An improved machine learning-based model for the classification of offtargets in the CRISPR/Cpf1 system

Pragya Kesarwani^{1,2}, Dhvani Sandip Vora² and Durai Sundar^{2,3,*}

¹Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India ²Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India

³Yardi School of Artificial Intelligence, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India

*Correspondence: DS: <u>sundar@dbeb.iitd.ac.in</u>

PK: pragya.kesarwani@rcb.res.in

DSV: <u>dhvani.vora@dbeb.iitd.ac.in</u>

DS: sundar@dbeb.iitd.ac.in

List of Supplementary Data

Supplementary Figure 1: Presence of one-base mismatch type in positive and negative off-targets of AsCpf1 at position (A) 16, (B)17, (C) 18 and (D) 23 from PAM.; * denotes the P-value >= 0.0005 whereas *** denotes the P-value < 0.0005; error bars, s.e.m.

Supplementary Figure 2: Presence of one-base mismatch type in positive and negative off-targets of LbCpf1 at position (A) 16, (B)17, (C) 18 and (D) 23 from PAM.; * denotes the P-value >= 0.0005 whereas *** denotes the P-value < 0.0005; error bars, s.e.m.

Supplementary Figure 3: Summary plot depicting top 20 features of best models on hybrid feature sets. Top 20 features based on mean SHAP values of models trained on AsCpf1 dataset using (A) sequence-based feature set (B) base-dependent binding energy associated feature set and (C) sequence and base-dependent binding energy associated feature set. Similarly, the Summary plot is based on mean SHAP values for the LbCpf1 dataset using (D) sequence-based feature set (E) base-dependent binding energy associated feature set, and (F) sequence and base-dependent binding energy associated feature set, and (F) sequence and base-dependent binding energy associated feature set. The data points lying in the left quadrant represents the negative off-targets and data points lying in the right quadrant represents the minimum value of the feature and magenta indicates the maximum feature value.

Supplementary Table 1: Hyperparameters tuned recursively to optimize machine learning models for both AsCpf1 and LbCpf1

ML model	Hyperparameters
MLPClassifier	Seed, weight optimization, alpha, activation function, number of hidden layers, size of hidden layers, maximum number of iterations, validation set, initial learning rate, learning rate schedule, random state, tolerance for optimization, maximum number of epochs without any improvement in tolerance, validation set, epsilon, beta1 and beta2
AdaBoostClassifier	Base estimator, number of estimators, learning rate, random state, seed value
LinearSVC	Regularization parameter (C), class weights, loss function, penalty, dual, tolerance, seed value
LogisticRegression	Class weights, inverse of regularization strength (C), maximum number of iterations, algorithms, seed value
DecisionTreeClassifier	Class weights, number of features, maximum depth of the tree, minimal cost_complexity pruning (ccp_alpha), number of leaf nodes, random state, Seed value

* The optimized values for the above mentioned parameters have been provided in the associated Jupyter Notebook.

Supplementary Table 2: Comparison of prediction errors of best performing models of three different feature sets with and without undersampling.

		Without under sampling			With u	nder sampli	ng
Species	Model	Bias	Variance	MSE	Bias	Variance	MSE
	SeqClassifier	0.003	0.001	0.004	0.008	0.015	0.023
AsCpf1	MMEClassifier	0.003	0.000	0.003	0.032	0.023	0.054
	CombClassifier	0.003	0.001	0.003	0.015	0.017	0.032
	SeqClassifier	0.002	0.001	0.002	0.039	0.036	0.075
LbCpf1	MMEClassifier	0.002	0.001	0.002	0.063	0.029	0.92
	CombClassifier	0.004	0.007	0.010	0.032	0.043	0.074

Supplementary Table 3: Performances of optimized machine learning models on 25% test split of AsCpf1 dataset with hybrid feature set

