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Supplementary Fig. 1| OR52cs as representative of the human OR52 family by multiple sequence alignment. a For 
OR52cs and each member of the human OR52 family, the phylogeny tree constructed by the maximum likelihood method is 
shown. b Among 26 human OR52 family members and whole 388 human ORs1, the sequence conservation is displayed 
for OR-specific motifs. The graphical representation was depicted by WebLogo32. c Sequence alignment of OR52cs with 
four native OR52 family members. OR52E8, OR52E4, OR52E2, and OR52E5 were selected for high sequence identity (> 
65 %). OR-specific and class A GPCRs-conserved motifs were colored light blue and blue, respectively. Each TM is marked 
as a square and labeled. The most conserved position in class A GPCRs for each TM and loop are highlighted with a gray 
box and labeled with a generic number3.  The conserved 6.59 position on TM6 was colored yellow. Above each position, 
the degree of conservation among the OR52 family is color-coded from gray (low) to black (high).



Supplementary Fig. 2| Structural similarity between G⍺s and G⍺olf. a OCA-induced G protein recruitment to OR52cs 
was assessed with Bioluminescence Resonance Energy Transfer (BRET) assay. ΔBRET is calculated by the 
difference between 500 µM OCA- and vehicle-treated BRET signals. Bars and error bars indicate the mean and S.E.M. 
from n=5 independent experiments, respectively, and symbols indicate individual values. b The crystal structure of 
GTPγS-bound Gαolf is shown. Two domains of Gαolf, AHD and Ras-like domain are indicated. c Structural alignment of 
Gαolf with a previously reported crystal structure of human Gαs4 (PDB ID 1AZT). The structure of Gαolf and Gαs are 
colored in green and white, respectively. Two structures showed a RMSD of 0.48 Å for 285 C⍺ atoms, and GTPγS is 
located at the same position. Box highlights the ⍺5 helices of the two G⍺ structures.
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Supplementary Fig. 3 Processing of cryo-EM data of the OCA–OR52cs–Gs–Nb35 complex. a SDS-PAGE of 
purified OCA–OR52cs–Gs–Nb35 complex before and after HRV3C protease treatment. b Representative motion-
corrected micrograph (scale bar, 50 nm) and 2D average classes (scale bar, 5 nm) of the complex are shown. c 
Flowchart of data processing using cryoSPARC v3.3.25, 6. d The Euler angle distribution of particles used in final non-
uniform refinement. e-f Cryo-EM maps colored by local resolution of Non-uniform refinement (e) and receptor-focused 
local refinement (f). g Density representation of TMs, N-tail, ECL1-3, ICL1-3, helix 8, and G⍺s ⍺5 helix are shown.
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Supplementary Fig. 4| G protein binding interface of OR52cs. a Comparison of G⍺s binding site between OR52cs 
and β2AR (PDB: 3SN6). b Interaction interface of OR52cs and ⍺5 helix of G⍺s. Residues that participate in the 
interaction are shown as sticks. c Interactions between OR52cs and G⍺s, determined by the PyMol program
(Molecular Graphics System v2.5.1, Schrödinger) are summarized. For each interaction, distance (Å) and character 
are displayed. For each residue of OR52cs, the degree of conservation among whole 388 human ORs is color-coded. 
d Residues that are not conserved in G⍺olf are highlighted in magenta in the structure of G⍺s. Q35⍺N of G⍺s is 
replaced with L37⍺N in G⍺olf. For ⍺N and ⍺5 helices, sequence alignment between G⍺s and G⍺olf is shown at the 
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Supplementary Fig. 5| Sequence conservation of the human OR52 family. Sequence conservation of 26 
human OR52 family members are shown. The position of each TM for OR52cs is shown. For each position, the 
residue number corresponds to that of OR52cs. Conserved residues contributing to structural stability 
mentioned in Fig. 2b-d are marked with green text.
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Supplementary Fig. 6| Structural comparison of OR52cs and OR51E2. a Active state OR52cs structure was aligned 
to OR51E2 (PDB:8F76) with a RMSD of 1.5 Å for 289 C⍺ atoms. b One of disulfide bonds are not conserved between 
the two structures. In OR51E2, highly conserved C45.60 is replaced with Y.
