gap does add predictive information beyond the gold 

standard proteomic biomarker, but that it also provides information beyond what is provided by the 

genetic marker (AD PRS). 

I would also like to highlight specific additions that strengthen the revised manuscript. First, the 

forest plots and meta-analysis approach that nicely demonstrate the consistency of their age gap-

outcome association results across the multiple validation cohorts. Second, the discussion of the U-

shaped relationships between age and certain age-related traits, e.g. BMI and diastolic blood 

pressure. This is an issue not often discussed or accounted for in ageing clocks papers. Third, the 

clustering into e-ageotypes and showing that individuals who are extreme agers in one organ are not 

necessarily extreme agers in other organs. This demonstrates nicely that the organ specific approach 

is adding knowledge to the field of ageing clocks in a way that single clocks for the whole body are 



not able to. 

I would recommend the revised manuscript for publication providing a few minor comments are 

addressed. 

Minor comments 

1) Regarding the pathway enrichment analysis results presented in Figure 4i. In the methods section 

it says that all human genes were used as a background. I would suggest that if only proteins 

included in models (e.g. CognitionArtery and CognitionOrganismal) were included in this analysis, 

that the genes encoding the ~893 SomaScan proteins measured and used throughout this work 

would be a more appropriate background. Given that, by only capturing this subset of proteins, as 

opposed to the whole proteome, there has already been a selection. This is only an issue if p-values 

for a formal enrichment analysis are included, if the authors wanted to only be descriptive and 

comment on which pathways these CognitionArtery proteins belonged to this would not be an issue. 

2) It would be helpful to have 95% confidence intervals for the correlations of organ predicted age vs 

chronological age across cohorts, shown in supplementary figure 3b. 

3) Extended data figure 7 – the x-axis labels read “ahronological”, is this potentially a typo and 

should be chronological? 

Referee #5 (Remarks to the Author): 

The revised manuscript by Oh et al. takes a novel approach to assessing organ age from profiles of 

circulating plasma proteins assessed using a targeted proteomics platform. The authors identify both 

interesting patterns of organismal and organ aging, as well as “age-gap” profiles conferring 

substantial risk for multiple disease phenotypes that are age-related and represent some of the 

major public health challenges confronting aging populations around the world. The authors have 

responded to the initial reviews by incorporating additional data and analyses, which further support 

their conclusions. Addressing some additional issues would help place the results in clinical and 

biological context. 

1. It would be helpful to show the relationship of the hazard ratios (HR) to the inferred organ age 

gap. That is, how does the HR change as the age gap varies from 1, 2, 5, to 10 years. 

2. It is helpful to know that the age-gap measures are ‘independent’ risk factors and the HRs often 

remain significant after adjustment. However, this is different from demonstrating whether they are 

clinically useful. Leaving aside the issue of whether these trajectories can be altered (a fascinating 

question obviously beyond the current scope), independent risk factors even with significant HRs 

may not materially influence how we assess many subjects. To get at this question, Receiver 

Operating Characteristic (ROC) analyses describing how much the Area Under the Curve (AUC) is 

changed by the new model as compared to the best current model (both p-value and degree of AUC 



change) or inclusion of the new model with the old would be most helpful. In addition, some 

assessment of how many subjects are changed into a different category of risk (net reassignment 

analysis) that might influence treatment strategies, would also be informative. For heart disease, for 

example, there are well-established thresholds at which 10 year risk warrants pharmacological 

intervention. These approaches would provide a better sense of how often the plasma proteomic / 

age-gap analyses identify subjects who would benefit from intervention (according to current 

guidelines) that are otherwise missed by current models. (Even if a hazard ratio survives adjustment 

for multiple other variables and is independent, it may simply indicate a higher risk in subjects 

already known to be above the threshold risk for concern). 

3. Obviously, the 18.4% of individuals with accelerated organ aging are of particular interest. It is 

somewhat surprising that only 1.7% showed extreme aging of multiple organs, particularly given the 

clinical observation that co-morbidities across organs are common among age-related disease 

phenotypes. Is it possible that this is a result of the approach in that mutually exclusive single organ-

specific proteins were used? There are examples of “oligo-organ enriched” proteins (i.e. proteins 

enriched across a small number of organs). Perhaps analyses that included such proteins would 

identify more subjects with concordant, accelerated aging across several interrelated organs (heart-

kidney, heart-brain, etc). 

4. These observations also raise questions about the boundary between normal aging and organ 

pathology. It seems possible that at least some of the subjects identified as having accelerated aging 

of a specific organ, actually have subclinical disease in that organ, which has altered the plasma 

proteome. For example, for cardiac age, NT-BNP and Troponin were major contributors to the 

model. While there is some (not entirely consistent) evidence each of these can increase in healthy 

aging, they are also indicators of cardiac pathology and already recognized predictors of adverse 

cardiovascular outcomes. It seems plausible that these analyses include subjects who have existing 

disease that hasn’t yet presented clinically and thus as labeled as ‘healthy’. This might be revealed 

by more detailed phenotyping (e.g. cardiac MRI or even echo with GLS). Assuming such phenotyping 

data are not available, this possibility should at least be acknowledged and discussed. The clinical 

implications may still be similar (i.e., identification of subjects at high risk who should be considered 

for preventive measures) but the interpretation, particularly as it relates to the biology of normal 

aging and uncovering the responsible mechanisms, might be considerably different. 

Referee #6 (Remarks to the Author): 

Manuscript: 

Organ-specific aging signatures in the plasma proteome 1 track health and disease 

Authors: 

Hamilton Oh, Jarod Rutledge, … , Tony Wyss-Coray 

The manuscript H. Oh, J. Rutledge et al., explores proteomic aging signatures in 11 major human 



organs in five independent cohorts that include a total of 5678 adults across their lifespan. In the 

original manuscript, reviewers identified imitations in statistical validity, a small cohort size, limited 

accessibility of the raw data and the lack of comparison to other established biological clock 

datasets. The authors addressed these concerns which thereby significantly enhanced the overall 

quality of the manuscript. 

1) Statistical validity. 

Reviewers pointed out that p-values were not accounted for multiple testing or at least have not 

been described properly in the original manuscript. In the revised manuscripts, authors report all 

tests for all models and report false discovery rate control using the Benjamini-Hochberg method 

(which is a suitable method for multiple testing correction in proteomics). 

2) Low cohort numbers / limited age range for machine learning aging models. 

The original manuscript contained 1,727 participants and resulted in low R values for several organs. 

The authors included 2 new cohort studies the Knight Alzheimer’s Disease 

Research Center (KADRC) cohort (n=3,075) and the Stanford Aging and Memory Study (SAMS) cohort 

(n=192). The inclusion of these two cohorts improved the age distribution, also covering younger 

aging adults and strengthens the findings. 

3) Data sharing and Transparency. 

The original manuscript was lacking full raw data from all the performed analysis, which has been 

addressed in the revision. The revised manuscript includes Suppl. Tables with the raw data and 

performed analysis. 

