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Supplementary Note

In this Supplementary Note, we provide additional theoretical and implementation details on the
Delaunay-watershed mesh generation algorithm, the 3D active foam simulations, and the force inference
pipeline.

A Multimaterial mesh generation

Our multimaterial nonmanifold triangle mesh data structure for surfaces is quite specific, and there is
currently no library available to generate them directly. To overcome this difficulty, we used procedures
to generate multimaterial tetrahedral volume meshes and developed methods to extract their boundaries
as multimaterial triangle surface meshes.

A.1 Instance segmentation

If we decompose each voxel into four tetrahedra, an instance segmentation can be viewed as a tetrahedral
mesh. The task of generating a mesh from a voxel segmentation can thus be viewed as a remeshing
procedure, where we convert a very fine mesh into a coarser one, which is better suited to our analysis.

A.2 CGAL-based 3D surface mesh generation

CGAL [1] provides a popular tetrahedral mesh generation algorithm, which has been used in biomechani-
cal modeling, to extract volumetric meshes from 3D scans from different imaging modalities. It constitutes
our baseline, from which we compared the results obtained with our proposed mesh generation algorithm,
Delaunay-watershed.

A.3 Delaunay-watershed mesh generation algorithm (2D and 3D)

A.3.1 Distance transform map

Given an instance segmentation, we find the boundaries of the different instances with the function
find boundaries of the Python package scikit-image [13]. These borders can be converted into a distance
map using a Euclidean distance transform with the function distance transform edt of the Python package
SciPy [14].

https://scikit-image.org
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A.3.2 Sampling of control points

To compute a tessellation of the space, we need to choose control points that will form the vertices of the
tessellation. The points of interest lie into the borders of the objects, i.e. where the EDT is minimal. To
regularize the tessellation, one can also add the local maxima. These extrema are efficiently computed
using the maxpool3d function of PyTorch [11], with a kernel size of (d,d,d), d ∈ Z+, that will define the
refinement of our mesh, and a stride of (1,1,1).

A.3.3 Delaunay tesselation

From these points, n-dimensional Delaunay tessellations are generated using the Delaunay function from
the Python library scipy.spatial [14].

A.3.4 Dual Voronoi graph

The dual Voronoi graph G = (N ,L,W) is then constructed from the tessellation, by looking at the
adjacency of the simplices obtained. In this dual representation:
• In 2D, N contains triangles, L edges, and weights are calculated by averaging the value of the Euclidean
distance transform of ns = 10 points distributed regularly along the edge.
• In 3D, N contains the tetrahedra, L the triangles, and the weights are calculated by computed the
average value of the euclidean distance transform of ns = 9 regularly sampled points distributed within
the triangle. This graph is converted into a NetworkX [7] graph, better suited to do operations such as
node clustering.

A.3.5 Watershed algorithm

We use the algorithm 2 from [4] to implement the seeded watershed. The seeds are computed using the
EDT: for each label l, we take the pixel px∗

l corresponding to the global minimum of the EDT of the
pixels having this label. However, to apply our watershed algorithm, the seed needs to be a node of our
graph, i.e., a simplex of the tessellation: a tetrahedra in 3D or a triangle in 2D. For each label, we take
the simplex of centroid c that minimizes the distance to the pixel px∗

l previously found as a seed.

A.4 Discrete expressions of geometrical quantities on triangular surface
meshes

Below, we provide analytical formulas for calculating several discrete geometrical quantities and their
derivatives on triangular surface meshes. In the following, we will use Roman indices (i, j, k) for quantities
associated with cells (or regions), such as a tension γij between cells of indices i and j, and Greek indices
α for quantities associated with the mesh, such as the vertices denoted {x⃗α}nv

α=1.

