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mini-CNNImagene

Figure A Comparison of Imagene with mini-CNN. Imagene, similar to other CNNs for detecting
selection, contains multiple convolution layers and kernels. mini-CNN contains a single convolution layer
with a single 2x1 kernel, followed by ReLU activation and a single dense layer.
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Architecture Accuracy

Imagene
3 × [Conv2d(32 3x3 kernels) + ReLU + MaxPool(2x2)]

[Dense Layer (64 units) + ReLU]

[Dense Layer (1 unit) + Sigmoid ]

97.6

3 × [Conv2d(32 3x3 kernels) + ReLU + MaxPool(2x2)]

[Dense Layer (1 unit) + Sigmoid]
97.5

2 × [Conv2d(32 3x3 kernels) + ReLU + MaxPool(2x2)]

[Dense Layer (1 unit) + Sigmoid]
98.0

1 × [Conv2d(32 3x3 kernels) + ReLU + MaxPool(2x2)]

[Dense Layer (1 unit) + Sigmoid]
97.8

1 × [Conv2d(16 3x3 kernels) + Relu + MaxPool(2x2)]

[Dense Layer (1 unit) + Sigmoid]
97.8

1 × [Conv2d(4 3x3 kernels) + Relu + MaxPool(2x2)]

[Dense Layer (1 unit) + Sigmoid]
97.8

1 × [Conv2d(1 3x3 kernel) + Relu + MaxPool(2x2)]

[Dense Layer (1 unit) + Sigmoid]
97.7

1 × [Conv2d(1 2x2 kernel) + Relu + MaxPool(2x2)]

[Dense Layer (1 unit) + Sigmoid]
97.8

1 × [Conv2d(1 1x2 kernel) + Relu + MaxPool(2x2)]

[Dense Layer (1 unit) + Sigmoid]
84.3

1 × [Conv2d(1 2x1 kernel) + Relu + MaxPool(2x2)]

[Dense Layer (1 unit) + Sigmoid]
97.4

mini-CNN
1 × [Conv2d(1 2x1 kernel) + Relu]

[Dense Layer (1 unit) + Sigmoid]
97.3

1 × [Conv2d(1 2x1 kernel) + MaxPool(2x2)]

[Dense Layer (1 unit) + Sigmoid]
97.3

1 × [Conv2d(1 2x1 kernel)]

[Dense Layer (1 unit) + Sigmoid]
78.9

[Dense Layer (1 unit) + Sigmoid] 77.6

Table A Model accuracy for decreasing levels of complexity, for single-population demo-
graphic model with selection coefficient s = 0.01. Each model is trained on 80,000 training simulations,
with 20,000 simulations for testing and validation. Accuracy is calculated on a balanced testing set, and red
values indicate substantial losses in accuracy. mini-CNN is one of two models with the lowest complexity
that maintains high performance: 1 convolutional layer with a single 2x1 kernel, followed by either ReLu
or MaxPooling, with a single 1-unit dense layer followed by a sigmoid function. We chose the model with
ReLu rather than MaxPooling for its slight favorability with respect to interpretation of the model. We note
that a 1x2 kernel does not perform as well (with 84.3% accuracy), indicating that row-to-row differences are
a more salient signal than column-to-column differences, as would be expected. In addition, a single dense
layer followed by a sigmoid, replicating a logistic regression model on the pixels of the input image, also does
not perform as well (77.6% accuracy).
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Figure B SHAP explanations for Imagene predictions without row-sorting. Visualization of
Imagene with SHAP explanations. From left to right are examples of neutral and sweep processed images,
SHAP values for the two image examples, and average SHAP values across 1000 neutral and sweep images.
A negative SHAP value (blue) indicates that the pixel of interest contributes toward a prediction of neutral,
while a positive SHAP value (red) indicates that the pixel of interest contributes toward a prediction of
sweep. Without row-sorting, it is difficult to identify any particular patterns of interest to the model.
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Architecture Accuracy

Imagene
3 × [Conv2d(32 3x3 kernels) + ReLU + MaxPool(2x2)]

[Dense Layer (64 units) + ReLU]

[Dense Layer (1 unit) + Sigmoid ]

74.9

3 × [Conv2d(32 3x3 kernels) + ReLU + MaxPool(2x2)]