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Supplementary Fig. 7| CRE assays of R2656.59A mutant and OR52cs with octanol. a The activity of the 
OR52cs R2656.59A mutant in response to the treatment of carboxylic acid odorants was assessed with CRE 
luciferase assay. Different lengths of carboxylic acids were treated at a final concentration of 100 µM. DMSO was 
used as negative control. Bars and error bars indicate the mean and S.E.M. of 4 independent experiments, 
respectively, and symbols indicate individual values. The relative fold was calculated by dividing the luciferase 
activity of each odorant with that of DMSO. Assays were done with Hana3A cell line and data were analyzed by 
GraphPad Prism 9.4.1. b The activity of OR52cs in response to OCA and octanol was assessed with CRE 
luciferase assay. Odorants were treated at five different concentrations as indicated on the right. Bars and error 
bars indicate the mean and S.E.M. of 4 independent experiments, respectively.
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Supplementary Fig. 8| Mutagenesis of odorant pocket residues of OR52cs. a. Structural alignment of 
OR52cs with OR51E2 is shown. OR51E2 is colored light-gray and PPI is shown as a yellow stick. Residues at 
positions 4.57, 5.47, and 6.59 are shown as sticks. b. Carboxylic acid odorants with various lengths were 
treated to OR52cs and two mutants (V1584.57F and V1584.57F/V2095.47M), and their cAMP response curves are 
shown. For each data, symbols and error bars indicate the mean and the standard error of the mean (S.E.M.) 
from n=3 independent experiments, respectively.
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Supplementary Fig. 9| The odorant binding pocket of OR52cs. The odorant binding pocket of OR52cs is 
shown using UCSF ChimeraX 1.6.17. The surface model of the active OR52cs (light-gray) is shown and OCA 
(lightpink) is presented as sticks. Occluded odorant-binding pocket is indicated by a magenta dashed circle.
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Supplementary Fig. 10| Cryo-EM data analysis of OR52cs-bRIL–Fab complex. a SEC profile (left) and SDS-
PAGE (right) of purified OR52cs-bRIL–Fab complex. b Representative motion-corrected micrograph (scale bar, 50 
nm) and 2D average classes (scale bar, 5 nm). c Flowchart of data processing using cryoSPARC v4.2.0. d The 
Euler angle distribution of final reconstructed local refinement map. e-f Cryo-EM maps colored by local resolution of 
Non-uniform refinement (e) and receptor-focused local refinement (f). FSC curve was calculated and exported from 
RELION v3.1.18. g Density representation of TMs, N-tail, ECL1-3, ICL1-2 are shown. Key residues presented in Fig. 
5c, d are labeled. h Q-scores estimated from final locally-refined map and model using MapQ v1.9.9 are plotted with 
expected Q-score value at 3.6 Å resolution9.
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Supplementary Fig. 11| Structural feature of ECL2 in apo state OR52cs. a Basal and odorant induced activities 
of OR52cs and OR52cs-bRILICL3 are assessed by cAMP responses upon DMSO or 1 mM OCA treatment (left). 
Dose-dependent cAMP response of each construct is presented (right). For each data, error bars indicate the 
standard error of the mean (S.E.M.) from n=4 independent experiments, respectively, and symbols indicate 
individual values. b The interactions that stabilize the apo structure near ECL2 and the FYxP motif are shown. 
Polar interactions are represented as blue dashed lines. The same color codes as in Fig. 2b are used for ECL2, N-
tail, and ECL1.
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Supplementary Fig. 12| Alphafold2−generated model of the apo state OR52cs. Alphafold2 predicted model 
was aligned with our apo state OR52cs structure, with a RMSD of 1.1 Å for 242 C⍺ atoms.
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Supplementary Fig. 13| Mutagenesis of residues important for activation of OR52cs. a. Residues which 
are not directly involved in odorant binding but stabilize active state are shown as yellow sticks. b. cAMP 
response curve of alanine mutants for residues highlighted in a. For each data, symbols and error bars indicate 
the mean and the standard error of the mean (S.E.M.) from n=3 (for OR52cs, n=5) independent experiments, 
respectively.