4) Comparison of organ-specific aging biomarkers to more established biological clocks from 

previous studies. 

The authors now included comparison of the organ-specific clocks to previous proteomics, Levine’s 

PhenoAge, and MRI-based brain age in the revised manuscript. They find statistically significant 

associations of their organ aging models with other aging clocks from previous studies (in Fig. 1, 

Extended data Fig. 5 and Suppl. Fig 6); some of the correlations are rather small, but adding this 

information from previous studies still strengthens the manuscript to better understand the 

association of the organ aging model with more established biological clocks. The authors also 

discuss these limitations in the discussion. 

However, some outstanding comments still remain that need to be addressed: 

1. To support their conclusions and findings, the manuscript relies heavily on the assignment of 

proteins to specific tissues/organs. 



“We mapped the organ-specific plasma proteome using human organ bulk RNA-seq data from the 

Genotype-Tissue Expression (GTEx) project. We classified genes as “organ enriched” if they were 

expressed at least 4 times higher in one organ compared to any other organ, according to the 

definition proposed in the Human Protein Atlas” 

A possible problem using this approach would arise from the fact that the correlation between 

mRNA levels and protein levels is typically poor in human tissues as well as shown by animal studies. 

See for example, a recent proteome/ transcriptome analysis of 32 human tissues that showed a 

median Spearman correlation of only 0.46 and between 90.2 and 0.6 roughly (Jiang et al., Cell 2020 

Jiang et al., 2020 Cell 183, 269-283 ). Thus, it remains puzzling what it means for protein levels that 

mRNAs are expressed 4 times more in one cell or tissue or organ than in other? 

2. Do the authors know how much proteins can be found in the studied tissues/organs, and how this 

would then translate to protein plasma levels? For example, a protein X could be more enriched in a 

tissue Y, but the changes in plasma levels might be coming from many different tissues; meaning 

many tissues may contribute to the plasma level. 

3. The Somascan assay provides an indirect detection and measurement of proteins. This is not 

mass-spectrometry (MS) where the sequence positively identifies the protein. Here, the proteins 

were detected by binding to a probe that might have non-specific binders. This happens mainly 

when some proteins are really abundant and override the affinity of the probe for a specific protein. 

The authors said that this platform has been used multiple times and that this provides “validation”. 

However this indeed may not validate the platform. I’d say that one should do some sort of 

validation by MS to be more confident. Since the platform provides so-called a directed assay by 

selecting the targets it does not have a power to be discovery-free as the MS. The main advantage 

might be the cost, but it has severe limitations as well. 

4. The targets are preselected and cover roughly only 4% of the human proteome. Checking online I 

couldn’t get the whole dataset from there. The company lists panels, such neurological, cardio, 

metabolic, ect… similar to Olink (although the technology is different). I guess that the authors mixed 

several panels, but this has not been explained in the manuscript. One can have proteins that are 

really abundant, relevant, markers, etc… but that they don’t quantitate because they have not been 

included in the panel. So this is a major limitation. 

5. Overall, the analysis was done with a low number of proteins, 856 organ enriched, 17.9% of their 

plasma detected proteins and around a 4% of the proteome. Really low numbers in general. 

6. Technically, I didn’t see information about how the blood samples were collected for different 

cohorts. Some refer to previous papers, but there is a potential concern how comparable were the 

extraction conditions and plasma preparation, storage, etc. 

7. The cohorts are very different, irrespective of their individual collection purposes (like ALZ) in 



terms of age range, genetic background and number of participants, which potentially skew data 

analysis and interpretation. 

8. The authors state: 

We trained our models in 1,398 cognitively unimpaired participants from the Knight-ADRC cohort. 

We evaluated their performance in the Covance (n = 1,029), LonGenity (n = 962), SAMS (n= 192), 

Stanford-ADRC (n=409) cohorts, and Knight-ADRC cognitively impaired subjects (n = 1,677) 

But, do we know how the age-gap for each organ was performed? The authors say that one can use 

plasma proteome to determine the age-gap and refer to previous papers, but applying the same 

concept to organs could be a stretch without proper validation and evidence. It is also not clear to 

this reviewer how the authors established the chronology for aging in different organs, particularly 

from the cohorts that includes individuals of different ages, but the numbers of individuals at 

different ages within different cohorts are not shown. For example, the authors state that they used 

the KADRC to train the model. This group has individuals from 27-104 with the SD of 75 yrs; it is not 

shown how many young individuals are in this group. Similarly, they used only 1398 “healthy 

patients”, but they don’t give the age range for this subset either. 

9. They seem to be “very precise” by defining the age gap, for example: 

Individuals with hypertension had kidneys that were approximately 1 year older than their same-

aged peers, while individuals with diabetes had kidneys approximately 1.3 years older (Fig. 2a-b, 

Supplementary Table 8,10 

With just a few ”organ specific” proteins can one have such a level of exactness? For example the 

paper uses only 12 kidney-specific proteins and established 1 year older. What’s the error of this 

calculation? 

10. The usual naming of handpicked molecules and generalizations. 

“synaptic proteins complexin 1 (CPLX1), complexin 2 (CPLX2), and neurexin 3 (NRXN3) – which all 

have genetic links to cognition and AD44–48, and stathmin 2 (STMN2) and olfactomedin 1 (OLFM1) – 

which are involved in neurite outgrowth and axon growth cone collapse49,50” 

One can hand pick any neuronal protein and find correlation to disease. What is the biological 

meaning of this kind of statements?



 

Referee #1 (Remarks to the Author): 
The authors have gone to extraordinary lengths to address my earlier comments; they have clarified the 

text and figures, corrected for multiple comparisons and included some new and stronger analyses. 

I congratulate them on a really exciting paper that deserves to be published. 

 

We thank this reviewer for their kind comments and thorough review, which helped us greatly improve 

the manuscript.  

 

 

Referee #2 (Remarks to the Author): 
I don't see a reason to delay the publication of this study 

 

We thank this reviewer for their thorough review, which helped us add more interesting 

biological/clinical context/interpretation into our manuscript. 

 

 

Referee #4 (Remarks to the Author): 

I would recommend the revised manuscript for publication providing a few minor comments are 

addressed. 

 

We thank this reviewer for their thorough review, which helped us greatly improve the manuscript. We 

respond to the minor comments below. 

 

Minor comments 

1) Regarding the pathway enrichment analysis results presented in Figure 4i. In the methods section it 

says that all human genes were used as a background. I would suggest that if only proteins included in 

models (e.g. CognitionArtery and CognitionOrganismal) were included in this analysis, that the genes 

encoding the ~893 SomaScan proteins measured and used throughout this work would be a more 

appropriate background. Given that, by only capturing this subset of proteins, as opposed to the whole 

proteome, there has already been a selection. This is only an issue if p-values for a formal enrichment 

analysis are included, if the authors wanted to only be descriptive and comment on which pathways 

these CognitionArtery proteins belonged to this would not be an issue. 