[Dense Layer (1 unit) + Sigmoid]
71.9

2 × [Conv2d(32 3x3 kernels) + ReLU + MaxPool(2x2)]

[Dense Layer (1 unit) + Sigmoid]
73.2

1 × [Conv2d(32 3x3 kernels) + ReLU + MaxPool(2x2)]

[Dense Layer (1 unit) + Sigmoid]
71.6

1 × [Conv2d(16 3x3 kernels) + Relu + MaxPool(2x2)]

[Dense Layer (1 unit) + Sigmoid]
72.2

1 × [Conv2d(4 3x3 kernels) + Relu + MaxPool(2x2)]

[Dense Layer (1 unit) + Sigmoid]
73.4

1 × [Conv2d(4 3x1 kernels) + Relu + MaxPool(2x2)]

[Dense Layer (1 unit) + Sigmoid]
54.7

1 × [Conv2d(1 3x3 kernel) + Relu + MaxPool(2x2)]

[Dense Layer (1 unit) + Sigmoid]
52.5

1 × [Conv2d(1 2x2 kernel) + Relu + MaxPool(2x2)]

[Dense Layer (1 unit) + Sigmoid]
53.4

1 × [Conv2d(1 1x2 kernel) + Relu + MaxPool(2x2)]

[Dense Layer (1 unit) + Sigmoid]
53.1

1 × [Conv2d(1 2x1 kernel) + Relu + MaxPool(2x2)]

[Dense Layer (1 unit) + Sigmoid]
53.2

mini-CNN
1 × [Conv2d(1 2x1 kernel) + Relu]

[Dense Layer (1 unit) + Sigmoid]
51.3

1 × [Conv2d(1 2x1 kernel) + MaxPool(2x2)]

[Dense Layer (1 unit) + Sigmoid]
53.3

1 × [Conv2d(1 2x1 kernel)]

[Dense Layer (1 unit) + Sigmoid]
51.5

[Dense Layer (1 unit) + Sigmoid] 51.5

Table B Model accuracy for decreasing levels of complexity, for single-population demo-
graphic model with selection coefficient s = 0.01, trained without row-sorting. Each model is
trained on 80,000 training simulations, with 20,000 simulations for testing and validation. Accuracy is cal-
culated on a balanced testing set, and red values indicate substantial losses in accuracy. In the absence of
row sorting, four 3x3 kernels appear to be necessary to maintain performance.
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s=0.01 s=0.005

Three-population
demographic model

sweep in YRI

Three-population
demographic model

sweep in CEU

Figure C Performance correlation for summary statistics and CNN approaches under image
resizing. Spearman correlation matrices are shown for the single population demographic model, as well as
the three-population demographic model with sweeps in YRI and in CEU. Left matrices are calculated for
sweep simulations with selection coefficient s=0.01, and right matrices are calculated for selection coefficient
s=0.005. CNN methods (Imagene, mini-CNN, and DeepSet) are run on pre-processed images using image
resizing.
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Single pop
model

Three-pop
model,
sweep in
YRI

Three-pop
model,
sweep in
CEU

Three-pop
model,
sweep in
CHB

Selection
coefficient (s)

0.01 0.005 0.01 0.005 0.01 0.005 0.01 0.005

Imagene 97.60 56.00 82.30 55.60 84.80 53.00 81.90 53.60
Mini-CNN 97.30 58.10 80.50 51.40 84.30 55.30 84.90 52.80
DeepSet 75.67 50.96 74.40 61.35 75.25 57.35 77.90 55.90

Imagene (ZP) 98.20 55.10 85.60 68.00 88.80 69.10 81.90 62.10
Mini-CNN (ZP) 97.60 58.20 86.10 73.20 87.20 68.50 84.90 66.30
DeepSet (ZP) 86.77 54.20 82.95 75.70 81.45 69.10 81.60 68.20
Imagene (tr) 92.55 55.87 79.00 54.05 50.00 59.20 77.30 57.70
Mini-CNN (tr) 92.03 55.00 74.75 53.1 77.7 61.05 78.6 60.05
DeepSet (tr) 66.00 52.65 65.30 59.85 75.25 56.55 76.55 55.80
Garud’s H1 98.15 61.07 84.70 54.25 89.15 55.65 88.25 57.10

IHS 79.79 55.18 81.70 50.95 80.25 50.90 79.35 50.90
Tajima’s D 64.80 52.08 50.00 50.00 50.00 50.00 50.00 50.10

