
nature genetics

https://doi.org/10.1038/s41588-023-01559-9Article

Phenotype integration improves power and 
preserves specificity in biobank-based 
genetic studies of major depressive disorder

In the format provided by the 
authors and unedited

https://doi.org/10.1038/s41588-023-01559-9


1 
 

Supplementary Note  

Supplementary Methods 2	
Imputed genotype quality control in UKBiobank 2	
Sample filtering in UKBiobank 2	
Tuning parameters in SoftImpute 2	
Selection of phenotypes for MTAG runs 3	
PRS prediction of MDD in non-White British individuals in UKBiobank 3	
PRS prediction of MDD in external cohorts 4	

iPSYCH 4	
UCLA ATLAS 5	
CONVERGE 6	

Impact of sample size on PRS Pleiotropy 7	
Impact of P value threshold on PRS Pleiotropy 7	

Supplementary Figures 9	
Supplementary Figure 1. 9	
Supplementary Figure 2. 10	
Supplementary Figure 3. 12	
Supplementary Figure 4 13	
Supplementary Figure 5 14	
Supplementary Figure 6 15	
Supplementary Figure 7 16	
Supplementary Figure 8 17	
Supplementary Figure 9 18	
Supplementary Figure 10 19	
Supplementary Figure 11 20	

Supplementary Tables 21	
Supplementary References 22	

 

 

  



2 
 

Supplementary Methods  

Imputed genotype quality control in UKBiobank  

 
We performed stringent filtering on imputed variants (version 3) in the UKBiobank1 used for 
GWAS in this study. We hard-called genotypes from imputed dosages at 9,720,240 biallelic SNPs 
with imputation INFO score greater than 0.9, MAF greater than 0.1%, and P value for violation of 
Hardy-Weinberg equilibrium > 10-6, with a genotype probability threshold of 0.9 (anything below 
would be considered missing). Of these, 5,776,313 SNPs are common (MAF > 5%). We 
consistently use these SNPs for all analyses in this study.  

Sample filtering in UKBiobank  

 
Of all 502,637 samples in UKBiobank full release1, we performed the following QC steps to select 
the samples for use in our analyses. We first removed samples that were not included in the 
UKBiobank full release PCA analysis, which includes samples that were indicated as 
“het.missing.outliers” (“Indicates samples identified as outliers in heterozygosity and missing 
rates, which indicates poor-quality genotypes for these samples”), “excess.relatives” (“Indicates 
samples which have more than 10 putative third-degree relatives in the kinship table”), and whose 
“Submitted.Gender” were different from “Inferred.Gender”. Applying these filters brought the 
sample size down to 407,219. We checked that the remaining sample contains only one out of 
any pair or group of related individuals with relatedness > 0.05. We then selected individuals 
indicated to be “in.white.British.ancestry.subset” (“Indicates samples who self-reported 'White 
British' and have very similar genetic ancestry based on a principal components analysis of the 
genotypes”), resulting in a sample size of 337,545. We then removed 337 individuals indicated 
as having “putative.sex.chromosome.aneuploidy” (“Indicates samples identified as putatively 
carrying sex chromosome configurations that are not either XX or XY”)1. Finally, we removed 418 
individuals who have withdrawn their consent for use of their genetic data in analyses, arriving at 
our final set of 337,127 individuals passing QC. Of these individuals, 37,035 were part of UK 
Biobank Lung Exome Variant Evaluation (UKBiLEVE)2, a study for chronic obstructive pulmonary 
disease (COPD). We retain all samples in UKBiLEVE, but as they are genotyped using a custom 
array optimized for coverage over regions implicated in lung health and disease2, we consistently 
use the genotyping array as a covariate in all our analyses.  