 

This is a good point. Since our goal here is to be 

descriptive and comment on potentially relevant 

pathways, with no claims about statistical enrichment 

from the plasma proteome, we have changed the x-

axis to be % pathway overlap, defined as the number 

of genes in a given pathway divided by the number of 

genes queried (aka “precision”). This is updated in 

Figure 4i. 

Author Rebuttals to First Revision:



 

 

2) It would be helpful to have 95% confidence intervals for the correlations of organ predicted age vs 

chronological age across cohorts, shown in supplementary figure 3b. 

 

Given the presence of 5 cohorts per row, we believe the 95% confidence intervals would be too 

cluttered. Instead, we have added the confidence interval statistics to Supplementary Tables 8 and 19. 

 

3) Extended data figure 7 – the x-axis labels read “ahronological”, is this potentially a typo and should be 

chronological? 

 

Thank you for catching this. It has been fixed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Referee #5 (Remarks to the Author): 
 

The revised manuscript by Oh et al. takes a novel approach to assessing organ age from profiles of 

circulating plasma proteins assessed using a targeted proteomics platform. The authors identify both 

interesting patterns of organismal and organ aging, as well as “age-gap” profiles conferring substantial 

risk for multiple disease phenotypes that are age-related and represent some of the major public health 

challenges confronting aging populations around the world. The authors have responded to the initial 

reviews by incorporating additional data and analyses, which further support their conclusions. 

Addressing some additional issues would help place the results in clinical and biological context. 

 

We thank this reviewer for their thorough review.  

 

1. It would be helpful to show the relationship of the hazard ratios (HR) to the inferred organ age gap. 

That is, how does the HR change as the age gap varies from 1, 2, 5, to 10 years. 

 

This is a great suggestion to better understand potential non-linear associations between age gaps and 

disease risk. Given low sample size with other traits, we decided to do this recommended analysis for 

mortality risk in the LonGenity cohort where we have 864 individuals, 173 of whom died within up to 15 

years. Specifically, we binned individuals into different age gap groups: 

- Bin –2 ( –2.5 < age gap < –1.5) 

- Bin –1 ( –1.5 < age gap < –0.5) 

- Bin 0 ( –0.5 < age gap < +0.5) 

- Bin +1 ( +0.5 < age gap < +1.5) 

- Bin +2 ( +1.5 < age gap < +2.5) 

- Bin +3 ( +2.5 < age gap < +3.5) 

- Bin –3 and other more extreme bins were removed due to low sample size 

 

We then compared every non-zero group with the zero group (denoting the non-zero group as 1 and the 

zero group as 0) for changes in mortality risk. We did this analysis for each of the aging models. We did 

not adjust for multiple comparisons because the assumptions were not met: each statistical test is done 

in a different subset of individuals, and tests for different bins in the same organ are generally 

correlated. Below are the results, which we provide as a new Supplementary Figure 4 and Table 13. 

These results are described in the Supplementary Text, and now referenced in the main text, lines 193-

195. 

 

Interestingly, the association between the age gap and mortality risk is non-linear for some organs, such 

as the heart, brain, pancreas, and kidney. The relationship with the heart age gap seems to be U-shaped 

where both high (+1, +2, +3) and extremely low heart age gaps (–2) are associated with increased 

mortality risk. The kidney age gap is also interesting in that it is not associated with mortality risk when 

looking at the whole age gap distribution (Fig. 2j), but the +3 age gap group is positively associated with 

mortality, suggesting the “extreme agers” framework may be more useful for certain organs and traits. 



 

Other organs, including the organismal, adipose, artery, and immune, show a more linear relationship 

with mortality risk. Whether these nonlinear dynamics also exist for other aging biomarkers, such as 

methylation clocks, is unknown. This analysis points to a need for additional studies on the relationship 

between extreme aging and disease risk. 

 
 

Supplementary Figure 4. Age gaps versus 

mortality risk, stratified by age gap bins. 

a, Binned cox proportional hazard regression 

analysis in mortality risk, controlling for age and 

sex, within 15 years in the LonGenity cohort. 173 

events out of 864 individuals. Individuals were 

grouped into different z-scored age gap bins: –2, 

–1, 0, +1, +2, +3 (–3 was removed due to low 

sample size). Bin limits were +/– 0.5. Each non-

zero group was compared with the zero group 

(denoting the non-zero group as 1 and the zero 

group as 0) for changes in mortality risk: 

MortalityRisk ~ AgeGapBin (binary) + Age + Sex. 

This analysis was performed for each aging 

model separately. Hazard ratios, 95% confidence 

intervals, p-values, and sample size for age gap 

bins are shown. While some age gaps, including 

the organismal, adipose, artery, and immune, 

show a relatively linear association with mortality 

risk, others such as such as the heart, brain, 

pancreas, kidney appear to be non-linear. The 

relationship with the heart age gap is U-shaped 

where both high (+1, +2, +3) and low (–2) heart 

age gaps are associated with increased mortality 

risk. For the kidney, which is not significantly 

associated with mortality when looking at the 

entire age gap range (Fig. 2j), only the +3 group 

is positively associated with mortality, suggesting 

the “extreme agers” framework may be more 

useful for certain organs and traits. 

 



 

2. It is helpful to know that the age-gap measures are ‘independent’ risk factors and the HRs often 

remain significant after adjustment. However, this is different from demonstrating whether they are 

clinically useful. Leaving aside the issue of whether these trajectories can be altered (a fascinating 

question obviously beyond the current scope), independent risk factors even with significant HRs may 

not materially influence how we assess many subjects. To get at this question, Receiver Operating 

Characteristic (ROC) analyses describing how much the Area Under the Curve (AUC) is changed by the 

new model as compared to the best current model (both p-value and degree of AUC change) or 

inclusion of the new model with the old would be most helpful. In addition, some assessment of how 

many subjects are changed into a different category of risk (net reassignment analysis) that might 

influence treatment strategies, would also be informative. For heart disease, for example, there are 

well-established thresholds at which 10 year risk warrants pharmacological intervention. These 

approaches would provide a better sense of how often the plasma proteomic / age-gap analyses identify 

subjects who would benefit from intervention (according to current guidelines) that are otherwise 

missed by current models. (Even if a hazard ratio survives adjustment for multiple other variables and is 

independent, it may simply indicate a higher risk in subjects already known to be above the threshold 

risk for concern). 

 

This is a very sharp point. We agree, an analysis to determine the added clinical utility of our models to 

the current standard is important and may lead to a higher impact discovery. Unfortunately, we do not 

have the statistical power or appropriate clinical chemistry measurements of Troponin, proNT-BNP, and 

other markers to perform this analysis in heart disease risk. We were able to perform the recommended 

analysis in regard to risk of cognitive decline in the Stanford-ADRC cohort, where we have 324 

individuals, 48 of whom declined cognitively within up to 5 years. Specifically, we compared the 

concordance-indexes (an AUC equivalent for proportional hazards models) between a proportional 

hazards model that included clinically relevant covariates but no CognitionBrain age gap, versus a model 

which additionally included the CognitionBrain age gap (Reviewer Figure 1a-b).  

