Supplementary Information for

CellTICS: an explainable neural network for cell-type identification and interpretation based on single-cell RNA-seq data

Qingyang Yin¹, Liang Chen^{1,*}

¹ Department of Quantitative and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, United States

* To whom correspondence should be addressed. Tel: +1 213-740-2143; Fax: +1 213-821-2506; Email: <u>liang.chen@usc.edu</u>.

Supplementary Figure S1. Data processing flowchart. Following the acquisition of raw scRNAseq data, normalization was carried out, contingent upon whether the data had already undergone normalization. Subsequently, after conducting quality control assessments, sub-cell types were generated in cases where they were not initially provided. If the data were not intended for interdataset prediction, they were divided into both training and test sets.

Supplementary Figure S2. The architecture of the CellTICS neural network. In the network, each cell's input comprises the expression levels of all genes within that cell. The input layer corresponds to genes, while the hidden layers model the hierarchical relationships among pathways. After each hidden layer, a predictive layer is introduced to represent cell types. Throughout the training process, significant pathways are identified by harnessing activation values. The predictive results from all predictive layers are then consolidated through a voting mechanism.

Supplementary Figure S3. The prediction performance of CellTICS and other cell-type identification methods for each analysis task. (A) The ACC for cell-type identification, **(B)** The macro F1 score for cell-type identification, **(C)** The ACC for sub-cell-type identification, **(D)** The macro F1 score for sub-cell-type identification. The ACC and macro F1 scores were average values computed based on five analysis repeats.

Supplementary Figure S4. Comparison between original CellTICS and CellTICS but using highly variable genes (HVGs). A total of 2000, 5000, or 10000 HVGs were used. A-D are the average values for each dataset. (A) The ACC score for cell-type identification. (B) The macro F1 score for cell-type identification. (C) The ACC score for sub-cell-type identification. (D) The macro F1 score for sub-cell-type identification. E-H are boxplots with 10 values for each method. (E) The ACC for cell-type identification, (F) The macro F1 score for cell-type identification, (G) The ACC for sub-cell-type identification, (H) The macro F1 score for sub-cell-type identification.

Supplementary Figure S5. Robustness of CellTICS. The average ACC and macro F1 scores of CellTICS for cell-type and sub-cell-type identification across 20 repeats in each dataset are shown. The error bars represent the standard deviation.

Supplementary Figure S6. Pathway identification of CellTICS with different D_p thresholds. Their overlaps with pathways identified by GSEA are also shown.

Important pathways ($D_0 \ge 0.3$, not by GSEA) for astrocyte cells

Supplementary Figure S7. Differential expression stochasticity of important pathways identified for astrocytes. Wilcoxon tests are performed to measure the differential expression stochasticity. The red dashed line marks the p-value of 0.05. The color of each pathway indicates whether the group exhibits a higher or lower coefficient of variation.

Important pathways (D_p≥ 0.3, not by GSEA) for immune cells

Supplementary Figure S8. Differential expression stochasticity of important pathways identified for immune cells. Wilcoxon tests are performed to measure the differential expression stochasticity. The red dashed line marks the p-value of 0.05. The color of each pathway indicates whether the group exhibits a higher or lower coefficient of variation.

Important pathways ($D_{p} \ge 0.3$, not by GSEA) for neuron cells

Supplementary Figure S9. Differential expression stochasticity of important pathways identified for neuron cells. Wilcoxon tests are performed to measure the differential expression stochasticity. The red dashed line marks the p-value of 0.05. The color of each pathway indicates whether the group exhibits a higher or lower coefficient of variation.

Important pathways (D_p≥ 0.3, not by GSEA) for oligodendrocyte cells

Supplementary Figure S10. Differential expression stochasticity of important pathways identified for oligodendrocytes. Wilcoxon tests are performed to measure the differential expression stochasticity. The red dashed line marks the p-value of 0.05. The color of each pathway indicates whether the group exhibits a higher or lower coefficient of variation.