Feature sets	Models	Precision	Recall	F1 score	MCC
	AdaBoostClassifier	0.92	0.90	0.91	0.815
Sequence associated feature	LinearSVC	0.85	0.91	0.87	0.749
set	LogisticRegression	0.83	0.93	0.87	0.746
	DecisionTreeClassifier	0.81	0.92	0.86	0.722
	MLPClassifier	0.87	0.89	0.88	0.766
	AdaBoostClassifier	0.95	0.89	0.92	0.844
Migmetch anony againsted	LinearSVC	0.88	0.83	0.86	0.715
facture set	LogisticRegression	0.91	0.88	0.89	0.789
leature set	DecisionTreeClassifier	0.97	0.87	0.92	0.837
	MLPClassifier	0.97	0.86	0.91	0.827
	AdaBoostClassifier	0.94	0.86	0.89	0.790
Sequence and mismatch	LinearSVC	0.95	0.86	0.90	0.806
energy associated feature	LogisticRegression	0.91	0.86	0.88	0.770
set	DecisionTreeClassifier	0.67	0.84	0.72	0.477
	MLPClassifier	0.92	0.91	0.92	0.832

Supplementary Table 4: Performances of optimized machine learning models on 25% test split of LbCpf1 dataset with hybrid feature set

Feature sets	Models	Precision	Recall	F1 score	MCC
	AdaBoostClassifier	0.95	0.85	0.89	0.791
Secure as associated feature	LinearSVC	0.87	0.93	0.89	0.789
Sequence associated feature	LogisticRegression	0.88	0.93	0.90	0.800
set	DecisionTreeClassifier	0.86	0.90	0.88	0.756
	MLPClassifier	0.92	0.90	0.91	0.824
	AdaBoostClassifier	0.94	0.90	0.92	0.834
Mismotch energy accorded	SVC	0.97	0.86	0.91	0.818
footure set	LogisticRegression	0.93	0.87	0.89	0.791
leature set	DecisionTreeClassifier	0.81	0.90	0.85	0.714
	MLPClassifier	0.96	0.86	0.91	0.815
	AdaBoostClassifier	0.96	0.84	0.89	0.784
Sequence and mismatch	LinearSVC	0.88	0.91	0.89	0.789
energy associated feature	LogisticRegression	0.90	0.92	0.91	0.818
set	DecisionTreeClassifier	0.86	0.85	0.86	0.713
	MLPClassifier	0.91	0.92	0.91	0.821

Supplementary	Table 5: Comparison o	f performance metrics	of best performing model
with the existing	g models		

Dataset	Models	Precision	Recall	F1 score	auc_roc	MCC
	CombClassifier	0.92	0.91	0.92	0.915	0.832
	SeqClassifier	0.92	0.90	0.91	0.899	0.815
AcCnf1	MMEClassifier	0.95	0.89	0.92	0.892	0.820
Ascpii	CRISPR-DT	0.50	0.45	0.37	0.483	0.016
	CINDEL	0.50	0.48	0.49	0.476	0.017
	DeepCpf1	0.68	0.57	0.62	0.546	0.116
	CombClassifier	0.91	0.92	0.91	0.915	0.821
	SeqClassifier	0.92	0.90	0.91	0.903	0.824
I hCnf1	MMEClassifier	0.94	0.90	0.92	0.899	0.833
Locpii	CRISPR-DT	0.50	0.48	0.49	0.483	0.017
	CINDEL	0.49	0.35	0.40	0.348	0.076
	DeepCpf1	0.63	0.54	0.58	0.537	0.120

Supplementary Table 6: Highly significant position-specific mononucleotides with enrichment score and P-values calculated using a Welch *t-test*.

