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Supplementary Figure S1. Data processing flowchart. Following the acquisition of raw scRNA-
seq data, normalization was carried out, contingent upon whether the data had already undergone
normalization. Subsequently, after conducting quality control assessments, sub-cell types were
generated in cases where they were not initially provided. If the data were not intended for inter-

Training set and
test set

dataset prediction, they were divided into both training and test sets.
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Supplementary Figure S2. The architecture of the CellTICS neural network. In the network,
each cell's input comprises the expression levels of all genes within that cell. The input layer

corresponds to genes, while the hidden layers model the hierarchical relationships among pathways.

After each hidden layer, a predictive layer is introduced to represent cell types. Throughout the
training process, significant pathways are identified by harnessing activation values. The
predictive results from all predictive layers are then consolidated through a voting mechanism.
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Supplementary Figure S3. The prediction performance of CellTICS and other cell-type
identification methods for each analysis task. (A) The ACC for cell-type identification, (B) The
macro F1 score for cell-type identification, (C) The ACC for sub-cell-type identification, (D) The
macro F1 score for sub-cell-type identification. The ACC and macro F1 scores were average values
computed based on five analysis repeats.
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Supplementary Figure S4. Comparison between original CellTICS and CellTICS but using
highly variable genes (HVGs). A total of 2000, 5000, or 10000 HVGs were used. A-D are the
average values for each dataset. (A) The ACC score for cell-type identification. (B) The macro F1
score for cell-type identification. (C) The ACC score for sub-cell-type identification. (D) The
macro F1 score for sub-cell-type identification. E-H are boxplots with 10 values for each method.
(E) The ACC for cell-type identification, (F) The macro F1 score for cell-type identification, (G)
The ACC for sub-cell-type identification, (H) The macro F1 score for sub-cell-type identification.
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Supplementary Figure S5. Robustness of CellTICS. The average ACC and macro F1 scores of
CelITICS for cell-type and sub-cell-type identification across 20 repeats in each dataset are shown.
The error bars represent the standard deviation.
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Supplementary Figure S6. Pathway identification of CellTICS with different D,, thresholds.

Their overlaps with pathways identified by GSEA are also shown.



Important pathways (D2 0.3, not by GSEA) for astrocyte cells

muscle contraction* :
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ion homeostasis - |
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gap junction trafficking . '

gap junction trafficking and regulation . :
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Supplementary Figure S7. Differential expression stochasticity of important pathways
identified for astrocytes. Wilcoxon tests are performed to measure the differential expression
stochasticity. The red dashed line marks the p-value of 0.05. The color of each pathway indicates
whether the group exhibits a higher or lower coefficient of variation.



Important pathways (D2 0.3, not by GSEA) for immune cells
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Supplementary Figure S8. Differential expression stochasticity of important pathways
identified for immune cells. Wilcoxon tests are performed to measure the differential expression
stochasticity. The red dashed line marks the p-value of 0.05. The color of each pathway indicates
whether the group exhibits a higher or lower coefficient of variation.



Important pathways (D= 0.3, not by GSEA) for neuron cells
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Supplementary Figure S9. Differential expression stochasticity of important pathways
identified for neuron cells. Wilcoxon tests are performed to measure the differential expression
stochasticity. The red dashed line marks the p-value of 0.05. The color of each pathway indicates
whether the group exhibits a higher or lower coefficient of variation.



Important pathways (D2 0.3, not by GSEA) for oligodendrocyte cells

signaling by Rho GTPases - :

RHO GTPase cycle - I
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Supplementary Figure S10. Differential expression stochasticity of important pathways
identified for oligodendrocytes. Wilcoxon tests are performed to measure the differential
expression stochasticity. The red dashed line marks the p-value of 0.05. The color of each pathway
indicates whether the group exhibits a higher or lower coefficient of variation.
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Important pathways (D2 0.3, not by GSEA) for vascular cells
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Supplementary Figure S11. Differential expression stochasticity of important pathways
identified for vascular cells. Wilcoxon tests are performed to measure the differential expression
stochasticity. The red dashed line marks the p-value of 0.05. The color of each pathway indicates
whether the group exhibits a higher or lower coefficient of variation.
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Supplementary Figure S12. Shared pathways between CellTICS and Wilcoxon tests on CVs.