a

S1143.40

D2125.50 Y2546.48

F2536.47

Y2827.41

H2757.33

H2646.58

OCA



OCA–OR52cs–Gs

OCA

0 µs 1 µs 2 µs 8 µs

TM6TM5

F2616.55

R2656.59

TM6TM5 TM6TM5 TM6TM5

Supplementary Fig. 14| MD simulations of OCA–OR52cs with or without Gs. Snapshots at 0, 1, 2, and 8 μs 
are presented for each simulation, with OCA, F2616.55, and R2656.59 shown as sticks.
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Supplementary Fig. 15| Structural modeling of pentanoate–OR52L1 and OR52E5 with fatty acids of different 
lengths. a Quantification of surface expression of native OR52 family members by surface ELISA. For each data, error 
bars indicate the standard error of the mean (S.E.M.) of three independent experiments, respectively, and symbols 
indicate individual values. b Structural alignment between OCA–OR52cs and pentanoate–OR52L1 model. c Modeling of 
carboxylate (C6 to C12) bound OR52E5. d Fluctuations of the pocket residues in each carboxylate-bound OR52E5 
model during 100-200 ns MD simulations are displayed. 
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Supplementary Fig. 16| Entrance and exchange of phospholipids during 20 µs MD simulation of OCA–OR52cs. 
Entrance of phospholipid (POPC36) into OR52cs through the opening between TM5 and TM6 was observed in 2 µs 
simulation. After the total escape of OCA, another phospholipid (POPC72) entered OR52cs while pushing POPC36 
out in 17 µs. The presence of POPC72 in OR52cs was observed until the end of the simulation (20 µs).



Data collection
wavelength (Å) 0.9794
Space group P21

Unit cell parameters (a, b, c, β) 121.7 Å, 52.4 Å, 125.5 Å, 118.5°
Resolution (Å) (last shell) 27 - 2.9 (3.0 - 2.9)
Unique reflections 30932 (3030)
Completeness (%) 99.4 (99.8)
Multiplicity 3.4 (3.5)
I/σ(I) 7.1 (1.5)
Rmerge

a 0.178 (0.808)
CC1/2

b 0.983 (0.67)

Refinement
No. of reflections working set (test set) 30932 (1547)
Rwork/ Rfree

c 0.23 / 0.27
bond length rmsd from ideal (Å) 0.002
bond angle rmsd from ideal (°) 0.56
Ramachandran analysisd

% favored regions

% allowed regions

% outliers

98.02

1.98

0
a Rmerge=ΣhΣI|Iih<Ih>|ΣhΣi(h), where Ii(h) is the ith measurement of reflection h, and
<I(h)> is the weighted mean of all measurements of h.
bCC1/2 : Pearson correlation coefficient between random half-datasets10.
cR = Σh|Fobs(h)| - |Fcalc(h)| | / Σh|Fobs(h)|. Rwork and Rfree were calculated using the
working and test reflection sets, respectively.
dAs defined in MolProbity11.

Supplementary Table. 1| Crystallographic statistics of Gαolf 



Supplementary Table. 2| Cryo-EM data collection, refinement and validation statistics

OCA–OR52cs–Gs–Nb35 Apo state OR52cs

Composite map EMD-35010 EMD-
35971

Consensus map EMD-35770

OR52cs-focused map EMD-35772 EMD-
37336

Gs-focused map EMD-35773
With bRIL No bRIL

PDB PDB 8HTI PDB 8J46 PDB 8W77
Data collection and processing
Magnification   105,000 105,000
Voltage (kV) 300 300
Electron exposure (e–/Å2) 60 68.5
Defocus range (μm) -0.8 to -2.0 -0.7 to -1.9
Pixel size (Å) 0.851238 0.848
Symmetry imposed C1 C1
Initial particle images (no.) 493,826 5,594,893
Final  particle images (no.) 126,896 173,732 142,861
Map resolution (Å) 2.97 3.66 3.60

FSC threshold 0.143 0.143 0.143

Refinement
Initial model used (PDB code) Alphafold2, 3SN6 Alphafold2 Alphafold2, 

6WW2
Model resolution (Å) 3.10 3.80 3.50

FSC threshold 0.143 0.143 0.143
Model resolution range (Å) n/a n/a n/a
Map sharpening B factor (Å2) -77.6 -124.9 -136.3
Model composition

Non-hydrogen atoms 7,393 2,158 1,601
Protein residues 962 362 260
Ligands OCA: 1 n/a n/a

B factors (Å2)
Protein 49.15 181.08 170.24
Ligand 42.68 n/a n/a

R.m.s. deviations
Bond lengths (Å) 0.004 0.005 0.005
Bond angles (°) 0.600 1.133 1.141

Validation 
MolProbity score 1.50 0.68 0.73
Clashscore 5.94 0.54 0.72
Poor rotamers (%) 0.00 0.00 0.00