Position	Nucleotide	P-value	enrichment	P-value	Enrichment
		(LbCPf1)	ratio (LbCPf1)	(AsCpf1)	ratio (AsCpf1)
	С	2.67E-15	0.163355	5.86E-24	0.048169
1	G	6.69E-17	3.193583	6.07E-07	2.178062
1	Т	0.003058	1.155534	5.71E-14	1.38697
	А	5.01E-16	0.117872	9.63E-16	0.068624
	С	5.75E-24	0.07221	1.80E-28	0.041746
2	G	3.93E-11	0	1.91E-12	0.020038
2	Т	8.52E-63	1.752491	1.72E-66	1.837477
	А	8.08E-20	0	4.34E-16	0
	С	1.54E-07	0.216098	1.99E-12	0.05465
2	G	1.61E-17	0.02745	6.26E-16	0.015655
5	Т	4.09E-65	1.824905	8.07E-51	1.577262
	А	4.88E-31	0.00828	7.31E-18	0
	С	0.00053	1.559933	4.63E-07	1.900679
4	G	1.22E-07	1.535392	9.84E-05	1.39396
4	Т	1.52E-18	0.341432	1.27E-21	0.304929
	А	0.603652	0.938725	0.63144	1.041985
	С	0.007723	1.355523	1.49E-07	1.75334
5	G	9.00E-30	2.298496	7.16E-15	1.846801
5	Т	5.08E-16	0.338224	3.14E-13	0.378204
	А	4.74E-19	0.178306	6.32E-20	0.14313
	С	0.000893	0.590013	0.522355	0.882278
6	G	1.67E-08	1.520338	0.000748	1.340789
6	Т	0.222999	1.118259	0.000136	1.335878
	А	1.76E-09	0.359909	6.81E-18	0.202066
	С	0.541413	0.925573	0.939707	0.972149
7	G	3.53E-53	3.59111	1.38E-33	2.435533
/	Т	3.86E-25	0.333969	2.84E-19	0.354843
	А	5.41E-10	0.337276	4.71E-10	0.222646
	С	4.56E-15	0.363192	8.99E-11	0.400763
0	G	1.88E-10	0.150286	0.008993	0.550067
8	Т	9.62E-14	1.830825	4.71E-09	1.651583
	А	0.004876	1.271171	0.115496	1.121183
	С	0.00046	0.660679	1.52E-05	0.577743
0	G	1.58E-20	2.416975	1.92E-15	2.162013
9	Т	0.611726	0.955308	0.297628	1.077524
	А	5.47E-12	0.313096	7.75E-12	0.255806
	С	0.003389	0.692376	0.684719	0.931066
10	G	8.73E-08	1.748428	2.07E-09	1.830016
10	Т	1.16E-25	0.157835	1.74E-25	0.158923
	А	1.92E-08	1.579167	0.00334	1.274537
11	С	0.000532	0.592966	0.012353	0.624378
11	G	6.43E-05	1.558524	1.11E-05	1.603053

	Т	0.002283	1.259083	0.170254	0.881487
	А	3.03E-06	0.559036	0.368631	0.882022
	C	4.80E-21	2.755248	3.43E-11	2.168514
12	G	0.003885	0.667939	2.96E-05	0.520599
12	Т	0.910877	0.989837	0.017804	1.196218
	А	3.90E-11	0.471829	2.91E-08	0.497546
	С	0.112851	1.166508	0.00331	1.276404
12	G	0.000221	0.619065	2.80E-06	0.500954
15	Т	1.24E-10	0.459996	4.25E-10	0.446797
	А	8.95E-15	2.145501	1.65E-12	2.18137
	C	0.929228	1.009442	0.01234	1.278297
14	G	1.86E-09	1.7291	0.004636	1.31083
14	Т	0.000226	0.651591	0.050202	0.779262
	А	0.003157	0.687259	0.000842	0.640564
	C	1.93E-10	0.405352	1.21E-07	0.472901
15	G	7.48E-14	0.410138	3.22E-16	0.318487
15	Т	1.24E-05	0.466004	0.065348	0.751431
	А	1.72E-49	2.699171	1.68E-37	2.567916
	С	5.64E-36	3.143919	9.54E-25	2.641395
16	G	2.74E-07	0.430821	0.013905	0.635012
10	Т	0.004482	0.746764	0.014993	0.775286
	А	4.26E-10	0.500954	7.16E-11	0.450859
	С	2.44E-19	2.428539	1.85E-14	2.295512
17	G	0.475457	1.113232	0.714755	0.932008
1/	Т	2.25E-16	0.288319	4.49E-06	0.509743
	А	0.023411	0.835693	0.009386	0.791752
	C	7.03E-43	3.245312	2.15E-31	2.790261
10	G	0.006899	0.7121	0.004309	0.661638
10	Т	1.17E-11	0.442561	4.63E-05	0.627001
	А	1.50E-08	0.48319	2.45E-09	0.42717
	C	0.015501	1.354853	0.002588	1.409278
10	G	9.31E-08	0.51487	2.69E-10	0.411231
19	Т	9.22E-07	0.512977	0.000341	0.589909
	А	2.36E-11	1.651293	9.71E-09	1.549003
	C	1.13E-07	0.304929	2.87E-05	0.369124
20	G	6.86E-06	0.612277	5.36E-06	0.581107
20	Т	0.418795	0.922287	0.441785	1.05464
	А	2.33E-16	1.923955	2.12E-09	1.667238
	С	1.33E-23	2.460998	6.91E-13	1.965282
21	G	0.114503	1.18258	0.010224	1.313181
21	Т	2.04E-05	0.477654	0.150574	0.780708
	А	2.00E-17	0.414251	3.44E-17	0.403754
	С	1.40E-14	0.36198	1.09E-08	0.468518
22	G	1.78E-05	0.471486	0.010011	0.59129
	Т	4.49E-06	1.616286	3.08E-06	1.54075
	А	9.92E-08	1.488384	0.021302	1.189012
22	С	1.14E-05	1.51069	0.015363	1.265122
23	G	0.006918	0.664309	0.011354	0.667939