A.4.1 Interface area and derivatives

Each interface area m and its gradient may be decomposed into a sum on its triangles

Am =
∑
t∈Am

At,
∂Am

∂x⃗α
=
∑
t∈Am

∂At

∂x⃗α
. (1)

Therefore, we provide the formula for only a single triangle, defined by its three vertices: t =
(x⃗α, x⃗β , x⃗γ). The non-unit and unit normals to the triangle t are defined as

N⃗t = (x⃗β−x⃗α)× (x⃗γ−x⃗α), n⃗t =
N⃗t

∥N⃗t∥
. (2)

https://docs.scipy.org/doc/scipy/reference/spatial.html##
https://networkx.org
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The area of the triangle t follows as:

At =
1

2
∥N⃗t∥. (3)

To obtain the area gradient with respect to x⃗α, we calculate the variation of A2
t = 1

4N⃗t · N⃗t:

δ
(
A2

t

)
=

1

2
N⃗t · δN⃗t =

1

2
N⃗t ·

[
(x⃗γ−x⃗β)× δx⃗α

]
=

1

2
N⃗t ×

[
(x⃗γ−x⃗β)

]
· δx⃗α.

From δ
(
A2

t

)
= 2At δ(At), we deduce

∂At

∂x⃗α
=

1

2
n⃗t × (x⃗γ−x⃗β). (4)

A.4.2 Cell volumes and derivatives

Stokes’ theorem tells us that for a closed manifold, for any vectorial function f we have :∫∫∫
V
div(f⃗)dτ =

∮
A
f⃗ · n⃗da.

If we take f⃗(x⃗) = 1
3 x⃗, for which div(f⃗)(x⃗) = 1

3 (1 + 1 + 1), we have :

V =

∫∫∫
V
dτ =

1

3

∮
A
x⃗ · n⃗da =

1

3

∑
t=(x⃗α,x⃗β ,x⃗γ)∈A

∫∫
t

x⃗ · n⃗da.

We will evaluate this integral on every triangle t = (x⃗α, x⃗β , x⃗γ) ∈ A.
The center of gravity of the triangle, defined as

∫∫
x⃗∈t

(x⃗− x⃗G) · n⃗da = 0 reads

x⃗G =
x⃗α + x⃗β + x⃗γ

3
. (5)

We have∫∫
x⃗∈t

x⃗ · n⃗da =

∫∫
x⃗∈t

x⃗G · n⃗da = (n⃗ · x⃗G)At = (n⃗ · x⃗G)
∥(x⃗γ − x⃗α)× (x⃗β − x⃗α)∥

2
.

By developing the expressions of x⃗G and At, we can write:∫∫
x⃗∈t

x⃗ · n⃗da =
1

6
(x⃗α + x⃗β + x⃗γ) · [(x⃗γ − x⃗α)× (x⃗β − x⃗α)]

=
1

6
(x⃗γ − x⃗α + x⃗β − x⃗α + 3x⃗α + x⃗β + x⃗γ) · [(x⃗γ − x⃗α)× (x⃗β − x⃗α)]

=
1

2
x⃗α · (x⃗γ × x⃗β)

=
1

2
det(x⃗α, x⃗β , x⃗γ).

Finally,

V =
1

3

∮
A
x⃗ · n⃗da =

1

6

∑
(x⃗α,x⃗β ,x⃗γ)∈A

det(x⃗α, x⃗β , x⃗γ). (6)
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Thus, the derivative of the volume with respect to the vertex writes

∂V
∂x⃗α

=
1

6

∑
(x⃗α,x⃗β ,x⃗γ)∈triangles

x⃗β × x⃗γ . (7)

A.4.3 Junction length and derivatives

The length of a discrete curve can be written :

L =
∑

(x⃗α,x⃗β)∈edges

∥x⃗α − x⃗β∥. (8)

Consider an edge (x⃗α, x⃗β) of length L(x⃗α, x⃗β) = ∥x⃗α − x⃗β∥. To compute its derivative, we place

ourselves on a basis where e⃗1 =
x⃗α−x⃗β

∥x⃗α−x⃗β∥ and

L(x⃗α + δ⃗, x⃗β) = ∥x⃗α − x⃗β∥+ δ⃗ · e⃗1.