S 81.90 53.36 81.15 74.65 81.85 72.20 78.95 72.35

Table C Model accuracy for all CNN models and summary statistics, across all demographic
models and types of pre-processing. Performance values of multiple methods that were trained and
tested on the same demographic model and selection coefficient. The performance values were found by
computing the accuracy of the trained model or statistic on a balanced, held-out set. Here, (ZP) denotes
that the images were standardized to a fixed width using zero padding, and (tr) indicates that the images
were standardized to a fixed width using trimming. In all other cases where standardization was required,
an image resizing algorithm was used.
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Figure D Visualization of model performances across all demographic models for selection
coefficient of 0.01. Each sub-plot corresponds to a different demographic model, the x-axis denotes the
model type, and the y-axis corresponds to the accuracy of the model on a balanced, held-out set. In all cases
where image standardization was required, an image resizing algorithm was used. Error bars correspond to
95% confidence intervals for the accuracy on the test set.
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Figure E Visualization of model performances across all demographic models for selection
coefficient of 0.005. Each sub-plot corresponds to a different demographic model, the x-axis denotes the
model type, and the y-axis corresponds to the accuracy of the model on a balanced, held-out set. In all cases
where image standardization was required, an image resizing algorithm was used. Error bars correspond to
95% confidence intervals for the accuracy on the test set.
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Selection
coefficient (s)

0.01 0.005

Number of Haplotypes 128 1000 128 1000
Imagene 97.60 99.18 56.00 60.08
Mini-CNN 97.30 99.05 58.10 61.62
DeepSet 75.67 85.2 50.96 53.17

Garud’s H1 98.15 99.68 61.07 67.59

Table D Model accuracy for Imagene, Mini-CNN, DeepSet, and Garud’s H1 methods on
Single Pop Model with varying selection coefficient and number of haplotypes. The performance
values were found by computing the accuracy of the trained model or statistic on a balanced, held-out set
of size 10,000. For image standardization with the ML models, an image resizing algorithm was used. The
images with 128 haplotypes were resized to a height and width of 128x128. Due to GPU memory constraints,
the images with 1000 haplotypes were resized to 200x200. The top performing method is bolded in each
column.
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Figure F Simulations of CEU and YRI under the three-population demographic model match
the site frequency spectrum of 1000 Genomes populations. On the left is the full folded site frequency
spectrum(SFS) for each simulated dataset and real dataset, and on the right is the same figure, zoomed into
the low minor allele frequencies for easier visualization. The SFS curves for the simulated populations match
quite closely the observed SFS curves for each of the two populations, an indication that these simulations
do a decent job of capturing the overall sequence diversity of these populations.
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Single-population
demographic model

Neutral
Simulations

Sweep
Simulations

Three-population
demographic model

sweep in YRI

Three-population
demographic model

sweep in CEU

s=0.01

s=0.005

s=0.01

s=0.005

Figure G SHAP explanations for Imagene predictions under image resizing. SHAP explanations
are shown for neutral and sweep simulations, across demographic models and selection coefficients. Dark red
indicates pixels that are influential for classifying the image as a sweep, and dark blue indicates pixels that
are influential for classifying the image as neutral. In general, the rows at the top of the image are informative
for moderate selection coefficient s = 0.01 (1st and 3rd rows), but Imagene, like other methods, has trouble
distinguishing between neutral and sweep simulations when the selection coefficient is low (s = 0.005; second
and fourth rows).
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Single-population
demographic model

Three-population
demographic model

sweep in YRI

Three-population
demographic model

sweep in CEU

s=0.01 s=0.005

Figure H Visualization of mini-CNN dense layer under image resizing. mini-CNN shows similar
patterns to those seen with Imagene in Figure G; for moderate selection coefficient s = 0.01, the most
influential pixels are near the top of the image. For s = 0.005, mini-CNN has trouble discerning a signature
in all but the simplest case of the single-population demographic model.
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Single-population
demographic model

Three-population
demographic model

sweep in YRI

Three-population
demographic model

sweep in CEU

s=0.01 s=0.005

Figure I Visualization of mini-CNN dense layer under zero-padding. When zero-padding is used
in preprocessing, the pixels that most influence classification tend to lie both at the top of the image, and
in vertical strips, similar to the patterns seen in Figure J. Also similarly, this pattern is especially apparent
when the selection coefficient is low.
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Single-population
demographic model