	Т	0.027167	1.282817	0.15793	1.134974
	А	2.77E-05	0.678215	0.152308	0.848282
	С	1.06E-11	1.81448	0.000106	1.416761
24	G	0.112259	1.295571	0.101062	1.288168
24	Т	0.000417	0.601145	0.001285	0.635138
	А	4.40E-07	0.663657	0.07593	0.841174
	С	0.628107	0.948777	0.161395	1.189766
25	G	0.000619	0.646393	0.839927	0.945197
23	Т	2.20E-06	0.593723	0.42042	0.873757
	А	0.865976	1.007944	0.722505	0.96139
	С	0.867066	1.020292	1.94E-05	2.027117
26	G	1.66E-10	1.518043	3.78E-11	1.767594
20	Т	0.01275	0.751431	0.954895	0.989539
	А	5.08E-33	0.398153	4.73E-23	0.3983
	С	0.063181	1.217194	8.95E-07	1.9243
07	G	3.46E-16	1.76218	9.86E-18	2.241383
21	Т	4.77E-06	0.577489	0.887903	0.960162
	A	1.04E-42	0.33715	2.41E-37	0.28626

Supplementary Table 7: Complete set of features used for training model for the prediction of on-target efficiencies.

			Position-specific mononucleotides in target
		Position-Specific	(27*4=108)
		nucleotide composition	Position-specific mononucleotides in off-
			target (27*4=108)
		Desition non anasifia	Mononucleotides counts (4)
		Position non-specific	Dinucleotides frequencies (16)
		nucleotide composition	GC content (1)
	-	Panatitiva saguanaas	Presence of AAAA (1), TTTT (1), GGGG (1),
	Feature	Repetitive sequences	CCCC(1)
	set 1		Number of mismatches (1)
		Mismatches	Position-specific mismatches (27)
			Position-specific mismatch types
Feature			(16*27=432)
set 5		Bulges	Number of bulges (1)
			Position-specific bulges (27)
			Minimum free energy (1)
			Melting temperature (Seed region (1), non-
			seed region (1) and gRNA (1))
			Base-dependent binding energy of PAM
			region (8) [1]
		Thermodynamics Related	PAM binding energy of target (1) and off-
	Feature	features	target (1)
	set 2		Relative PAM binding energy (1)
			Position-specific mismatch-dependent binding
			energy weights to protospacer region (23) [1]
			Total base-dependent binding energy of seed
			region, non-seed region and gRNA (3) [1]

Reference

1. Specht, D. A.; Xu, Y.; Lambert, G., Massively parallel CRISPRi assays reveal concealed thermodynamic determinants of dCas12a binding. *Proceedings of the National Academy of Sciences* **2020**, *117* (21), 11274-11282.