The derivative with respect to each vertex is deduced as follows

∂L

∂x⃗α
=

x⃗α − x⃗β

∥x⃗α − x⃗β∥
. (9)

A.4.4 Contact angles

For each junction (i, j, k) between three cells (or the exterior), each edge is connected to three triangles,
making the interface between two materials: tij , tik, tjk of normals n⃗ij , n⃗ik, n⃗jk (See Ext Fig. 1a)

αab = arccos(n⃗ac · n⃗bc) for any (a,b,c) permutation of (i,j,k). (10)

For force inference the junction angles that appears in Young-Dupré force balance variants are defined
as the average of the dihedral angles computed on every edges belonging to the junction.

A.4.5 Mean curvature

For a smooth manifold, the mean curvature κ̄ at a given point is, by definition, the divergence of the
normal vector at this point. A possible differential geometry definition of the curvature normal H n⃗ is

Hn⃗ = lim
diam(A)→0

∇⃗A

AS
,

where A is a small area around the point where the curvature is evaluated and diam(S) its diameter.
A discrete geometry equivalent to the previous formula was derived in [5] and reads

−Hi n⃗i =
1

4

∑
j∈N1(i)

(
cotαij + cotβij

)
(x⃗j − x⃗i), (11)

where αj and βj are the two angles opposite to the edge in the two triangles that share the edge (x⃗i, x⃗j)
as shown in the Ext Fig. 1d, and N1(i) is the set of neighbors with one ring of the vertex i.

For force inference, the interface mean curvatures that appears in Laplace equations are defined as
the average of the mean-curvature computed on every vertices belonging to the interface.
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B Mechanical equilibrium in a heterogeneous foam

B.1 Heterogeneous foam model hypotheses

We assume that the shape of the blastomeres in the early embryos of interest is primarily controlled by
cortical tensions [9, 10]. These surface tensions originate from cortical contractility and are considered
homogeneous and isotropic at each cell-cell interface. The tension of the plasma membrane is lower,
generically by an order of magnitude [9] but it may be counted in the surface tensions if necessary. The
direct negative contribution to the surface tension of adhesion molecules (cadherin) is also negligible
in general [9], but may also be counted in interface tensions, as long as all effective interface tensions
remain strictly positive. Therefore, an assembly of cells is supposed to be akin to a heterogeneous foam-
like structure but where each interface may have a different surface tension, which is controlled actively
by adjacent cells. The evolution of cell shapes is assumed to be quasistatic, which means that viscous
dissipation is neglected. This hypothesis is well justified by comparing the typical timescale associated with
viscous relaxation of the cortex, on the order of dozens of seconds [8, 12], and the timescale associated with
typical morphogenetic events in early embryos, rather than of the order of dozens of minutes. Moreover,
we assume that blastomeres conserve their volumes on typical morphogenetic timescales (between two
divisions).

B.2 Foam-like 3D simulations

B.2.1 Lagrangian function and projection method

Our numerical simulations consist of a constrained optimization of a surface energy defined on an initial
nonmanifold triangular mesh. The surface energy and Lagrangian function for a set of nc cells are defined
as follows:

E =

nm∑
m=1

γmAm, (12)

L = E −
nc∑
k=1

pk(Vk − V0
k), (13)

where γm and Am are, respectively, the surface tension and area of the interface between the regions
am and bm where am, bm ∈ [0, nc], m ∈ [1, nm] are an index of a membrane, which identifies a pair of
regions. pk and V0

k are, respectively, the pressure and target volume value of the cell k. Note that for
interfaces am and bm span [0, nc], where 0 refers to the external medium, while for cells k span [1, nc].