Ramachandran plot
Favored (%) 97.02 99.14 99.19
Allowed (%) 2.98 0.86 0.81
Disallowed (%) 0.00 0.00 0.00



OR52cs
Mutants

Octanoate (OCA)
Surface 

Expression (%)EC50 (µM)
(pEC50 ± SEM) N X-fold over

OR52cs

OR52cs
7.9

(5.230 ± 0.107) 5 1 100

H1073.33A 187
(2.380 ± 0.092) 3 23.7 91.7 ± 9.3

T1103.36A 22.7
(4.293 ± 0.098) 3 2.9 89.0 ± 3.5

F1614.60A 42.0
(4.214 ± 0.075) 3 5.3 110.6 ± 3.5

H18345.52A 41.4
(4.154 ± 0.087) 3 3.2 112.3 ± 3.0

G2015.39A ND 3 - 116.4 ± 6.8

I2085.46A 5.1
(5.321 ± 0.119) 3 0.65 94.2 ± 3.9

F2616.55A 506
( 3.326 ± 1.547) 3 64.0 132.6 ± 12.1

R2656.59A ND 3 - 163.7 ± 7.2

ΔN(1-18) ND 3 - 25.6 ± 7.1

F14A/F96A 
/F170A 208 3 26.3 63.7 ± 4.0

Supplementary Table. 3| EC50 of OR52cs and mutants for octanoate. EC50 (pEC50 ± SEM) values of 
OR52cs and mutants were measured by cAMP assay with octanoate (OCA) as an odorant. Dose-response 
curves for each dataset are presented in Figure 3d. The number of independent experiments for estimating 
EC50 value is displayed in the third column (N). For each mutant, relative fold of EC50 over OR52cs is shown in 
the last column (X-fold over OR52cs). Surface expression level of each mutant was quantified by surface ELISA 
and normalized by OR52cs.



Supplementary Table. 4| Key interactions of TM6 residues stabilizing the apo and active states of OR52cs. 
Key interactions of TM6 residues stabilizing the apo and active states of OR52cs are compared in this table. 
Interactions between TM6 residues are not included. For each interaction, the distance (Å) and interaction character 
are displayed. Residues with no evident side chain are indicated as ‘No interaction’.

Active state 
TM6 

Residue 

Apo state 

Interaction character Distance (Å) Interacting
Residue 

Interacting
Residue Distance (Å) Interaction character

Polar (backbone) 3.2 I1985.36

R2656.59

I1985.36

No interactionvan der Waals 4.0 I1985.36 I1985.36

van der Waals 3.9 L2025.40 L2025.40

Hydrogen bond 3.9 H17845.47

H2646.58

H17845.47

No interaction
Hydrogen bond 2.5 E18245.51 E18245.51

van der Waals 3.7 M18445.53 M18445.53

Hydrogen bond 3.2 H2757.33 H2757.33

van der Waals 3.9 E18245.51 F2616.55 E18245.51 No interaction

van der Waals 3.4 V2095.47 F2586.52 V2095.47 No interaction

van der Waals 3.6 Y2827.41 P2566.50 Y2827.41 No interaction

Hydrogen bond 2.8 S1143.40

Y2546.48

S1143.40 3.9 Hydrogen bond

van der Waals 3.4 V2095.47 V2095.47
No interaction

van der Waals 3.8 V2135.51 V2135.51

van der Waals 4.0 T1103.36

F2536.47

T1103.36

No interactionvan der Waals 4.1 E1133.39 E1133.39

van der Waals 4.0 Y2827.41 Y2827.41

van der Waals 3.7 P2867.45 P2867.45 4.0 van der Waals

van der Waals 4.3 I2165.54
I2506.44

I2165.54 3.6 van der Waals

van der Waals 4.0 Y2205.58 Y2205.58 4.5 van der Waals

van der Waals 3.3 N2907.49

V2496.43

N2907.49 4.3 van der Waals

van der Waals 3.6 I2937.52 I2937.52 4.4 van der Waals

No interaction Y2947.53 Y2947.53 3.6 van der Waals

Polar 2.8 Y2205.58
H2466.40

Y2205.58 2.8 Polar

van der Waals 3.9 Y2947.53 Y2947.53 3.8 van der Waals

van der Waals 3.6 Y2205.58 C2436.37 Y2205.58 3.1 Hydrogen bond



Supplementary Table. 5| Sequence alignment of residues around odorant binding pocket in the OR52 
family. The sequence alignment of human OR52 family members with OR52cs. Residues constituting odorant-
binding pocket are presented. Sequence identity for each OR52 family member against OR52cs was presented, 
both for whole sequence and pocket residues.