Tuning parameters in SoftImpute  

 
SoftImpute3 operates by finding an optimal low-rank approximation, X, to the partially observed 
phenotype matrix, Y, by solving ‖𝑌! − 𝑋!‖"" 	+ 𝜆‖𝑋‖∗ where the o subscript indicates observed 
phenotype entries in Y, λ is a regularization parameter, ‖ ∙ ‖" indicates the 𝑙" norm, and ‖ ∙ ‖∗ 
indicates the nuclear norm of a matrix, i.e., the sum of its singular values. The nuclear norm is a 
computationally and statistically efficient alternative to a non-convex rank constraint on X, as is 
common in PCA. SoftImpute is the matrix version of lasso regression, wherein an 𝑙$ penalty is 

https://paperpile.com/c/oyHfas/149F
https://paperpile.com/c/oyHfas/149F
https://paperpile.com/c/oyHfas/149F
https://paperpile.com/c/oyHfas/NsVL
https://paperpile.com/c/oyHfas/NsVL
https://paperpile.com/c/oyHfas/7RQi
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used to relax a non-convex constraint on the number of active regression features. We tune λ to 
maximize imputation accuracy on held-out test data, which is realistically sampled to ensure 
representative patterns of missingness4.  

Selection of phenotypes for MTAG runs  

 
We did not include all 216 phenotypes used in imputation in MTAG analyses, because it was 
impractical to perform individual GWAS on all 216 phenotypes. Instead, we wanted to test for how 
agnostic MTAG is for input phenotypes, and therefore selected 6 different sets of input 
phenotypes for MTAG, as shown in Figure 4. In these 6 sets of input phenotypes we tried to 
capture the different axes of shared genetic contributions between input phenotypes and MDD, 
namely: a) the sharing between deep and shallow phenotyping definitions of MDD (including 
GPpsy, and all other definitions of depression as previously specified in Cai et al 20205, in 
MTAG.GPpsy and MTAG.AllDep); b) the sharing between observed LifetimeMDD and family 
history of MDD (including severe depression in mother, father or siblings, in 
MTAG.FamilyHistory); and c) the sharing between environmental factors and personality traits 
and MDD (including neuroticism score, townsend deprivation index, recent stressful life events 
and lifetime trauma as specified in Cai et al 20205, in MTAG.Envs); and d) the combinations of 
the previous categories (in MTAG.AllDep+Envs and MTAG.All). Definitions of each of the 
phenotypes in the 6 sets are detailed in Supplementary Table 1.  We recognise that we do not 
provide a comprehensive list of phenotypes one can potentially use in MTAG to improve GWAS 
power and PRS prediction accuracy for MDD. Rather, here we focus on investigating the effects 
of both the number and nature of MTAG input on the results.  

PRS prediction of MDD in non-White British individuals in UKBiobank  

 
We identified 150,213 individuals who did not self-identify as White British in the UKBiobank1. In 
these individuals, we removed from their imputed genotypes regions of the genome that contained 
previously identified structural variants6, then hard-called genotypes from imputed dosages at 
5,327,974 biallelic SNPs with imputation INFO score greater than 0.9, MAF greater than 0.1%, 
and P value for violation of Hardy-Weinberg equilibrium > 10-6, with a genotype probability 
threshold of 0.9 (anything below would be considered missing).  
 
To identify participants of European (EUR), African (AFR) and East Asian (ASN) ancestries, we 
selected 70,718 LD-pruned common SNPs (MAF > 5%, P value for HWE > 10-6, LD r2 < 0.1) the 
autosomes that overlap with SNPs in the 1000 Genomes Project Phase 3 (1000G)7 from 150,213 
non-White British individuals in UKBiobank, then projected all individuals onto PCs obtained from 
1000G samples using loadings at these SNPs calculated with LDAK v58 (Supplementary Figure 
5). We identified 122,710, 8,040 and 2,530 individuals who clustered with the individuals in 1000G 
with EUR, AFR and ASN ancestries respectively (Supplementary Figure 5). Of these individuals 
with non-White British ancestries, we removed 652 individuals indicated as having 
“putative.sex.chromosome.aneuploidy” (“Indicates samples identified as putatively carrying sex 
chromosome configurations that are not either XX or XY”)1, as well as 71,143, 542 and 70 