Optimality conditions for this Lagrangian function outputs the force balance at each vertex x⃗α

0⃗ =
∂L
∂x⃗α

=

nm∑
m=1

γm
∂Am

∂x⃗α
−

nc∑
k>1

pk
∂Vk

∂x⃗α
(14)

This vertex force balance equation is solved in an iterative manner, using a conjugate-gradient method
[6]. To do so, the pressure needs to be recalculated at each iteration to ensure cell volume conservation.
This is done using a projection method [3]:

First, we project the equations (14) along the direction parallel to the variations of Vn for each
n ∈ [1, nc]

∀n 0 =
∂L
∂x⃗α

· ∂Vn

∂x⃗i
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Then we sum each of these nc equations over all vertices x⃗α in the mesh

∀n 0 =
∑
α∈V

∂L
∂x⃗α

· ∂Vn

∂x⃗i
=

nm∑
m=1

γm

(∑
i∈V

∂Am

∂x⃗i
· ∂Vn

∂x⃗i

)
−

nc∑
k=1

pn

(∑
i∈V

∂Vk

∂x⃗i
· ∂Vn

∂x⃗i

)

Defining P = (p1, p2 . . . pnc)
T as a generalized vector of pressures, Γ = (γ1, γ2 . . . γnm)T as a generalized

vector of tensions, BΓ ∈ Rnc×nm , and GP ∈ Rnc×nc as follows

∀n ∈ (1 . . . nc),m ∈ (1 . . . nm) Bnm
Γ =

∑
i∈V

∂Am

∂x⃗i
· ∂Vn

∂x⃗i

∀k, n ∈ (1 . . . nc) Gnk
P =

∑
i∈V

∂Vk

∂x⃗i
· ∂Vn

∂x⃗i
,

we can rewrite previous equation as a linear system for P :

BΓΓ−GPP = 0

GP being invertible (see section B.4.4), we can deduce pressure values knowing Γ from these equations
by solving a linear system P = (GP )

−1BΓΓ, which is done through a Newton method.

B.2.2 Lagrangian function for embryos within a shell

For the example of C. elegans, the optimization of a surface energy must satisfy an additional constraint,
that is, that every vertex must lie in the shell. We call S the shell, κ the stiffness of the shell, Fel the
elastic force exerted by the shell on the vertices outside its bounds, defined by :

Fel(x⃗α) = ∥x⃗α − x⃗A(x⃗α)∥2 ·NA(x⃗S(x⃗α)), (15)

where NA(x⃗) is the normal of the surface of the shell at the point x⃗ (belonging to the shell), and
x⃗S(x⃗) is the orthogonal projection of the vertex x⃗ on the surface of the shell S.

The surface energy and Lagrangian function for a set of N cells then take the following form

E =

nm∑
m=1

γmAm +
κ

2

∑
x̃α /∈S

Fel(x⃗α), (16)

L = E −
nc∑
k=1

pk(Vk − V0
k). (17)

B.3 Variants of the Young-Dupré tension balance

To obtain scalar values of the tensions, we first choose to fix the average surface tension to 1, with a first
equation:

nm∑
m=1

γm = nm. (18)

Tension-balance gives relative relationships between surface tensions, and can be expressed in numer-
ous ways. For all the following formulas, (i, j, k) represents three materials (cells or exterior media) that
meet at a triple junction.
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pi pj

⃗γki ⃗γjk

⃗γij
kiα

αij

αjk

Young-Dupré

∀(i, j, k), γij + γik cosαjk + γjk cosαik = 0 (19)

∀(i, j, k), γij cosαjk + γik + γjk cosαij = 0 (20)

∀(i, j, k), γij cosαik + γik cosαij + γjk = 0 (21)

Projection Young-Dupré

∀(i, j, k), γij + γik cosαjk + γjk cosαik = 0 (22)

∀(i, j, k), γik sinαjk − γjk sinαik = 0 (23)

Lami

∀(i, j, k), γij
sinαij

=
γik

sinαik
=

γjk
sinαjk

(24)

Inverse Lami

∀(i, j, k), γij sinαik = γik sinαij (25)

∀(i, j, k), γij sinαjk = γjk sinαij (26)

∀(i, j, k), γik sinαjk = γjk sinαik (27)

Lami logarithm

∀(i, j, k), log γij − log sinαij = log γik − log sinαik = log γjk − log sinαjk (28)