OR species TM3 TM4 ECL2 TM5 TM6

Sequence Identity (%)

Pocket residues Whole residues

OR52cs H1073.33 T1103.36 G1113.37 F1614.60 H18345.52 G2015.39 V2045.42 A2055.43 I2085.46 V2095.47 F2586.52 F2616.55 R2656.59 100 100
OR52N4 H T G F H G V A I W F F R 92.31 64.01
OR52N5 H T G F H G V A I G F F R 92.31 63.28
OR52N2 H T G F H G V A I G F F R 92.31 61.78
OR52E4 H T G F H G V I I I F F R 84.62 70.61
OR52H1 H F V D H G V P T V F I R 84.62 60.91
OR52N1 H T G S H G V A I G F F H 76.92 60
OR52J3 H T G M H G V V F V V F R 69.23 64.94
OR52A5 H Q A S H G V A I L F F R 69.23 64.01
OR52D1 H Y A F H G V A A M F F R 69.23 63.81
OR52E8 H T A L H G N I L L F F R 61.54 73.16
OR52E5 H T G F H G A F V G L F R 61.54 66.77
OR52K1 H S I L H G V A I V V S R 61.54 63.87
OR52K2 H S I L H G V A I V V S R 61.54 63.26
OR52A1 H Q G C H G V A V A F F R 61.54 60.97
OR52E6 H T V L H G S I L L F F C 53.85 69.01
OR52E2 H T L S H G A I L V L F R 53.85 68.61
OR52R1 H S S F H G V A V A L F R 53.85 62.62
OR52L1 H S S F H G M A V I I F R 53.85 61.13
OR52W1 H T A F H G L S I S L Y R 53.85 49.68
OR52B2 H F V V H G V P M V F L H 46.15 65.81
OR52B4 H F I I H G I L T V I I R 38.46 61.34
OR52B6 H L F S H G A A S T L V R 38.46 60.13
OR52A4 H Q G C R G G A V G F I Q 38.46 55.38
OR52M1 H A T L H G I G V L A S R 30.77 59.53
OR52I1 H T A L H S G S M V M I W 30.77 51.48
OR52I2 H T A L H S G S M V M I W 30.77 51.48



OCA–OR52cs–Gs OCA–OR52cs apo OR52cs

Simulation box (Å3) 139 ´ 139 ´ 171 91 ´ 91 ´ 113 90 ´ 90 ´ 116
# atoms 308,264 85,555 87,389
# water molecules 221,229 17,823 18,441
Lipid composition POPC:cholesterol (4:1)
Upper leaflet, # lipids, POPC 228 88 88
Upper leaflet, # lipids, cholesterol 57 22 22
Lower leaflet, # lipids, POPC 224 88 88
Lower leaflet, # lipids, cholesterol 56 22 22
Salt concentration (M), KCl 0.15

Supplementary Table. 6| Detailed system information of MD simulations. 
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Reliability and reproducibility checklist for molecular dynamics simulations
*All boxes must be marked YES by acceptance unless “Response not needed if 
No”.

Yes No Response 
(Please state where this information can be found in the 
text)

1. Convergence of simulations and analysis
1a. Is an evaluation presented in the text to show that the property being 
measured has equilibrated in the simulations
(e.g. time-course analysis)?

☒ ☐ In the Methods section, the following sentence has been 
added with a reference.
Line 555: “Following the CHARMM-GUI six-step 
equilibration procedure,”

1b. Then, is it described in the text how simulations are split into equilibration 
and production runs and how much data were analyzed from production runs?

☒ ☐ In the Methods section, the following sentence has been 
added with a reference.
Line 555: “Following the CHARMM-GUI six-step 
equilibration procedure,”

1c. Are there at least 3 simulations per simulation condition with statistical 
analysis?

☒ ☐ We used 5 replicas, which can be confirmed in Figures 3e 
and 4c, as well as in the Methods section (Line 562: 
“Simulations were performed at least 1 µs for five replicas”). 
For Anton2 simulation, we conducted single 10 µs and 20 
µs all-atom MD simulations for OCA-OR52cs–Gs and OCA–
OR52cs, respectively. Although we conducted extensive 
simulations for these systems, the sampling may vary when 
reproduced.