https://paperpile.com/c/oyHfas/sk0Cm
https://paperpile.com/c/oyHfas/koAc
https://paperpile.com/c/oyHfas/koAc
https://paperpile.com/c/oyHfas/149F
https://paperpile.com/c/oyHfas/BDX7
https://paperpile.com/c/oyHfas/BN6i
https://paperpile.com/c/oyHfas/8Gue
https://paperpile.com/c/oyHfas/149F
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individuals with EUR, AFR and ASN ancestries respectively with relatedness greater than 0.05 
(‘Kinship’ score in UKBiobank full release sample QC file) with any of the 337,127 individuals with 
White-British ancestries in UKbiobank we use in our main analyses, or to each other. We therefore 
retain 51,567, 7,497 and 2,460 unrelated individuals of EUR, AFR and ASN ancestries for our 
analyses. For each group, we performed PCA with all 5,327,974 biallelic SNPs using flashPCA9 
(Supplementary Figure 5), and showed that they contain few individuals of discordant self-
reported ancestries. We use the top 20 PCs from each group as covariates for all following 
analyses.  

 
Of these individuals, a subset has answered the qualifying questions in the online mental health 
questionnaire for deriving a LifetimeMDD disease status5: for the EUR individuals, 10,193 
individuals has LifetimeMDD disease status (Ncases = 2741, Ncontrols = 7452, prevalence = 
0.27); for the ASN individuals, 334 individuals has a LifetimeMDD disease status (Ncases = 62, 
Ncontrols = 272, prevalence = 0.19); for the AFR individuals, 687 has a LifetimeMDD disease 
status, (Ncases = 122, Ncontrols = 565, prevalence = 0.18). For PRS analysis, we used 
2,441,319, 1,808,453 and 2,025, 285 SNPs (MAF >= 0.05, INFO score >= 0.9, P value for HWE 
violation > 10-6)  in the EUR, ASN and AFR individuals in UKBiobank respectively, and calculated 
PRS for each of the 15 summary statistics (phenotyped, imputed and MTAG GWAS) using 
PRSice v210, using the options --clump-kb 250kb --clump-p 1 --clump-r2 0.1 --interval 5e-05 --
lower 5e-08. We used the top 20 genomic PCs from the EUR, ASN and AFR individuals in 
UKBiobank as covariates to control for population structure in each of the cohorts. 

PRS prediction of MDD in external cohorts  

iPSYCH  
 
We first evaluated the transferability of PRS derived from phenotyped, imputed and MTAG 
summary statistics using two independent cohorts from the Integrative Psychiatric Research 
Consortium (iPSYCH) cohort (2012 and 2015i).  
 
The Lundbeck Foundation initiative for Integrative Psychiatric Research (iPSYCH)11,12 is a case-
cohort study of all singleton births between 1981 and 2008 to mothers legally residing in Denmark 
and who were alive and residing in Denmark on their first birthday (N=1,657,449).  The iPSYCH 
2015 case-cohort comprises two enrollments from this base population. The iPSYCH 2012 case-
cohort enrolled 86,189 individuals (30,000 random population controls; 57,377 psychiatric 
cases)11. The iPSYCH 2015i case-cohort expanded enrollment by an additional 56,233 individuals 
(19,982 random population controls; 36,741 psychiatric cases)11,12.  DNA was extracted from dried 
blood spots stored in the Danish Neonatal Screening Biobank13 and genotyping was performed 
on the Infinium PsychChip v1.0 array (2012) or the Global Screening Array v2 (2015i). Psychiatric 
diagnoses were obtained from the Danish Psychiatric Central Research Register (PCR)14 and the 
Danish National Patient Register (DNPR)15.  Diagnoses in these registers are made by licensed 
psychiatrists during in- or out- patient specialty care but diagnoses or treatments assigned in 
primary care are not included.  Linkage across population registers, to parents where known, and 
to the neonatal biobank is possible via unique citizen identifiers of the Danish Civil Registration 