Neutral
Simulations

Sweep
Simulations

Three-population
demographic model

sweep in YRI

Three-population
demographic model

sweep in CEU

s=0.01

s=0.005

s=0.01

s=0.005

Figure J SHAP explanations for Imagene predictions under zero-padding. SHAP explanations
are shown across demographic models and selection coefficients. Informative pixels tend to be at the top of
the image as in Figure G, but also in vertical strips. Since neutral images tend to have a greater number
of segregating sites, especially in simulated data that does not account for mutation rate variation, sweep
images typically have more padded columns added. The CNN therefore learns that finding variation beyond a
certain point is a signature of neutrality. We note that when the selection coefficient is low (s = 0.005; second
and fourth rows), this paves the way for higher classification accuracy when compared with the accuracy
on the same scenario under image resizing. We urge caution in generalizing this result, however, without
analyzing performance on a wider range of simulations across a range of mutation rates.
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Three-population
demographic model
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demographic model
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Figure K Performance correlation for summary statistics and CNN methods under zero-
padding. Spearman correlation matrices are shown for the same models as in Figure C. CNN methods are
run on pre-processed images using zero-padding. In addition, we include a summary statistic “Ncols” that
counts the number of columns in the image after removal of sites with minor allele frequency below 1%; the
correlation of Ncols with the CNN approaches illustrates the potential artifacts introduced by zero-padding.
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Single-population
demographic model

Three-population
demographic model

sweep in YRI

Three-population
demographic model

sweep in CEU

Neutral Sweep

Figure L SHAP explanations for Imagene predictions with trimming for standardizing image
width. To achieve uniform image width, we determined the minimum number of columns present across
the simulations used for training, rounded down to the nearest multiple of 10, then trimmed all images to
this width. We see similar behavior here as we see with image resizing (but not zero-padding): the CNN is
attentive to the top of the image.
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Figure M Full images corresponding to the cropped images in Figure 4.
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Neutral SHAP

Sweep SHAP

Hard Sweep
vs Neutral

Soft Sweep
vs Neutral

Figure N SHAP visualizations for Imagene trained to distinguish between hard/soft sweeps
and neutrality We generated simulations from our single-population demographic model, introducing a
sweep from standing variation in which a mutation present in 3% of the population acquires a selection
coefficient of s = 0.01. On the right are average SHAP explanations for neutral and soft sweep simulations in
training. On the left, for comparison, are the same explanations for Imagene trained on a hard sweep with the
same selection coefficient. It is intriguing that the salient features seem to extend further down the image in
the case of soft vs neutral, indicating that the model finds useful information from more haplotypes. We are
hesitant to generalize these results, however, as our accuracies at the Hard/Soft task are quite low (Imagene:
60.7%, mini-CNN: 59.7%, Garud’s H2/H1: 63.7%) and we have not optimized either our simulations or our
model architectures for this task.
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Hard Sweep
vs Neutral

Hard Sweep
vs Soft Sweep

Figure O Visualizations of mini-CNN dense layer, comparing Hard vs Neutral and Hard vs
Soft sweep classification. For the same soft sweep simulations referenced in Figure N, and our single-
population hard sweeps with s = 0.01 we trained mini-CNN to classify between hard and soft sweeps. Looking
at the dense layer when classifying Soft vs Hard, it is intriguing to see a pattern of dark pixels, corresponding
to a classification of Hard, that is slightly further down the image than what we see when we classify Neutral
vs Hard. The interpretation here would be that an absence of row-to-row differences in this lower stripe is the
most salient signal to mini-CNN for a classification of Hard over Soft. This could make sense given that soft
sweep results in a less robust signal of haplotype homozygosity. We are hesitant to generalize these results,
however, as our accuracies at the Hard/Soft task are quite low (Imagene: 60.7%, mini-CNN: 59.7%, Garud’s
H2/H1: 63.7%) and we have not optimized either our simulations or our model architectures for this task.
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Single population demographic model (msms)
s=0.01