1d. Is evidence provided in the text that the simulation results presented are 
independent of initial configuration?

☒ ☐ It can be seen in Figures 3e and 4c.

2. Connection to experiments
2a. Are calculations provided that can connect to experiments (e.g. loss or gain 
in function from mutagenesis, binding assays, NMR chemical shifts, J-
couplings, SAXS curves, interaction distances or FRET distances, structure 
factors, diffusion coefficients, bulk modulus and other mechanical properties, 
etc.)?

☒ ☐ Calculations (Figure 3e) can be connected to reduced cAMP 
responses in Figure 3d.

3. Method choice
3a. Do simulations contain membranes, membrane proteins, intrinsically 
disordered proteins, glycans, nucleic acids, polymers, or cryptic ligand binding?

☒ ☐ Simulations contain membranes and membrane proteins as 
described In the Methods section.
Line 544: “The receptor was embedded into a model 
membrane composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine (POPC) and cholesterol (4:1).”

3b. Is it described in the text whether the accuracy of the chosen model(s) is 
sufficient to address the question(s) under investigation (e.g. all-atom vs. 
coarse-grained models, fixed charge vs. polarizable force fields, implicit vs. 
explicit solvent or membrane, force field and water model, etc.)?

☒ ☐ Force fields that are employed in this study were described 
in the Methods section. 
Line 549: “The CHARMM36(m) force field was utilized for 
lipids and proteins, and CGenFF was used for the OCA 
ligand.”
For a better understanding, we have changed “MD 
simulations” into “All-atom MD simulations” in the text.

3c. Is the timescale of the event(s) under investigation beyond the brute-force 
MD simulation timescale in this study that enhanced sampling methods are 
needed?

☐ ☒ MD simulation in this study does not require enhanced 
sampling methods.

If YES, are the parameters and convergence criteria for the enhanced 
sampling method clearly stated?

☐ ☐

If NO, is the evidence provided in the text? ☒ ☐ We performed free MD simulations, and the details are 
addressed in the Methods section.
Line 562: “Simulations were performed at least 1 µs for five 
replicas using OpenMM simulation package.”
Line 564: “longer time scale up to 20 µs and 10 µs for OCA–
OR52cs and OCA–OR52cs–Gs, respectively.”

4. Code and reproducibility
4a. Is a table provided describing the system setup that includes simulation box 
dimensions, total number of atoms, total number of water molecules, salt 
concentration, lipid composition (number of molecules and type)?

☒ ☐ We have properly updated the information in the Methods 
section and provided a table (Supplementary Table 6).
Line 541: “Three model systems were prepared for all-atom 
MD simulation: OCA–OR52cs–Gs (139 ´ 139 ´ 171 Å3), 
OCA–OR52cs (91 ´ 91 ´ 113 Å3), and Apo OR52cs (90 ´ 90 
´ 116 Å3), with the total numbers of atoms (and water 
molecules) of 308,264 (221,229), 85,555 (17,823), and 
87,389 (18,441), respectively (Supplementary Table 6).”

4b. Is it described in the text what simulation and analysis software and which 
versions are used?

☒ ☐ Described in the Methods section, “All-atom MD simulations 
of apo and OCA-bound states of OR52cs”.
Line 562: “Simulations were performed at least 1 µs for five 
replicas using OpenMM simulation package.”

4c. Are other parameters for the system setup described in the text, such as 
protonation state, type of structural restraints if applied, nonbonded cutoff, 
thermostat and barostat, etc.?

☒ ☐ Described in the Methods section, “All-atom MD simulations 
of apo and OCA-bound states of OR52cs”.
Line 545: “For the G protein, three lipidations were 
introduced into the Gαs and Gγ proteins, i.e., N-
myristoylation (Gly2 of Gαs), S-palmitoylation (Cys3 of Gαs), 
and S-geranylgeranylation (C68 of Gγ).”

4d. Are initial coordinate and simulation input files and a coordinate file of the 
final output provided as supplementary files or in a public repository?

☒ ☐ We have provided a link.
Line 601: “The initial and final configurations obtained from 
1-µs all-atom MD simulations and extended simulations 
from Anton2 of all model systems are available at 
https://github.com/sek24/natcomm2023.”

4e. Is there custom code or custom force field parameters? ☐ ☒ Response not needed if No
If YES, are they provided as supplementary files or in a public 
repository?

☐ ☐

[MD simulation checklist] 
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