 

We observed a slight increase in the concordance-index suggesting the addition of the CognitionBrain 

age gap provides additional information, though the degree to which this is clinically useful is unclear 

given the small change and relatively low sample size. A comparison of the risk scores from both models 

showed very high correlation and no obvious signs of risk category reassignment (Reviewer Figure 1c). 

Given the relatively low sample size, heterogeneity in baseline dementia scores, and potential non-linear 

relationships between age gaps and cognitive decline, we believe a more rigorous analysis in a larger 

cohort, stratified by baseline dementia ratings, age gap bins, and other covariates is warranted in future 

studies to determine clinical relevance. We have adjusted claims in the text around clinical relevance.  

• Lines 267-268: Taken together, these data suggest CognitionBrain age gap provides clinically 

relevant molecular information about brain aging not captured by other approaches. 

 



 

 
 

3. Obviously, the 18.4% of individuals with accelerated organ aging are of particular interest. It is 

somewhat surprising that only 1.7% showed extreme aging of multiple organs, particularly given the 

clinical observation that co-morbidities across organs are common among age-related disease 

phenotypes. Is it possible that this is a result of the approach in that mutually exclusive single organ-

specific proteins were used? There are examples of “oligo-organ enriched” proteins (i.e. proteins 

enriched across a small number of organs). Perhaps analyses that included such proteins would identify 

more subjects with concordant, accelerated aging across several interrelated organs (heart-kidney, 

heart-brain, etc). 

 

This reviewer makes a good point, that based on the epidemiological studies of comorbidities, there 

should be more multi-organ agers in the population. We actually find this to be true based on our data 

as well, just not in the “extreme” aging framework. When looking at all individuals, not just the extreme 

agers, we find our data aligns with the epidemiology - individuals with heart disease, diabetes, 

hypertension, Alzheimer’s disease are aged across many organs (Extended Data Fig. 4e), though they are 

still primarily aged in their respective relevant organs.  

Reviewer Figure 1 
a-b. Cox proportional hazard regression analysis in risk of cognitive decline within up to 5 years in the 
Stanford-ADRC cohort. 48 events out of 324 individuals. Hazard ratios, 95% confidence intervals, p-
values, and concordance-index (AUC) are shown. a. Risk of cognitive decline (2-point increase in CDR-
Sum of boxes) ~ baseline CDR-Global + Plasma Ptau181 + Age + AD Polygenic Risk Score. b. Risk of 
cognitive decline (2-point increase in CDR-Sum of boxes) ~ CognitionBrain age gap + baseline CDR-
Global + Plasma Ptau181 + Age + AD Polygenic Risk Score. 
 
c. Per individual hazard model risk scores based on model a and model b are shown. 

a 

b 

model a 

model b 

model a vs b risk 
scores 
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The fact that extreme multi-organ agers make up 1.7% of the population specifically is partially due to 

our mathematical definition of “extreme agers” as individuals with a 2-standard deviation 

increase/decrease in at least one organ age gap. Since a +2 standard deviation is roughly equivalent to 

the 2nd percentile under a normal distribution, and since we find very few individuals with extreme 

youth in any organ (-2 standard deviations, <1% of the population), it makes sense that we find that 

each organ ager group is ~2% of the population.  

 

However, it is somewhat surprising that there are not more individuals with extreme aging in pairs of 

organs or a small number of related organs. This is indeed what we see in the data, as shown in 

Extended Data 4a and 4b, where the clustering process and average aging profile per organ for each 

extreme organ aging type are shown. What we find is that there is not consistent co-occurrence of 

paired organ aging at the population level which easily explains epidemiological co-occurrence of 

disease, though it does not mean that specific individuals never have multiple aged organs. This 

reviewer makes an interesting comment about “oligo-organ enriched proteins” to model multi-organ 

aging. We have thought about this as well and think different combinations of oligo-organ aging models 

would be interesting to follow-up on, but for simplicity, in this manuscript we decided to generate an 

“organismal” model which captures proteins expressed by multiple organs. We indeed find that 

organismal agers cluster more closely with multi-organ agers (Fig. 1e, Extended Data Figure 4a-b).  

 

4. These observations also raise questions about the boundary between normal aging and organ 

pathology. It seems possible that at least some of the subjects identified as having accelerated aging of a 

specific organ, actually have subclinical disease in that organ, which has altered the plasma proteome. 

For example, for cardiac age, NT-BNP and Troponin were major contributors to the model. While there 

is some (not entirely consistent) evidence each of these can increase in healthy aging, they are also 

indicators of cardiac pathology and already recognized predictors of adverse cardiovascular outcomes. It 

seems plausible that these analyses include subjects who have existing disease that hasn’t yet presented 

Extended Data Figure 4.  
a, Extreme agers largely cluster into distinct groups when considering individuals with organs above the 

extreme aging threshold, absolute z-score > 2. 

 

b, Mean aging profile per extreme aging group shows there are not pairs of extremely aged organs at the 

population level.  

 

d, A cross-cohort meta-analysis of associations between extreme ageotypes versus diagnosis of 9 major age-

related diseases annotated in at least 2 independent cohorts, controlling for age and sex (logistic regression 

model: AgeGap ~ Disease + Age + Sex). Log odds ratios and significance are shown. P-values were Benjamini 

Hochberg corrected. Asterisks represent q-value thresholds: *q < 0.05; **q < 0.01; ***q < 0.001. The strongest 

associations per disease are highlighted with black borders. 

  

e, A cross-cohort meta-analysis of associations between organ age gaps versus diagnosis of 9 major age-

related diseases annotated in at least 2 independent cohorts, controlling for age and sex (linear model: AgeGap 

~ Disease + Age + Sex). Disease covariate effects and significance are shown. P-values were Benjamini 

Hochberg corrected. Asterisks represent q-value thresholds: *q < 0.05; **q < 0.01; ***q < 0.001. The strongest 

associations per disease are highlighted with black borders. 

 



 

clinically and thus as labeled as ‘healthy’. This might be revealed by more detailed phenotyping (e.g. 

cardiac MRI or even echo with GLS). Assuming such phenotyping data are not available, this possibility 

should at least be acknowledged and discussed. The clinical implications may still be similar (i.e., 

identification of subjects at high risk who should be considered for preventive measures) but the 

interpretation, particularly as it relates to the biology of normal aging and uncovering the responsible 

mechanisms, might be considerably different. 

 

This reviewer brings up a great point about how individuals who seem “healthy” may have actually 

accumulated some degree of heart pathology already and that perhaps NT-BNP and troponin are 

detecting this. We agree with this notion and believe that it is the central hypothesis of the aging field: 

that the “normal” aging process is the progressive accumulation of damage that results in a gradual 

change from healthy to subclinical disease to active disease.

 
We believe NT-BNP and Troponin are great examples of this hypothesis. They increase with normal 

aging across all cohorts in our study (Reviewer Figure 2) and in published studies totaling over 50,000 

people of diverse ancestry across the adult lifespan1–4, they are associated with future heart failure and 

mortality over 15-year follow-up (Fig. 2i-j), and they are also established biomarkers of acute heart 

damage, suggesting that increased levels in “healthy” individuals may represent varying degrees of 

subclinical disease.  