preprocessing: resize to fixed width

Three-population demographic model (SLiM)
s=0.01, sweep in YRI

preprocessing: resize to fixed width

Three-population demographic model (SLiM)
s=0.01, sweep in CEU

preprocessing: resize to fixed width

Single population demographic model (msms)
s=0.01

preprocessing: zero-padding

Figure P Sample Complexity Analysis. Analysis of performance with increasing training set size.
Results are shown for the single-population and three-population demographic models for selection coefficient
s=0.01, with the image-width standardization approaches denoted. Accuracy across a balanced test set is
calculated across a range of training set sizes, for a range of CNN methods and summary statistics. Horizontal
dotted red lines indicate the training set size used in the paper; we see in particular that for the more
computationally intensive simulations (3 populations with forward simulator SLiM), training sets larger than
18,000 (with 2,000 held out for testing and validation) do not offer dramatic performance increases.
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Figure Q Visualization of model performances across all demographic models and training
strategies, for selection coefficient of 0.01 Each sub-plot corresponds to a different demographic model,
the x-axis denotes the model type, the y-axis corresponds to the accuracy of the model on the balanced,
held-out set, and the color of the bar corresponds to the training strategy. We refer to an epoch as a single
training pass through the training dataset. The “Best of 10” training strategy trains the model 10 times for 2
epochs each, then selects the best performing model from the 10 trainings using the validation set. The “Early
Stopping” strategy trains the model for 100 epochs, and utilizes early stopping to stop training whenever the
validation accuracy fails to increase after 2 epochs of training. The “Simulation on the Fly” strategy follows
the strategy used in Torada et al.[1], which trains the model for a single epoch, meaning that each training
simulation is used only once. This approach may be viewed as simulating samples on the fly where the total
number of simulated samples was decided upon prior to training. The early stopping and simulation on the
fly trainings were restarted if the model failed to improve in accuracy after the first epoch. Across all the
demographic models and selection coefficients, the range of accuracy differences between the early stopping
and best of 10 strategies were (−0.0599, 0.0445), (−0.0725,−0.0019), and (−0.097, 0.0137) for Imagene, Mini-
CNN, and Deepset, respectively. The same range of accuracy differences between the simulation on the fly
and best of 10 strategies were (−0.1595, 0.0100), (−0.1956, 0.0155), and (−0.0490,−0.0078). We note that
this implementation of “Simulation on the fly” may be at a disadvantage in this comparison because the
additional epochs of the other training strategies result in more updates to the model during training; while
it is possible to continue simulating novel data for simulation on the fly, our sample complexity analyses (see
Figure P) indicate that we would likely see diminishing returns and would not expect this to result in much
higher accuracy than we see with the other training strategies.
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Figure R Visualization of model performances across all demographic models and training
strategies, for selection coefficient of 0.005 Each sub-plot corresponds to a different demographic model,
the x-axis denotes the model type, the y-axis corresponds to the accuracy of the model on the balanced, held-
out set, and the color of the bar corresponds to the training strategy. We refer to an epoch as a single training
pass through the training dataset. The “Best of 10” training strategy trains the model 10 times for 2 epochs
each, then selects the best performing model from the 10 trainings using the validation set. The “Early
Stopping” strategy trains the model for 100 epochs, and utilizes early stopping to stop training whenever the
validation accuracy fails to increase after 2 epochs of training. The “Simulation on the Fly” strategy follows
the strategy used in Torada et al.[1], which trains the model for a single epoch, meaning that each training
simulation is used only once. This approach may be viewed as simulating samples on the fly where the total
number of simulated samples was decided upon prior to training. The early stopping and simulation on the
fly trainings were restarted if the model failed to improve in accuracy after the first epoch. Across all the
demographic models and selection coefficients, the range of accuracy differences between the early stopping
and best of 10 strategies were (−0.0599, 0.0445), (−0.0725,−0.0019), and (−0.097, 0.0137) for Imagene, Mini-
CNN, and Deepset, respectively. The same range of accuracy differences between the simulation on the fly
and best of 10 strategies were (−0.1595, 0.0100), (−0.1956, 0.0155), and (−0.0490,−0.0078). We note that
this implementation of “Simulation on the fly” may be at a disadvantage in this comparison because the
additional epochs of the other training strategies result in more updates to the model during training; while
it is possible to continue simulating novel data for simulation on the fly, our sample complexity analyses (see
Figure P) indicate that we would likely see diminishing returns and would not expect this to result in much
higher accuracy than we see with the other training strategies.
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