https://paperpile.com/c/oyHfas/1hnO
https://paperpile.com/c/oyHfas/koAc
https://paperpile.com/c/oyHfas/h6rz
https://paperpile.com/c/oyHfas/dpnX+Lm5W
https://paperpile.com/c/oyHfas/dpnX
https://paperpile.com/c/oyHfas/dpnX+Lm5W
https://paperpile.com/c/oyHfas/om0m
https://paperpile.com/c/oyHfas/nfqN
https://paperpile.com/c/oyHfas/WfpE
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System16.  The use of this data follows standards of the Danish Scientific Ethics Committee, the 
Danish Health Data Authority, the Danish Data Protection Agency, and the Danish Neonatal 
Screening Biobank Steering Committee. Data access was via secure portals in accordance with 
Danish data protection guidelines set by the Danish Data Protection Agency, the Danish Health 
Data Authority, and Statistics Denmark. For this study, we use an unrelated, homogeneous 
ancestry subset of these data from the 2012 and 2015i cohorts. We include individuals with 
available genotypes, that passed our quality control, and were either a random control or 
diagnosed with major depressive disorder (MDD) as of Dec 31, 2015 (2012: Ncontrols = 23,371, 
Ncases = 18,879; 2015i: Ncontrols = 15,163, Ncases = 8,188; Total: Ncontrols = 38,534, Ncases 
= 27,067).  
 
Genotype phasing, imputation, and quality control were performed in parallel in the 2012 and 
2015i cohorts according to custom, mirrored protocols. Briefly, phasing and imputation were 
conducted using BEAGLEv5.117,18, both steps including reference haplotypes from the Haplotype 
Reference Consortium v1.1 (HRC)19. Quality control was applied prior to and following imputation 
to correct for missing data across SNPs and individuals, SNPs showing deviations from Hardy-
Weinberg equilibrium in cases or controls, abnormal heterozygosity of SNPs and samples, 
genotype-phenotype sex dicordance, minor allele frequency (MAF), batch artifacts, and 
imputation quality.  Kinship was detected within and across 2012 and 2015i cohorts using KING20, 
censoring to ensure no second degree or higher relatives remained.  Ancestry was examined 
using the smartpca module of EIGENSOFT21, and PCA outliers from the set of iPSYCH individuals 
with both grandparents and four grandparents born in Denmark were excluded.  
 
Using 5,210,642 and 5,222,714 SNPs (MAF >= 0.05, INFO score >= 0.9, P value for HWE 
violation > 10-6)  on 42,250 individuals in iPSYCH2012 and 23,351 individuals in iPSYCH 2015i 
respectively, we calculated PRS for each of the 15 summary statistics (phenotyped, imputed and 
MTAG GWAS) using PRSice v210, using the options --clump-kb 250kb --clump-p 1 --clump-r2 0.1 
--interval 5e-05 --lower 5e-08. We used the top 10 genomic PCs from all 42,250 and 23,351 
individuals in iPSYCH2012 and iPSYCH2015i respectively as covariates to control for population 
structure in each of the cohorts. 
 
Note that this analysis uses more recent releases of iPSYCH data than available in the summary 
statistics from Schork et al 201922, which we use for heritability and genetic correlation shown in 
Figure 4, and PRS analysis with published external summary statistics shown in Figure 5A. 

UCLA ATLAS 
 
We also evaluated the transferability of PRS on a diverse subset (n=19,657) of the individuals in 
the UCLA ATLAS cohort23,24. All individuals in the ATLAS cohort are genotyped at 673,148 genetic 
variants on a custom Illumina Global Screening (GSA) array that included a standard GWAS 
backbone and an additional set of pathogenic variants selected from ClinVar23; genotype 
imputation was performed on the Michigan Imputation Server25, which performs phasing using 
Eagle v2.426 and performs imputation using the TOPMed Freeze5 imputation panel27 and 
minimac428.  