 
 

As this reviewer suggests, it would be amazing to associate the heart age gap with more detailed 

phenotypes of heart pathology to more thoroughly test associations between accelerated normal aging 

and subclinical disease, as the ability to detect subclinical disease with plasma proteins would improve 

monitoring of disease risk in seemingly healthy individuals. We have added the following sentence in 

lines 164-171 to reflect the importance of this future study:  

healthy    subclinical disease  active disease 

Process of aging 

Reviewer Figure 2 
Change with age of NT-proBNP and Troponin-T in individuals without history of cardiovascular disease. 



 

 

“Heart aging proteins were expressed primarily by cardiomyocytes (Fig. 2g-h) and had known roles in 

heart biology and disease. Pro-brain natriuretic peptide (NPPB), a negative regulator of blood pressure 

that increases in response to heart damage, and troponin T (TNNT2), a heart muscle protein involved in 

contraction, had the strongest weights in the heart aging model (Fig. 2g). They are both established 

clinical markers of acute heart failure22, and NPPB has been previously associated with heart attack 

risk37. This suggests the possibility of a link between subclinical heart disease and the “normal” heart 

aging process, which should be investigated further with more detailed heart imaging and 

electrophysiology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Referee #6 (Remarks to the Author): 
However, some outstanding comments still remain that need to be addressed: 

 

1. To support their conclusions and findings, the manuscript relies heavily on the assignment of proteins 

to specific tissues/organs. 

 

“We mapped the organ-specific plasma proteome using human organ bulk RNA-seq data from the 

Genotype-Tissue Expression (GTEx) project. We classified genes as “organ enriched” if they were 

expressed at least 4 times higher in one organ compared to any other organ, according to the definition 

proposed in the Human Protein Atlas” 

 

A possible problem using this approach would arise from the fact that the correlation between mRNA 

levels and protein levels is typically poor in human tissues as well as shown by animal studies. See for 

example, a recent proteome/ transcriptome analysis of 32 human tissues that showed a median 

Spearman correlation of only 0.46 and between 90.2 and 0.6 roughly (Jiang et al., Cell 2020 Jiang et al., 

2020 Cell 183, 269-283 ). Thus, it remains puzzling what it means for protein levels that mRNAs are 

expressed 4 times more in one cell or tissue or organ than in other? 

 

We thank this reviewer for their concern about our approach. We recognized before starting our study 

that RNA levels are not always correlated with protein levels, and that this may hamper interpretability. 

Because of this, we considered determining organ-specificity based on protein levels from the 

publication mentioned, Jiang et al.5 

 

We ultimately decided to determine organ-specificity based on a 4-fold cutoff from bulk RNA-seq data 

from the Gene Tissue Expression (GTEx) Atlas for three main reasons: 

1. Determining organ specificity based on a 4-fold 

increase in RNA-seq expression (“organ-enriched”) 

from GTEx and other databases is a well-accepted 

approach, established by the Human Protein Atlas 

(HPA) in multiple studies6–8. In their Science 2015 

study, they evaluated three tiers of organ-specificity: 

a. Tissue-enriched (highly specific): 4-fold 

higher in one organ compared to any other 

organ. 

b. Group-enriched (mildly specific): 4-fold 

higher in the average of 2-5 organs compared 

to any one organ. 

c. Tissue-enhanced (lightly specific): 4-fold 

higher in one organ compared to the average 

of all other organs. 

Uhlén et. al, Science (2015) Figure 2p. 
Enriched biological pathways of organ-
elevated proteins. 



 

They showed that tissue-enhanced genes are significantly enriched for biological pathways 

involved in the function of their tissue organs (Uhlén et. al, Science (2015), Figure 2p). We find 

that organ-enriched genes are even more significantly enriched for relevant pathways, which we 

now include in a Supplementary Booklet. The tissue-enriched metric from the HPA is widely 

trusted and is provided in NCBI, GeneCards, and enrichment analysis tools such as gprofiler9. We 

believed this proof of concept was sufficient in showing that the established methodology 

enables interpretable, relevant findings for the biology of specific organs. Thus, we used the 

same highest tier of specificity (tissue-enriched), but with the updated, more deeply sequenced 

GTEX RNA-seq dataset and with a more generalizable framework for tissue->organ mapping. The 

Supplementary Booklet is now referenced in main text, lines 111-112.  

2. Organ protein levels may be misleading in regard to determining the original organ source of the 

protein. Specifically, a protein may be present in an organ because it was trafficked there after 

being synthesized by another organ and secreted into the plasma. Jiang et al showed nicely that 

many proteins which are synthesized exclusively in one organ are not enriched at the protein 

level in that organ because they are secreted to another5. This is easy to understand in organs 

like the liver, pancreas, and pituitary, which are all examples discussed in Jiang et al. Albumin 

and complement proteins are not enriched at the protein level in the liver despite the fact that 

they are synthesized there, and there are proteins which are synthesized in the hypothalamus 

that are enriched in the pituitary because they are stored there before release. In the pancreas 

there is high correlation between the RNA and protein levels of organ-enriched digestive 

enzymes because they are stored locally in the pancreas. Generally, discordance between 

protein and RNA levels is interpreted in Jiang et al and other studies6,7,10 as a result of protein 

trafficking/export/secretion, while enrichment at the RNA level is recognized as the tissue of 

origin for protein synthesis. It may also be true that proteins which are present at the protein 

level in an organ but are not synthesized there also contain important information about said 

organ. We believe this idea of cross-organ communication in aging is an exciting area for future 

study. For the current manuscript, our goal was to determine the putative organ source of 

plasma proteins to infer organ age. 

3. RNA-seq data contains nearly full coverage of the genome, while proteomics data has much 

lower coverage. In Jiang et al, only 6320 proteins were detected in >50% of samples, and these 

are heavily biased towards abundant proteins, which are detectable by mass spectrometry. The 

percentage of these mappable to the plasma proteome is even lower, and the percentage that 

overlaps with the SomaScan assay, which can detect much lower abundance proteins, is even 

lower. Determining organ-specificity based on RNA-seq data increased our coverage of the 

mappable organ-specific plasma proteome. 

 

We added now an abbreviated summary of these points to the Supplementary Text.  

 

2. Do the authors know how much proteins can be found in the studied tissues/organs, and how this 

would then translate to protein plasma levels? For example, a protein X could be more enriched in a 



 

tissue Y, but the changes in plasma levels might be coming from many different tissues; meaning many 

tissues may contribute to the plasma level. 

 

This is a very interesting question, which we hope can one day be tested in humans. As of now, to our 

knowledge, the precise mechanisms by which different organs export different proteins into the blood is 

largely unknown. 