B.4 Mesh-based variational force balance

In this study, we propose new force-balance equations, Variational Young-Dupré and Variational Laplace
equations, that can be used for tension inference. In this section we propose a detailed derivation of these
equations. Our mesh, which describes the surface of the embryo, is composed of nv vertices, nc cells of
volumes V 0

l for l ∈ 1 . . . nc and of nm membranes (or interfaces) of area Am. The equilibrium shape is
given by minimizing the energy of the membranes, which have a defined surface tension γm, under the
constraint of volume conservation V. We call the set of vertices of the mesh V = {x⃗α}nv

α=1,the set of cells
C, and the set of membranes M.
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B.4.1 Geometrical model

Keeping the same notation as before, the Lagrangian function that is minimized is:

L =

nm∑
m=1

γmAm −
nc∑
k=1

pk(Vk − V0
k), (29)

In equilibrium, we have
∂L
∂x⃗α

= 0⃗.

The equilibrium of the forces gives us, for each vertex x⃗α, the following equation :

0⃗ =

nm∑
m=1

γm
∂Am

∂x⃗
−

nc∑
k=1

pk
∂Vk

∂x⃗
. (30)

This can be summarized as a product between a huge tensor Q ∈ Rnv×(nm+nc)×3 that contains the
derivatives of the areas and volumes with respect to each vertex, and the matrix Π ∈ Rnm+nc that
contains the surface tensions and pressures. This product gives the equilibrium equations for each of the
vertices. The tensor Q can be conveniently expressed as a matrix of R3 vectors:

Q×Π =


∇x⃗1

A1 . . . ∇x⃗1
Anm

∇x⃗1
V1 . . . ∇x⃗1

Vnc

. . . .

. . . .

. . . .

. . . .
∇ ⃗xnv

A1 . . . ∇ ⃗xnv
Anm

∇ ⃗xnv
V1 . . . ∇ ⃗xnv

Vnc




γ1
. . .
γnm

−p1
. . .

−pnc

 = 0

B.4.2 State Equations

We will define a matrix R ∈ R(nc+nm)×(nc+nm) : R = QTQ. We note that R×Π = 0.

R =



∑
i∈V

∥∇x⃗i
A1∥2 . . .

∑
i∈V

(∇x⃗i
A1 · ∇x⃗i

Anm)
∑
i∈V

(∇x⃗i
A1 · ∇x⃗i

V1) . . .
∑
i∈V

(∇x⃗i
A1 · ∇x⃗i

Vnc)

...
...

...
...∑

i∈V
(∇x⃗i

Anm · ∇x⃗i
A1) . . .

∑
i∈V

∥∇x⃗i
Anm∥2

∑
i∈V

(∇x⃗i
Anm · ∇x⃗i

V1) . . .
∑
i∈V

(∇x⃗i
Anm · ∇x⃗i

Vnc)

∑
i∈V

(∇x⃗i
V1 · ∇x⃗i

A1) . . .
∑
i∈V

(∇x⃗i
V1 · ∇x⃗i

V1)
∑
i∈V

∥∇x⃗i
V1∥2 . . .

∑
i∈V

(∇x⃗i
V1 · ∇x⃗i

Vnc)

...
...

...
...∑

i∈V
(∇x⃗i

Vnc · ∇x⃗i
A1) . . .

∑
i∈V

(∇x⃗i
Vnc · ∇x⃗i

Anm)
∑
i∈V

(∇x⃗i
Vnc · ∇x⃗i

V1) . . .
∑
i∈V

∥∇x⃗i
Vnc∥

2


We note that matrix R has a kernel of dimension 1. We need to add another equation to fix the tension

scales (by setting the mean to 1 for example).
The state equations that we choose are S = R×Π = 0 which gives us discretized equations:

∀l ∈ M, 0 =

nm∑
m=1

γm

(∑
i∈V

∂Am

∂x⃗i
· ∂Al

∂x⃗i

)
−

nc∑
k=1

pn

(∑
i∈V

∂Vk

∂x⃗i
· ∂Al

∂x⃗i

)
(31)

∀n ∈ C, 0 =

nm∑
m=1

γm

(∑
i∈V

∂Am

∂x⃗i
· ∂Vn

∂x⃗i

)
−

nc∑
k=1

pn

(∑
i∈V

∂Vk

∂x⃗i
· ∂Vn

∂x⃗i

)
(32)
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B.4.3 Matrix equations

We will note Γ = (γ1, γ2 . . . γnm)T the generalized vector of tensions and P = (p1, p2 . . . pnc)
T the gener-

alized vector of pressures.