https://paperpile.com/c/oyHfas/aQe1
https://paperpile.com/c/oyHfas/Y2Bq+5r3i
https://paperpile.com/c/oyHfas/1vQb
https://paperpile.com/c/oyHfas/DabP
https://paperpile.com/c/oyHfas/PhrW
https://paperpile.com/c/oyHfas/h6rz
https://paperpile.com/c/EDgM4G/7JFL
https://paperpile.com/c/EDgM4G/B8C7V+2GWiX
https://paperpile.com/c/EDgM4G/B8C7V
https://paperpile.com/c/EDgM4G/kHb1t
https://paperpile.com/c/EDgM4G/D10mQ
https://paperpile.com/c/EDgM4G/0DmMu
https://paperpile.com/c/EDgM4G/vQ1hO
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Individuals in the ATLAS dataset reported self-identified race/ethnicity (SIRE). We applied filtering 
on discrepancies between SIRE and clusterings of individuals with their first two genetic PCs 
(Supplementary Figure 6). Further, we removed individuals and variants with more than 1% 
missing values as well as variants that were not under Hardy-Weinberg equilibrium (p-value 
threshold 10-6). Ultimately, we included 1,997 unrelated samples and 5,770,863 variants for 
Asian-identifying individuals, 1,125 unrelated samples and 7,048,125 variants for Black-
identifying individuals, 2,169 unrelated samples and 7,477,693 variants for Latino-identifying 
individuals, and 14,366 unrelated samples and 7,269,267 variants for White-identifying individuals 
in our analyses. The number of individuals with each Phecode in each SIRE category that are 
identified as cases or controls for ATLAS.DPR or ATLAS.MDD are shown in Supplementary 
Table 7.  
 
As the UCLA ATLAS is derived from EHR, where disease status of participants are in the form of 
billing, insurance or ICD10 codes, many of the codes are repetitive or redundant. We applied a 
mapping between all the available billing, insurance and ICD10 codes to a standardized Phecode 
in ATLAS to represent the total number of individuals having a certain disease. For MDD disease 
status in the ATLAS EHR, we identified two Phecodes: Phecode 296.2 (ATLAS.DPR) for the 
superset of depressive illness, corresponding to ICD10 codes for depressive disorders as shown 
in Supplementary Table 8; and Phecode 296.22 (ATLAS.MDD) for the more stringently defined 
MDD disease status that corresponds to ICD10 codes for Major Depressive Disorder as shown 
in Supplementary Table 8. Of the 1,705 MDD cases in ATLAS.MDD, 1,690 are also cases in 
ATLAS.DPR (N=3,120).  
 
To predict ATLAS.MDD or ATLAS.DPR in each of the SIRE categories, we obtained PRS from 
the individuals in ATLAS from each of the 15 summary statistics (phenotyped, imputed and MTAG 
GWAS) using PRSice v210, using the options --clump-kb 250kb --clump-p 1 --clump-r2 0.1 --
interval 5e-05 --lower 5e-08. We used the top 10 genomic PCs from individuals in each of the 
SIRE categories individuals in ATLAS as covariates to control for population structure in each of 
the cohorts. 

CONVERGE  
 
Patients with recurrent MDD were recruited from 58 provincial mental health centers and 
psychiatric departments of medical hospitals in 45 cities and 23 provinces of China. Control 
subjects were recruited from multiple locations, including general hospitals and local community 
centers; all were screened and did not meet criteria for MDD, schizophrenia, or bipolar illness. 
Study participants were Han Chinese women with four Han grandparents. Case subjects were 
ages 30–60 and had at least two episodes of major depression meeting DSM-IV criteria, with the 
first episode between ages 14 and 50. The study was approved by the ethical review boards of 
Oxford University and participating hospitals. All participants provided written informed consent. 
Details on sample collection, phenotypes, and sequencing have been reported previously29,30. 
 