The cumulative fraction of pathways identified by Wilcoxon tests on CVs is plotted along

pathways with decreasing D,, values in CellTICS. These pathways are not identified by GSEA.
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Supplementary Figure S13. Differential expression stochasticity of CellTICS-unique
pathways. These pathways are identified by CellTICS with different D,, thresholds, and they are

not identified by GSEA. Differential expression stochasticity is measured by the Wilcoxon test (p-
value < 0.05).
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Supplementary Table S1. Information about the datasets used in CellTICS for predicting

cell types or sub-cell types.

Dataset | Description | Number | Number of | Number Number of cells Data file Link
of cell sub-cell of genes size
types types
L5MB Level 5 7 Training set: 27998 Training set: 20731 | 1080 MB | http://mou
adolescent 237 sebrain.or
mouse brain Test set: 220 Test set: 6811 365MB g
cells
DropViz DropViz 11 Training set: 17874 Training set: 19347 661MB | http://drop
HC mouse brain 101 viz.org/
hippocampu Test set: 100 Test set: 6443 220MB
s cells
DropViz DropViz 9 Training set: 18533 Training set: 25157 891MB
FC mouse brain 80
frontal Test set: 78 Test set: 8380 297MB
cortex cells
AMB Aging 6 12 (old and 13669 Training set: 27453 | 987 MB | https:/ww
whole mouse brain young for Test set: 9148 419 MB | w.ncbi.nl
cells of all each cell m.nih.gov
mice type) /geo/query
AMB Aging 6 25 13669 Old: 20746 950 MB | /acc.cgi?a
(0)'¢ mouse brain Young: 15855 632 MB | cc=GSEl
cells, using 29788
old to
predict
young
AMB Aging 6 25 13669 Young: 15855 632 MB
YO mouse brain Old: 20746 950 MB
cells, using
old to
predict
young
PBMC Peripheral 3 10Xv3: 8 21905 10Xv3: 19690 650 MB | https://doi
32 blood 10Xv2: 9 22280 10Xv2: 23154 772 MB | .org/10.52
mononuclea 81/zenodo
r cells, using 3357167
10Xv3 to
predict
10Xv2
PBMC Peripheral 3 9 22280 23154 772 MB
2D blood 16480 730 MB
mononuclea

r cells, using
10Xv2 to
predict
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http://mousebrain.org/
http://mousebrain.org/
http://mousebrain.org/
http://dropviz.org/
http://dropviz.org/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129788
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129788
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129788
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129788
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129788
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129788
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129788
https://doi.org/10.5281/zenodo.3357167
https://doi.org/10.5281/zenodo.3357167
https://doi.org/10.5281/zenodo.3357167
https://doi.org/10.5281/zenodo.3357167

Drop-seq

PBMC Peripheral 3 Drop-seq: 9 16480 Drop-seq: 23154 730 MB
D3 blood 10Xv3: 8 21905 10Xv3: 19690 650 MB
mononuclea
r cells, using
Drop-seq to
predict
10Xv3
ASD Autism 11 22 (ASD 36501 Training set: 45641 | 4760 MB | https://cell
spectrum and control Test set: 15208 1580 MB | s.ucsc.edu
disorder for each cell /?ds=autis

human cells

type)

m
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https://cells.ucsc.edu/?ds=autism
https://cells.ucsc.edu/?ds=autism
https://cells.ucsc.edu/?ds=autism
https://cells.ucsc.edu/?ds=autism

Supplementary Table S2. Run time of CellITICS across all datasets.

Dataset | L5SMB | DropViz | DropViz AMB AMB AMB PBMC PBMC PBMC ASD
HC FC whole oy YO 32 2D D3

Run 1413 1382 1559 1600 1291 1100 1223 1320 1324 4643
time(s)
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