We can represent the first set of discretized equations using matrix notation GΓ ∈ Rnm×nm , and BP ∈
Rnm×nc verifying GΓΓ− BPP = 0 :

∀l,m ∈ (1 . . . nm) Glm
Γ =

∑
i∈V

∂Am

∂x⃗i
· ∂Al

∂x⃗i

∀k ∈ (1 . . . nc), l ∈ (1 . . . nm) Blk
P =

∑
i∈V

∂Vk

∂x⃗i
· ∂Al

∂x⃗i

GΓ is generally not invertible; all tensions are fixed to one parameter.
We can represent the second set of discretized equations using matrix notation BΓ ∈

Rnc×nm , and GP ∈ Rnc×nc verifying BΓΓ−GPP = 0 :

∀n ∈ (1 . . . nc),m ∈ (1 . . . nm) Bnm
Γ =

∑
i∈V

∂Am

∂x⃗i
· ∂Vn

∂x⃗i

∀k, n ∈ (1 . . . nc) Gnk
P =

∑
i∈V

∂Vk

∂x⃗i
· ∂Vn

∂x⃗i

GP is invertible thus knowing Γ and K, we can deduce P from these equations, that we call Variational
Laplace equations:

P = (GP )
−1BΓΓ. (33)

We can write Π =

(
Γ
P

)
and write the previous equations into a block matrix M:

M×Π = 0 ⇐⇒
(
GΓ −BP

BΓ −GP

)
×
(
Γ
P

)
= 0 (34)

Thus, the Variational Young-Dupré equations for tension inference are

(GΓ − BP (GP )
−1BΓ)× Γ = 0, (35)

(1 · · · 1)× Γ = nm. (36)

This last equation fixes the average of the surface tensions to 1.

B.4.4 Proof that the matrix GP is invertible

In the previous section, we assumed that the matrix GP is invertible. To demonstrate this hypothesis,
we have to show that the matrix of volume gradients has full rank (linearly independent columns). For
simplicity, assume that each face of each discretized cell has an interior point and that the cells are
numbered in ”decreasing” order, from the outermost(s) to the innermost(s), more precisely, in the sense

that there exists x⃗i1 ∈ Cell1 such that x⃗i1 /∈
⋃

k>=2

Cellk, and recursively, for all k ∈ (1 . . . nc), there

exists x⃗ik ∈ Cellk such that x⃗ik /∈
⋃

k′>=k+1

Cellk′ . Now assume that the volume gradients are not linearly

independent, then there exists P1, . . . , Pnc ∈ R such that for all i ∈ (1 . . . nv)

nc∑
k=1

Pi∇x⃗i
Vk = 0. (37)
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Hence, for i = i1, we simply have P1∇x⃗i1
V1 = 0. Furthermore, the gradient of V1 with respect to x⃗i1 is

the sum of the gradients with respect to x⃗i1 of the volumes of the tetrahedra defined by the apex 0 and
the triangles surrounding x⃗i1 , so ∇x⃗i1

V1 ̸= 0 so that P1 = 0 and

nc∑
k=2

Pi∇x⃗i
Vk = 0. (38)

Thus, by recursion, we have Pi = 0 for all i ∈ (1 . . . nc), so that the volume gradients are linearly
independent. Consequently, the matrix GP is invertible.