 

While not perfect, for this reason, we decided to use the organ-enriched framework to identify proteins 

that are most likely derived from a single organ source, because if a protein is expressed primarily in one 

organ, its levels in the blood likely reflect changes in that organ source. To minimize concerns about 

multiple potential organ sources, we did not include group-enriched proteins – which are enriched in 

pairs or groups of organs – or any other proteins of lower organ specificity in our analyses.  

 

Fortunately, despite our inability to experimentally confirm the precise organ source of proteins, our 

RNA-based inference approach has yielded several highly significant associations between organ aging 

models and organ function and has revealed several organ-specific proteins expressed by various cell 

types in those organs. Still, we believe future studies are needed to better understand the biology of 

specific proteins, including where they come from, how they end up in plasma, and what they do in their 

organ source versus peripheral organs. 

 

3. The Somascan assay provides an indirect detection and measurement of proteins. This is not mass-

spectrometry (MS) where the sequence positively identifies the protein. Here, the proteins were 

detected by binding to a probe that might have non-specific binders. This happens mainly when some 

proteins are really abundant and override the affinity of the probe for a specific protein. 

 

The authors said that this platform has been used multiple times and that this provides “validation”. 

However this indeed may not validate the platform. I’d say that one should do some sort of validation by 

MS to be more confident. Since the platform provides so-called a directed assay by selecting the targets 

it does not have a power to be discovery-free as the MS. The main advantage might be the cost, but it 

has severe limitations as well. 

 

We thank this reviewer for their concern about the proteomics platform. The reviewer is correct in that 

there are limitations of the SomaScan assay and simple adoption in the field does not necessarily 

provide validation. Nevertheless, the company has analyzed close to 1 million samples with their 

technology for academics, well over 100 biotech and pharma companies including almost all top 25 

pharma, resulting in some 700 publications (https://somalogic.com/publications/). I should note, that 

my lab has no commercial ties to Somalogic but after being frustrated by the inability of MS to detect 

most cytokines, chemokines and other key signaling proteins in plasma up to this day, we started by 

using filter-based antibody platforms (Raybiotech), then moved to bead-based assays (Luminex) before 

adopting Somalogic and Olink as the best technologies today. 

 

https://somalogic.com/publications/


 

Of course, all proteomics platforms have limitations. We carefully weighed the strengths and limitations 

of mass spectrometry, antibody-based assays, and the SomaScan assay before initiating our study. 

 

We ultimately decided to move forward with the SomaScan assay for many reasons including, but not 

limited to: 

A. The assay is sensitive to the very large dynamic range of the human plasma proteome (see 

included technical note).  

B. The coverage of the proteome is the largest among plasma proteomics assays by several 

thousands of proteins (see included technical note). Mass spec is heavily limited to measuring 

mid to high abundance proteins and is less sensitive to dynamic range11. For plasma it requires 

either fractionation of samples or depletion with very costly immunoaffinity columns that 

typically deplete the top 40 most abundant protein and often results in missing values11,12. Very 

few labs would be able to process 1000s of samples this way and there is not independent 

validation possible since each lab uses their own custom pipeline. 

C. There is minimal replicate sample variability13,14 (coefficient of variation, CV). The majority of 

SomaScan protein measurements are stable and a subset of proteins have been validated as Lab 

Developed Tests (LDTs), and have been delivered out of Somalogic’s CLIA-certified lab to 

physicians and patients in the context of medical management15. One of these LDTs, the 

Residual (secondary) Cardiovascular Risk Test has also advanced to FDA pre-submission as an 

IVD and qualified biomarker drug development tool (DDT). 

D. There has already been extensive validation of the assay not just in the 700 publications 

mentioned above and use by pharma and clinicians16, but via experimentation including 

comparisons with mass spec, antibodies, etc. In addition to their primary validation pipeline for 

all probes, 70% of probes have at least one orthogonal source of validation. 

 

Since this specific reviewer comment focuses on lack of validation of the assay, we detail the extensive 

validation that has already been performed, below and in the attached PDF “SOMAmer confirmation 

and validations.pdf”: 

 

1. All ~7,500 probes on the assay undergo rigorous primary validation of binding and sensitivity to 

the target protein. 

a. Determination of equilibrium binding affinity dissociation constant (KD). 

b. pull down assay of cognate protein from buffer 

c. Demonstration of dose-responsive in the SomaScan Assay 

d. Estimation of endogenous cognate protein signals in human plasma above limit of 

detection. 

2. 70% of their probes have at least one orthogonal source of validation from: 

a. mass-spectrometry: ~900 probes which measure mostly high and mid abundance 

proteins (due to sensitivity limitations of Mass Spec), have been confirmed with either 

DDA or MRM Mass Spec. 

b. antibody: ~390 probe measurements correlate with antibody-based measurements. 



 

c. cis-pQTL: ~2,860 probe measurements are associated with genetic variation in the 

cognate protein-encoding gene. 

d. absence of binding with nearest neighbor: ~1,150 probes do not detect signal from the 

protein that is most closely related in sequence to the cognate protein. 

e. Correlation with RNA: ~1,460 probe measurements correlate with mRNA levels in cell 

lines. 

 

 
We have now added this additional information to the methods section, lines 543-569, and the above 

figure has been added as Supplementary Figure 1b.  

 

4. The targets are preselected and cover roughly only 4% of the human proteome. Checking online I 

couldn’t get the whole dataset from there. The company lists panels, such neurological, cardio, 

metabolic, ect… similar to Olink (although the technology is different). I guess that the authors mixed 

several panels, but this has not been explained in the manuscript. One can have proteins that are really 

abundant, relevant, markers, etc… but that they don’t quantitate because they have not been included 

in the panel. So this is a major limitation. 

 

We agree, the ability to measure the entire human proteome and all its isoforms and post-translational 

modifications (with estimates from 10s of thousands to billions) would be an incredible feat, which we 

cannot do given our current technology. To make an attempt at covering the largest breadth of the 

human plasma proteome given current limitations, we decided to use the SomaScan assay, which 

measures several thousands more proteins than antibody-based assays and mass spec in human plasma. 

These technologies are rapidly improving, with Somalogic having ~10,000 proteins and Olink having 



 

~5,400 proteins on their next assay versions. We have added a statement in the manuscript, lines 372-

375 recognizing the current limitations. 

“Our current models rely on ~5,000 proteins measured with the SomaScan assay, but the 

approach is platform agnostic, and we expect that even more biological information could be 

gained with additional proteomic coverage, including cell and organ-specific splice isoforms and 

post-translational modifications.” 

 

In regard to the comment about SomaScan panels, there seems to be some confusion. Somalogic does 

not provide separate panels, like Olink. Somalogic provides measurements for all proteins on the assay 

for all samples. 

 

5. Overall, the analysis was done with a low number of proteins, 856 organ enriched, 17.9% of their 

plasma detected proteins and around a 4% of the proteome. Really low numbers in general. 