Using 4,570,966 SNPs (MAF >= 0.05, INFO score >= 0.9, P value for HWE violation > 10-6)  on 

https://paperpile.com/c/EDgM4G/rx15U
https://paperpile.com/c/EDgM4G/8sqNA+aIMVw
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10,502 individuals in CONVERGE (Ncases = 5,282, Ncontrols = 5,220, estimated population 
prevalence = 0.08), we calculated PRS for each of the 15 summary statistics (phenotyped, 
imputed and MTAG GWAS) using PRSice v210, using the options --clump-kb 250kb --clump-p 1 -
-clump-r2 0.1 --interval 5e-05 --lower 5e-08, and the top 10 genomic PCs from all 10502 
individuals in CONVERGE as covariates to control for population structure. 

Impact of sample size on PRS Pleiotropy 

 
We directly investigated the effect of sample size by down-sampling. Specifically, we repeated 
our PRS pleiotropy analyses after down-sampling Soft-ImpAll (N=337,126) and GPpsy 
(N=332,629) to 50K and 100K. This involved 10-fold cross-validated GWAS and PRS 
construction, including tuning the optimal p-value threshold per each cross-validated PRS). We 
studied the same 62 phenotypes where all full-sampled PRS gave significant predictions (used in 
Figure 6) 
 
We found that down-sampled PRS Pleiotropy are very highly correlated to full-sample PRS 
Pleiotropy (Soft-ImpAll: Pearson r for 50K = 0.98; Pearson r for 100K = 0.99; GPpsy: Pearson r 
for 50K = 0.95; Pearson r for 100K = 0.99). While GPpsy at N=50K had significantly higher mean 
PRS Pleiotropy (two-sided paired t-test P = 3.16x10-11, mean difference = 10.2%), this difference 
vanishes at N=100K (P = 0.727, mean difference = 0.14%). Down-sampled Soft-ImpAll does not 
show significant difference in mean PRS Pleiotropy at either 50K (P = 0.90, mean difference = -
0.06%) or 100K (P = 0.70, mean difference = 0.10%).    
 
We show in Extended Data Figure 5 the full and down-sampled PRS Pleiotropy across all 62 
phenotypes ordered by their respective full-sample PRS Pleiotropy. Consistent with the above 
statistics, there were nontrivial fluctuations for N=50K yet surprisingly little fluctuation for N=100K. 
The variations were more extreme for GPpsy than Soft-ImpAll, which we attribute to differences 
in R2 for LifetimeMDD (which is likely the factor through which sample size acts). 
 
Overall, we conclude that PRS Pleiotropy is qualitatively stable for a single PRS as a function of 
sample size (because correlations are high) and that it can be compared across different PRS for 
N >100K (though we cannot evaluate N>300K). In the context of our study, this is not problematic 
because only observed LifetimeMDD has N<100K (N=67K), which only means that our baseline 
is conservative. 

Impact of P value threshold on PRS Pleiotropy  

 
We then investigated how sample sizes would affect P value thresholds used for construction of 
PRS, and how that could affect PRS Pleiotropy measures.  
 
Specifically, we investigated how sample size affects optimal P value thresholds, the number of 
included SNPs, and the variability of these statistics across folds of the data (Supplementary 
Figures 10,11). We find the following. First, the down-sampled PRS thresholds are more liberal 

https://paperpile.com/c/EDgM4G/rx15U
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and more variable (panels A,B). Second, the down-sampled PRS include more SNPs (panel C,D), 
which shows the net effect of more liberal thresholds (increasing number of SNPs used in PRS 
construction) and lower power (decreasing number of SNPs used in PRS construction). Third, 
down-sampled PRS gives more variable prediction R2 across folds (panel E, as measured by 
coefficient of variation SD(R2/mean(R2)), which is expected but distinct from the fact that the R2 
decrease. Fourth, this results in higher variance in PRS Pleiotropy when using down-sampled 
PRS (panel F, especially for N=50K), which is expected but distinct from the fact that the average 
PRS Pleiotropy increases (especially for N=50K).  
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Supplementary Figures  

 

Supplementary Figure 1.  