C Force inference

C.1 Hypotheses for tension and pressure inference

We assume that each pressure p is positive and put the pressure of the exterior medium at 0. The surface
tensions y are also positive, and as explained before we arbitrarily put their mean at 1. This choice of scale
for the tensions imposes a scale on the pressures, as appears in the Laplace law 2γijHij = pi−pj . However,
the scale of the mean curvature Hij depends on the size of the embryo. To compute the curvature with
the right scaling, one would need to have a mesh that has the precise dimensions of the biological sample.
This is not out of reach experimentally, but since we were interested in relative and not absolute values
(absolute measurement of surface tensions being not available in any way), we found it more convenient
to fix the biggest pressure at 1.

C.2 In silico validation

With our previously introduced 3D active foam model, we generated 47 simulations of cell clusters,
ranging from 2 to 11 cells, with random tensions.

From these meshes, we generated artificial images by defining a bounding box and convolving the
mesh by a Gaussian Point Spread Function. To do the convolution efficiently, we make the operation in
Fourier space before doing an inverse Fourier transform to go back into the spatial domain.

A simple thresholding of these images allowed us to compute the membrane boundaries. The segmen-
tation masks were then computed using a watershed algorithm. Masks were expanded until they merged
to avoid holes inside embryos that would have perturbed meshing algorithms, and thus the computation
of geometrical quantities.

C.3 Ordinary Least-Squares

Each of the linear problem encountered is in the following form

AX = C (39)

where we want to determine the vector X ∈ Rm from A ∈ Rn×(m+1), which is a rectangular matrix and
the right-hand side C ∈ Rm+1.

To determine an estimator of X, we choose the ordinary least-squares (OLS) method that minimizes
the sum of squared residuals ∥AX − C∥2. The solution can be expressed in a closed form using the
pseudo-inverse matrix (ATA)−1AT :

X = (ATA)−1ATC (40)

In practice, we solve the ordinary least squares problem using the function linalg.lstq from the Python
library SciPy [14].

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lstsq.html
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C.4 Ordinary least-squares for tension inference

C.4.1 Form of the matrices A and C for tension inference

The form of the matrix A and C depends on the number of equations neq, which depends on the formula
chosen.

A =


α11 . . . α1nm

. . . . . .
αneq1 . . . αneqnm

1 . . . 1

 , X =
(
Γ
)
, C =


0
. . .
0
nm

 (41)

Note that A is very sparse, as each line has only three non-zero terms (except the last one).

C.4.2 Weighting by the junction length

For the tension inference equations (except for the variational Young-Dupré variant), each equation is
linked to a given triple junction. The longer the junction, the better the determination of the angles of
the junction will be. We decided to weight each of the equations by the length of the junction associated
with it. Thus, if we consider the original unweighted matrices A and C used to infer tension, instead of
minimizing ∥AX − C∥2 =

∑
i((AX)i − Ci)

2 we minimize:∑
i

((AX)i − Ci)
2 ∗ L2

i , (42)

where Li is the length of the junction considered in the ith equation. The minimization is performed
exactly like for the non-weighted matrix using the function linalg.lstq from the Python library SciPy [14].

Here is a table of the median relative error of the different methods of tension inference, with and
without weighting of junction length:

Young-Dupré Proj. Young-Dupré Lami Inverse Lami Lami Log

With length weight (%) 10.1 10.4 11.7 11.0 11.8
No length weight (%) 10.8 11.7 12.7 11.9 12.4

C.4.3 Form with variational equations

With Variational Young-Dupré equations, we can express A and C as block matrices:

A =

(
GΓ − BP (GP )

−1BΓ

1

)
, X =

(
Γ
)
, C =

(
0
nm

)
(43)

C.5 Ordinary Least Squares for pressure inference

C.5.1 Variational pressure inference

The Variational Laplace equations offers a way to infer pressures.