 

As mentioned in the response to the previous comment, we are limited by the breadth of the proteome 

that can be measured by current technologies. It should also be noted that Somamers and antibodies (as 

well as mass spec) typically measure multiple proteoforms for any given protein. This could include 

different isoforms, posttranslational modifications, etc. The same is true for ELISAs unless the reagents 

are designed against a very specific isoform of a protein. We have opted to use the SomaScan assay, 

which has the largest coverage compared to other platforms. Here, we measured 4,979 plasma proteins 

per individual, which covers roughly 25% of the human proteome and is one of the largest plasma 

proteomic studies of aging to date.  

 

Using these numbers of plasma proteins, we discover highly significant and reproducible associations 

between organ aging and disease, which have important implications in the monitoring of human 

health. Importantly organ aging models, which were trained on a lower number of proteins than the 

conventional aging model, outperformed the conventional aging model in disease associations, 

suggesting number of proteins is not as crucial as the purposeful selection of proteins.  

 

6. Technically, I didn’t see information about how the blood samples were collected for different 

cohorts. Some refer to previous papers, but there is a potential concern how comparable were the 

extraction conditions and plasma preparation, storage, etc. 

 

This reviewer brings up a valid concern that different methods for blood processing across cohorts can 

affect protein levels, leading to batch effects. Though this is most likely true, our model training 

workflow is designed to minimize contributions from noisy proteins and select for proteins most 

significantly associated with age. We find that our approach is robust, as all our figures show consistent 

results across multiple cohorts that are resilient to these possible batch effects. 

 

All cohorts collected blood based on typical medical practice, though slight variations in norms may be 

present between cohorts. Details on exact blood processing from unpublished cohort data are available 

in our methods (Stanford-ADRC, SAMS, Knight-ADRC). We have added additional information from the 



 

Knight-ADRC, lines 506-509. Details for datasets in published studies (Covance, LonGenity) can be found 

in the cited publications and below: 

 

● lines 460-474, Stanford-ADRC 

“Blood collection and processing were done according to a rigorous standardized protocol to 

minimize variation associated with blood draw and blood processing. Briefly, about 10 cc whole 

blood was collected in a vacutainer EDTA tube (BD Vacutainer EDTA tube) and spun at 

3000RPM for 10 mins to separate out plasma, leaving 1 cm of plasma above the buffy coat and 

taking care not to disturb the buffy coat to circumvent cell contamination. Plasma processing 

times averaged approximately one hour from the time of the blood draw to the time of freezing 

and storage. All blood draws were done in the morning to minimize the impact of circadian rhythm 

on protein concentrations. Plasma pTau-181 levels were measured using the fully-automated 

Lumipulse G 1200 platform (Fujirebio US, Inc, Malvern, PA) by experimenters blind to diagnostic 

information, as previously described.” 

● lines 486-494, SAMS 

“SAMS is an ongoing longitudinal study of healthy aging. Blood collection and processing were 

done by the same team and using the same protocol as in Stanford-ADRC” 

● lines 506-509, Knight-ADRC 

“Blood samples were collected in EDTA tubes (BD Vacutainer purple top) at the visit time, 

immediately centrifuged at 1500g for 10 minutes, aliquoted on 2D barcoded Micronic tubes (200ul 

per aliquot) and stored at − 80°C. The plasma was stored in monitored -80C freezer until it was 

pulled and sent to Somalogic for data generation.” 

● Ref 77, Covance 

“EDTA plasma samples had been collected from all these studies and the samples were 

centrifuged and frozen typically 2–10 h after collection, a timeframe that is representative of how 

blood is handled in typical medical practice. Aliquots of these samples were assayed on the 

proteomic platform without further processing after transport and thawing.” 

● Ref 79, LonGenity 

“Plasma was isolated from EDTA-treated blood acquired by venipuncture from participants at 

baseline wave in a fasting state. Plasma samples were stored at −80°C, and 150 µl of aliquots of 

plasma was sent to SomaLogic on dry ice.” 

 

7. The cohorts are very different, irrespective of their individual collection purposes (like ALZ) in terms of 

age range, genetic background and number of participants, which potentially skew data analysis and 

interpretation. 

 

Though our cohorts are indeed different, we find consistent, robust associations between organ age 

gaps with disease. This points to the power in our approach for uncovering generalizable human biology. 

We report all statistics per cohort to make it clear where cohort effects may play a role and visualize 

main figures with meta-analytic plots that display cohort effects when possible. No results highlighted in 

the text or figures are due to cohort-level effects. We agree that it would be interesting to follow-up and 



 

investigate cohort differences and how that may be explained by cohort specific genetic and 

environmental variables. 

 

8. The authors state: 

 

We trained our models in 1,398 cognitively unimpaired participants from the Knight-ADRC cohort. We 

evaluated their performance in the Covance (n = 1,029), LonGenity (n = 962), SAMS (n= 192), Stanford-

ADRC (n=409) cohorts, and Knight-ADRC cognitively impaired subjects (n = 1,677) 

 

But, do we know how the age-gap for each organ was performed? The authors say that one can use 

plasma proteome to determine the age-gap and refer to previous papers, but applying the same 

concept to organs could be a stretch without proper validation and evidence. It is also not clear to this 

reviewer how the authors established the chronology for aging in different organs, particularly from the 

cohorts that includes individuals of different ages, but the numbers of individuals at different ages 

within different cohorts are not shown. For example, the authors state that they used the KADRC to 

train the model. This group has individuals from 27-104 with the SD of 75 yrs; it is not shown how many 

young individuals are in this group. Similarly, they used only 1398 “healthy patients”, but they don’t give 

the age range for this subset either. 

 

We apologize for the confusion on age ranges. We have now made separate columns for the healthy 

versus Alzheimer’s disease individuals in the Knight-ADRC cohort in the demographics table 

(Supplementary Table 1). The age range, mean, and standard deviation for all cohorts are clearly shown. 

A more visual sense of the overall per-cohort age distribution is shown in Supplementary Figure 8a. 

 

In regard to the confusion on the methodology of deriving organ age gaps, we described the derivation 

of the aging models and age gap calculations in precise detail in our methods section with visualizations 

and results in Extended Data Figure 2 and Supplementary Figure 3. 

 

Briefly, we trained models to predict age in healthy individuals in one cohort and predicted age across 

several independent cohorts. For each cohort, we calculated the age gap, which is defined as the 

deviation between predicted age and the regression curve between predicted and chronological age. 

We derived a different predicted vs chronological regression curve for each cohort and each aging 

model to normalize for cohort differences and aging model prediction accuracy, respectively. Perhaps 

this is the detail that was missed. This allowed us to derive an age gap even for individuals outside the 

age of the training cohort age range. The full details are below. 

 

Methods lines 583-618:  

“Bootstrap aggregated LASSO aging models 

To estimate biological age using the plasma proteome, we built LASSO regression-based 

chronological age predictors (Extended Data Fig. 2-3, Supplementary Fig. 3) using the scikit-learn90 

python package. We employed bootstrap aggregation for model training. Briefly, we resampled with 

replacement to generate 500 bootstrap samples of our training data (Knight-ADRC: 1,398 healthy 



 

individuals). Each bootstrap sample was the same size as the training data, 1,398. For each 

bootstrap sample, we trained a model on z-scored log10 normalized protein expression values with 

sex (F=1, M=0) as a covariate to predict chronological age. For model training, we performed 

hyperparameter tuning of the L1 regularization parameter, λ, with 5-fold cross validation using the 

GridSearchCV function from scikit-learn. To reduce model complexity and avoid overfitting, we 

selected the highest λ value that retained 95% performance relative to the best model. The mean 

predicted age from all 500 bootstrap models was used. 