Comparison of our baseline imputation accuracy with softImpute to alternative approaches using 
different input phenotype matrices. Accuracy is compared to approaches that impute a phenotype 
matrix including: (A) only the MTAG.All traits plus demographic traits (age, sex, and 20 PCs); (B) 
only males; (C) only females; (D) adding a column for BMI. (E-H) show the P values comparing 
the baseline R2 with the relevant alternative imputation approach. P values are calculated based 
on pooled t-tests across 10 replicates of copy-masked data with 1% added missingness 
(Methods) for E-G; H uses paired t-tests instead because the copy-masks are identical in both 
imputation approaches. In A, we found that imputation performed much worse with this reduced 
set of phenotypes: for LifetimeMDD, specifically, imputation R2 dropped from 59.6% to 39.5% (P 
< 2x10-5, pooled t-test across folds). Overall, average imputation R2 on MTAG.All phenotypes 
dropped from 34.8% to 20.3% (Supplementary Table 2). + 
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Supplementary Figure 2.  

(A) Variance of SoftImpute imputed vs observed phenotypes. The variances were deflated by 
imputation, as expected. The average deflation in standard deviation was 20.3% (10th 
percentile=8.2%, 90th percentile=36.0%). (B) Correlation within imputed phenotypes vs within 
observed phenotypes. The correlations were inflated by imputation, as expected. The average 
3.95 (10th percentile=1.35, 90th percentile=13.3). Note: the imputed covariances are actually 
smaller than the observed, but this is because their variances are smaller. 
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Supplementary Figure 3.  

Binomial tests for equal power between each pair of 5 MDD GWAS in UKB on unrelated white 
British individuals. Each point on a curve tests the hypothesis that GWAS 1 and GWAS 2 have 
equal power to detect each of N causal loci. Specifically, for each number of causal loci N, we 
assume that the number of GWAS hits for each GWAS is independently distributed 
ni~binomial(N,pi) and then test whether n1=n2 using Pearson’s chi-squared test. Our test shows 
that GPpsy and phenotype integration (imputed or MTAG.All) GWAS are all more powerful than 
the (observed) LifetimeMDD GWAS; except for implausibly few causal loci (e.g., N<100), our test 
does not detect different differences between phenotype integration GWAS.  
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Supplementary Figure 4 

(A) Top phenotype loadings for the top 6-10 Softmpute factors in 337,127 unrelated White-British 
individuals in UKB; (B) Estimates of heritability and (C) genetic correlations of the top 6-10 
SoftImpute factors to MDD-relevant traits in the same individuals (N for all MDD relevant traits are 
found in Supplementary Table 1). All error bars indicate 95% confidence intervals. 
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Supplementary Figure 5 

Manhattan plots of linear regression GWAS on top 10 factors from Softimpute; -log10(P) values 
shown on the Y axis were before adjustment of multiple-testing, red line shows the genome-wide 
significance threshold corresponding to P value 5x10-8.  
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Supplementary Figure 6 

Manhattan plots of logistic regression GWAS on (A) GPpsy and (B-J) GPpsy regressing out each 
of the top 9 factors from Softimpute; -log10(P) values shown on the Y axis were before adjustment 
of multiple-testing, red line shows the genome-wide significance threshold corresponding to P 
value 5x10-8.  
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Supplementary Figure 7 

(A) PC1 and PC2 of 150,213 non-White British individuals in UKBiobank projected onto PC1 and 
PC2 of the 1000G coloured by their super-populations: African (AFR, red), South Asian (SAS, 
purple), European (EUR, blue), Admixed American (AMR, orange) and Asian (ASN, green); (B-
D) zoom in of A with 122,710, 8,040 and 2,530 individuals who clustered with the individuals in 
1000G with EUR, AFR and ASN ancestries respectively; (E, F) PC1 and PC2 of PCA performed 
only in  the EUR and AFR ancestry individuals in UKB, coloured by self-reported ancestries. 
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Supplementary Figure 8 

PC1 and PC2 of individuals in the ATLAS dataset coloured by their reported self-identified 
race/ethnicity (SIRE), projected onto PC1 and PC2 of the 1000G.  
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Supplementary Figure 9 