Supplementary Figure S11. Differential expression stochasticity of important pathways identified for vascular cells. Wilcoxon tests are performed to measure the differential expression stochasticity. The red dashed line marks the p-value of 0.05. The color of each pathway indicates whether the group exhibits a higher or lower coefficient of variation.

Supplementary Figure S12. Shared pathways between CellTICS and Wilcoxon tests on CVs. The cumulative fraction of pathways identified by Wilcoxon tests on CVs is plotted along pathways with decreasing D_p values in CellTICS. These pathways are not identified by GSEA.

Supplementary Figure S13. Differential expression stochasticity of CellTICS-unique pathways. These pathways are identified by CellTICS with different D_p thresholds, and they are not identified by GSEA. Differential expression stochasticity is measured by the Wilcoxon test (p-value ≤ 0.05).

Supplementary Table S1. Information about the datasets used in CellTICS for predicting cell types or sub-cell types.

Dataset	Description	Number	Number of	Number	Number of cells	Data file	Link
		of cell	sub-cell	of genes		size	
		types	types				
L5MB	Level 5	7	Training set:	27998	Training set: 20731	1080 MB	http://mou
	adolescent		237				sebrain.or
	mouse brain		Test set: 220		Test set: 6811	365MB	<u>g/</u>
	cells						
DropViz	DropViz	11	Training set:	17874	Training set: 19347	661MB	http://drop
HC	mouse brain		101				<u>viz.org/</u>
	hippocampu		Test set: 100		Test set: 6443	220MB	
	s cells						
DropViz	DropViz	9	Training set:	18533	Training set: 25157	891MB	
FC	mouse brain		80				
	frontal		Test set: 78		Test set: 8380	297MB	
	cortex cells						
AMB	Aging	6	12 (old and	13669	Training set: 27453	987 MB	https://ww
whole	mouse brain		young for		Test set: 9148	419 MB	w.ncbi.nl
	cells of all		each cell				<u>m.nih.gov</u>
	mice		type)	12.000	011.007.44		/geo/query
AMB	Aging	6	25	13669	Old: 20746	950 MB	/acc.cgi?a
OY	mouse brain				Young: 15855	632 MB	<u>cc=GSE1</u>
	cells, using						<u>29788</u>
	old to						
	predict						
	young	(25	12((0	V 15955	(22 MD	
AMB	Aging	0	25	13669	Young: 15855	052 MB	
10					Old: 20746	950 MB	
	old to						
	predict						
	voung						
PBMC	Peripheral	3	$10Xy3\cdot 8$	21905	10Xv3·19690	650 MB	https://doi
32	blood	5	10Xv3.8	21905	10Xv3.19090 10Xv2.23154	772 MB	$\frac{\text{nups.//doi}}{\text{org}/10.52}$
52	mononuclea		10/10/2. 9	22200	10/10/2. 20104	//2 MID	81/zenodo
	r cells using						3357167
	10Xv3 to						
	predict						
	10Xv2						
PBMC	Peripheral	3	9	22280	23154	772 MB	1
2D	blood		-	16480		730 MB	1
	mononuclea			-0.00			
	r cells, using						
	10Xv2 to						
	predict						

	Drop-seq						
PBMC	Peripheral	3	Drop-seq: 9	16480	Drop-seq: 23154	730 MB	
D3	blood		10Xv3: 8	21905	10Xv3: 19690	650 MB	
	mononuclea						
	r cells, using						
	Drop-seq to						
	predict						
	10Xv3						
ASD	Autism	11	22 (ASD	36501	Training set: 45641	4760 MB	https://cell
	spectrum		and control		Test set: 15208	1580 MB	s.ucsc.edu
	disorder		for each cell				/?ds=autis
	human cells		type)				<u>m</u>

Dataset	L5MB	DropViz	DropViz	AMB	AMB	AMB	PBMC	PBMC	PBMC	ASD
		HC	FC	whole	OY	YO	32	2D	D3	
Run	1413	1382	1559	1600	1291	1100	1223	1320	1324	4643
time(s)										

Supplementary Table S2. Run time of CellTICS across all datasets.