 

We trained our models in 1,398 cognitively unimpaired participants from the Knight-ADRC cohort. 

We evaluated their performance in the Covance (n = 1,029), LonGenity (n = 962), SAMS (n= 192), 

Stanford-ADRC (n=409) cohorts, and Knight-ADRC cognitively impaired subjects (n = 1,677). 

Models that included sex as a covariate and models trained separately on males and females 

showed similar age prediction performance on both sexes, so we controlled for sex to extend the 

generality of the findings and reduce analytic complexity (Supplementary Fig. 3 a-c). There was a 

correlation between age estimation accuracy and the number of proteins used as input to each 

model (Supplementary Fig. 3 c-d). However, several models with few protein inputs, such as the 

adipose (5 proteins) and heart models (10 proteins), predicted chronological age better than models 

with more protein inputs (Extended Data Fig. 3). 

 

Age gap calculation and independent validation 

To calculate each individual sample age gap for each aging model, we performed the following 

steps for each aging model. We fit a local regression between predicted and chronological age 

using the lowess function from the statsmodels91 python package with fraction parameter set to 2/3 

to estimate the true population mean (Supplementary Fig. 3e). A local regression is used in place 

of a simple linear regression because of extensive evidence that the plasma proteome changes 

non-linearly with age1, which we see replicated in all 5 cohorts (Supplementary Fig. 8). Individual 

sample age gaps were then calculated as the difference between predicted age and the lowess 

regression estimate of the population mean. Age gaps were calculated separately per cohort to 

account for cohort differences (Supplementary Fig. 3e). Age gaps were z-scored per aging model 

to account for the differences in model variability (Supplementary Fig. 3f). This allowed for direct 

comparison between organ age gaps in downstream analyses.” 

 

Main text lines 90-91, 96-99:  

We and others have previously shown that plasma proteins can be used to train machine learning 

models to estimate chronological age in independent cohorts… Based on this concept, we trained 

a bagged ensemble of least absolute shrinkage and selection operator (LASSO) aging models for 

11 major organs using the mutually exclusive organ-enriched proteins we identified as inputs (Fig. 

1a, Extended Data Fig. 2a-b, Supplementary Fig. 3, Supplementary Table 6-8).” 

 

We also recognize our study has limitations in that the training cohort is skewed towards older 

individuals and therefore, may not apply equally well to young individuals. This concern was brought up 

in the first round of review. We acknowledge this limitation in lines 391-392: “While our current models 

serve as a proof of principle for this approach, since they are trained and evaluated largely on older 

adults, caution should be used when applying them to young people.” If there are additional concerns 

about cohort age ranges, we refer this reviewer to Reviewer 4 comments 6-7 from the first round of 

review. 

 



 

9. They seem to be “very precise” by defining the age gap, for example: 

 

Individuals with hypertension had kidneys that were approximately 1 year older than their same-aged 

peers, while individuals with diabetes had kidneys approximately 1.3 years older (Fig. 2a-b, 

Supplementary Table 8,10 

 

With just a few ”organ specific” proteins can one have such a level of exactness? For example the paper 

uses only 12 kidney-specific proteins and established 1 year older. What’s the error of this calculation? 

 

We apologize for the confusion on the age gap statistics in the main text. To clarify, for each disease we 

tested the following linear model: z-scored age gap ~ disease (1 or 0) + age + sex. The coefficient for the 

disease variable provides an estimate of the mean difference in z-scored age gaps between disease and 

control groups, controlled for age and sex. We then converted the mean difference in z-scored age gaps 

to mean difference in raw age gaps based on the standard deviation (Supplementary Table 8) of the raw 

age gaps. This raw mean difference in age gaps statistic is what is provided in the text. The exact statistic 

for the association between hypertension and kidney aging is 1.022 ± 0.075 years. For diabetes it is 

1.270 ± 0.119 years, based on the standard errors from the associated models. Coefficients, standard 

errors, confidence intervals, p-values, and other relevant statistics are provided in Supplementary Tables 

(8-13 and 20-24).   

 

We have added the following to the methods section, lines 658-666, to improve clarity: 

“Most organ age gap vs trait associations in this study (Fig. 2a-d; Fig. 3c; Extended Data Fig. 4d-e, 

Extended Data Fig. 5c; Extended Data Fig. 6b-c; Extended Data Fig. 7, Extended Data Fig. 8c-d, 

Extended Data Fig. 9) were assessed using linear models controlled for age and sex as follows: 

age gap ~ trait + age + sex and adjusted for multiple testing burden using the Benjamini–

Hochberg method when appropriate. To describe disease associations in relation to years of 

additional aging in the main text, we took the coefficient for the trait variable – which provides 

an estimate of the mean difference in z-scored age gaps between disease and control – and 

converted that to an estimate of mean difference in raw age gaps, using the standard deviation 

of raw age gaps provided in Supplementary Table 8.” 

 

10. The usual naming of handpicked molecules and generalizations. 

 

“synaptic proteins complexin 1 (CPLX1), complexin 2 (CPLX2), and neurexin 3 (NRXN3) – which all have 

genetic links to cognition and AD44–48, and stathmin 2 (STMN2) and olfactomedin 1 (OLFM1) – which 

are involved in neurite outgrowth and axon growth cone collapse49,50” 

 

One can hand pick any neuronal protein and find correlation to disease. What is the biological meaning 

of this kind of statements? 

 

Thank you for this question. To clarify, these proteins were not hand picked or cherry picked. They were 

the most important proteins that were selected by the brain aging model and by our feature importance 



 

method, FIBA in an unbiased fashion. This is presented in the text, in Fig 3a-b, and in Supplementary 

Table 18. Importantly, not all neuronal proteins in our data changed with age or cognition 

(Supplementary Table 15, 18, 24), suggesting the ones that were selected have particular importance in 

aging and cognitive decline and deserve additional study. The cited studies above merely lend additional 

support to the potential role of these proteins in cognitive aging and Alzheimer’s disease but are not 

meant to be the core message. As an aside, reviewers in the first round of reviews wanted us to 

highlight individual proteins and discuss their possible role in aging and disease. 
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Reviewer Reports on the Second Revision: 

Referees' comments: 

Referee #5 (Remarks to the Author): 

The authors have done a good job of responding to the questions raised. I have no further concerns 

or questions. I still find this study highly innovative and interesting with both fundamental and 

clinical implications that are potentially important. 

Referee #6 (Remarks to the Author): 

The authors have comprehensively addressed all my concerns and implemented the necessary 

changes. I endorse the publication of the revised manuscript and extend my congratulations for their 

outstanding work.
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