Out-of-sample PRS prediction accuracy in four additional cohorts of non-European ancestries: 
individuals who identify as Black (ATLAS.AFR, N=1,125), Asian (ATLAS.ASN, N=1,997), Latino 
(ATLAS.LAT, N=2,169) in ATLAS, and individuals with East Asian ancestry in UKB (UKB.ASN, 
N=2,460).  All error bars indicate 95% confidence intervals estimated from bootstrapping 1000 
times.   
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Supplementary Figure 10 

Effect of training GWAS sample size of GPpsy on (A) mean and (B) variance in P value threshold, 
(C) mean and (D) variance in number of SNPs used in PRS construction, (E) coefficient of 
variation in PRS prediction R2, and (F) PRS Pleiotropy. These analyses are performed on 62 
phenotypes in UKB (which are significantly predicted by at least one full-sample PRS, as shown 
in Figure 6).  
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Supplementary Figure 11 

Effect of training GWAS sample size of Soft-ImpAll on (A) mean and (B) variance in P value 
threshold, (C) mean and (D) variance in number of SNPs used in PRS construction, (E) coefficient 
of variation in PRS prediction R2, and (F) PRS Pleiotropy. These analyses are performed on 62 
phenotypes in UKB (which are significantly predicted by at least one full-sample PRS, as shown 
in Figure 6).  
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Supplementary Tables  

 
Supplementary Table 1: Definitions, data field codes and sample sizes of all MDD-related 
phenotypes in the UKB that are input for SoftImpute and Autocomplete. Note that phenotypes 
included in our imputation are not one-to-one with lines in the Table, because some lines 
correspond to multiple phenotypes (e.g., PC1-20) and some phenotypes correspond to multiple 
lines (e.g., ICD10 code-based definitions of MDD). 
 
Supplementary Table 2: Softimpute R2s of 217 phenotypes in the baseline model (using all 217 
phenotypes and all individuals in imputation, including sex, age and 20PCs), in females only, in 
males only, using phenotypes in MTAG.All (and sex, age and 20PCs) only, and adding in BMI as 
an extra phenotype. 
 
Supplementary Table 3: Genome-wide significant GWAS hits (P < 5x10-8, only independent hits 
are shown) in Softimpute and Autocomplete GWAS on imputed only LifetimeMDD (ImpOnly) and 
imputed and observed LifetimeMDD combined (ImpAll). GWAS was performed with linear 
regression.  
 
Supplementary Table 4: Genome-wide significant GWAS hits (P < 5x10-8, only independent hits 
are shown) from all MTAG runs on LifetimeMDD. MTAG GWAS was performed with weighted 
meta-analyses of logistic regression or linear regression input GWAS summary statistics as 
shown in Figure 4A.  
 
Supplementary Table 5: Observed and liability scale SNP-based heritability of all MDD 
phenotypes used in this study along with the population prevalences (K) used for their calculation; 
Neff are given as the effective sample size after accounting for case/control imbalance in each 
observed phenotype; sample sizes N and Neff for MTAG results are identical, given as the 
effective sample size outputs from MTAG, which refers to the power-equivalent sample sizes for 
a single phenotype vs multiple phenotypes.  
 
Supplementary Table 6: Description, sample sizes, effective sample size (adjusted for 
case/control numbers)  and citations of GWAS on other MDD cohorts referenced and used in this 
study.  
 
Supplementary Table 7: Number of individuals in the UCLA ATLAS study of each reported self-
identified race/ethnicity (SIRE), and the number of individuals from each SIRE qualifying for 
Phecode 296.2 (ATLAS.DPR) and Phecode 296.22 (ATLAS.MDD).  
 
Supplementary Table 8: Phecodes in the UCLA ATLAS study used to define MDD cases: 296.2 
(ATLAS.DPR) for the superset of depressive illness, corresponding to ICD10 codes for depressive 
disorders; and Phecode 296.22 (ATLAS.MDD) for the more stringently defined MDD disease 
status that corresponds to ICD10 codes for Major Depressive Disorder.  
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