GPP = BΓΓ. (44)

It is an ordinary least square problem with A = GP , X = P, C = BΓΓ.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lstsq.html
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C.5.2 Form of the matrices A and C for pressure inference with Laplace Law

There is one Laplace equation for each interface, so nm equations in total, thus A ∈ Rnm×nc , X ∈
Rnc , C ∈ Rnm . Each relation writes pam − pbm = γmHm where am and bm are the regions delimited by
the interface m, of surface tension γm and mean curvature Hm. Thus A and C writes:

A =

 β11 . . . β1nc

. . . . . .
βnm1 . . . βnmnc

 , X =
(
P
)
, C =

 2γ1Ha1b1

. . .
2γnm

Hanmbnm

 (45)

,
Where βij = 1 if j ∈ {ai, bi} and 0 otherwise.

C.5.3 Weighting by the interfacial area

For the pressure inference equations with Laplace’s law, each equation is linked to a given interface. The
larger the area, the better the determination of the curvature of the interface will be. We decided to
weight each of the equations by the area of the interface associated with it.

Thus, if we consider the original unweighted matrices A and C used to infer pressure, instead of
minimizing ∥AX − C∥2 =

∑
i((AX)i − Ci)

2 we will minimize:∑
i

((AX)i − Ci)
2 ∗ A2

i , (46)

where Ai is the area of the interface considered in the ith equation. The minimization is performed
exactly like for the non-weighted matrix using the function linalg.lstq from the Python library SciPy [14].

Here is a table of the median relative error of the different methods of pressure inference, with the
tensions previously inferred using the Young-Dupré formula:

Laplace’s Law Variational Laplace

With area weight (%) 12.5 -
No area weight (%) 12.6 12.0

D Stress tensor

We consider a cell a. The cell surface is composed of membrane portion m ∈ a of constant surface tension
γa
m. The energy of the total foam writes E =

∑nm

m=1 γmAm, but alternatively, we can express the energy
of the foam by summing up the contributions of each cell:

E =
∑
a

∑
m∈a

γa
mAm (47)

For a membrane portion m that is in contact with the exterior medium, we can identify γm and γa
m.

However, for a surface shared between two cells, each membrane area is counted twice, so γa
m =

γm
2

.

We note Va+ the total volume of the cell and Va− the volume of the cell enclosed by the membrane.
We note A0 the surface of the membrane The mean stress writes :

σ
a
=

1

Va

∫
Va+

σ(x⃗) dτ (48)

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lstsq.html
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We decompose it between the bulk and membrane components :

σ
a
=

1

Va

∫
Va−

σ(x⃗) dτ +
1

Va

(∫
Va+

σ(x⃗)dτ −
∫
Va−

σ(x⃗)dτ

)
(49)

The stress σ is constant within the cell, its value being defined by hydrostatic pressure pa. In the cell
membrane, the small thickness limit established in [2] leads to the following relation:(∫

Va+

σ(x⃗) dτ −
∫
Va−

σ(x⃗) dτ

)
=

∫
A0

γa(δ − n⃗⊗ n⃗) da (50)

We note δ the identity tensor and n⃗ =

 n1

n2

n3

 and n⃗⊗ n⃗ =

 n1n1 n1n2 n1n3

n2n1 n2n2 n2n3

n3n1 n3n2 n3n3

.
Eventually, the mean stress reads

σ
a
= −paδ +

∑
m∈a

γa
m

Va

∫
m

(δ − n⃗⊗ n⃗) da (51)

We can decompose each surface membrane m into individual triangles that make up it. As the normal
is constant on a triangle, the integral simplifies itself :∫

m

(δ − n⃗⊗ n⃗) da =
∑
t∈m

∫
t

(δ − n⃗⊗ n⃗) da =
∑
t∈m

At(δ − n⃗t ⊗ n⃗t) (52)

σ
a
= −paδ +

∑
m∈a

γa
m

Va

∑
t∈m

At(δ − n⃗t ⊗ n⃗t) (53)

We can compute it numerically from our mesh once the force inference was performed and plot the
tensor decomposed on its principal axes (eigenvectors) in each cell. Note that the eigenvalues may be
positive, which corresponds to an extensile stress (in blue) or negative, which corresponds to a compressive
stress (in red).
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[10] Jean-Léon Mâıtre, Hervé Turlier, Rukshala Illukkumbura, Björn Eismann, Ritsuya Niwayama,
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