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Supplementary Fig. 1. Heteroblastic leaf series of WT and mpl1-1. Leaf morphology in successive 

nodes from 1 to 10 in 6-week-old wild-type (a) and mpl1-1 (b) plants. The juvenile leaf with a single 

leaflet developed on the nodes 1 and 2 in both WT and mpl1-1. Each successive leaf became increasingly 

compound in both WT and mpl1-1, with mpl1-1 exhibiting more complex leaf structures than WT from 

node 5 onwards. Bars: 2 cm. 



 

Supplementary Fig. 2. Scanning Electron Microscopy analysis of compound leaf development in 

mpl1-1 mutant. a, Shoot apical meristem (SAM) with three visible leaf primordia (P1-P3). b-f, 

subsequent leaf primordia P4-P8 of the mpl1-1 mutant. c’, A close-up view of (c). Scale bars, 100 μm in 

a-f; 20 μm in c’. Similar results were obtained from three biological replicates for each tissue or organ. 



 

Supplementary Fig. 3. Segregation analysis of mpl1 mutant and WT in F2 population. F1 plants 

displayed a WT leaf phenotype, while the F2 population from self-pollination of F1 backcrossed plants 

showed a 3:1 segregation ratio of WT and mpl1-1 mutant. 



 

Supplementary Fig. 4. Bulk Segregant Analysis (BSA) of delta SNP/InDel (ΔSNP/InDel)-index 

between extreme pools grouped by chromosomes. The x-axis corresponds to the chromosomal position, 

and the y-axis represents the value of the ΔSNP/InDel-index. The red line represents the mean value of 

the ΔSNP/InDel-index along the chromosomes. The green and gray lines represent the corresponding 

two-sided 99% and 95% confidence intervals for the ΔSNP/InDel-index.



 

Supplementary Fig. 5. Identification of the causative mutation in the MPL1 gene. a, Sanger 

sequencing chromatograms showing mutations in the MPL1 gene of the mpl1-1 and mpl1-2 mutants. b, 

Alignment of the C-terminal partial protein sequences containing DLXLXLX-type EAR motifs of MPL1 

homologs from different species. The black arrow indicates the conserved amino acid residue in EAR 

motif, while induced mutated amino acid residues in mpl1-1 and mpl1-2 are marker in bold red.



 

Supplementary Fig. 6. Cosegregation analysis in the F2 population from a cross between the mpl1-1 

mutant and WT. a, Genomic structure of MPL1. The black and gray boxes represent exons and the 

flanking genomic sequences, respectively. Arrows indicate primers used for genotyping and cosegregation 

analysis. The sequences marked in blue denote BstC8I enzyme digestion recognition site. b, 

Cosegregation analysis of an F2 population derived from mpl1-1(♀)×WT (cv. ICCV96029) (♂). 45 out of 

183 F2 individuals showing the mpl1-1 mutant phenotype were homozygous for the mutation. PCR 

products were amplified from P13028 and P12797 and then digested by the BstC8I enzyme for 2 hours 

before DNA agarose gel electrophoresis. Similar results were obtained from three independent 

experiments. Source data are provided as a Source Data file. 



Supplementary Fig. 7. Genotyping analysis of mpl1-3 (PI587040). a, Chromosomal organization and 

gene structure of the MPL1 gene and its neighbor gene Ca_02267 with exons shown as dark cyan boxes. 

Arrows indicate the direction of transcription of each gene. The mpl1-3 carried a 1.5 kb deletion 

encompassing a portion of the MPL1 gene. b, Genomic structure of MPL1 in WT and mpl1-3 (PI587040). 

The black and gray boxes represent exons and the flanking genomic sequences, respectively. Arrows 

indicate primers used for genotyping analysis. c, A 1.5 kb deletion encompassing a portion of the MPL1 

gene in mpl1-3 (PI587040) created a premature stop codon. d,e, Genotyping analysis of WT and mpl1-3 

(PI587040). Similar results were obtained from three independent experiments. Source data are provided 

as a Source Data file. The primers are shown in Supplementary Table 3. 



Supplementary Fig. 8. Phylogeny of MPL1 and its homologs from other species constructed using the maximum-likelihood 

method and bootstrap test with 2000 replicates.

a, A radiation tree of MPL1 and its homologs exhibited 3 different clades. MPL1, PALM1, and POP were grouped together 

forming a distinct clade (blue) sister to two other clades which include the Arabidopsis SUPERMAN (SUP) the RABBIT EARS 

(RBE) respectively. b, The fully annotated tree.
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Supplementary Fig. 9. The rescued phenotype of palm1 mutant by PALM1pro::MPL1 in M. 

truncatula. a, Genomic structure of PALM1. The black and gray boxes represent exons and the flanking 

genomic sequences, respectively. The red triangle denote Tnt1 insertion site in PALM1 of palm1-5 mutant. 

Arrows indicate primers used for genotyping. b, Schematic diagram of PALM1pro:cMPL1-NOS-T 

construct used for genetic complementary assay. The blue, pink and orange boxes represent the promoter 

of PALM, the coding region of MPL1 and the NOS terminator, respectively. c, Leaf phenotypes of WT, 

palm1-5 and two independent rescued lines. Images in each top right corner show close-up views of the 

adaxial side of the leaflet basal region. Scale bar, 1 cm. d, RT-PCR analysis of MPL1 expression in shoot 

buds of WT, palm1-5 and two independent transgenic rescued lines. e, Genotyping of the independent 

transgenic rescued lines. Similar results were obtained from three independent experiments. Source data 

are provided as a Source Data file. The primers are shown in Supplementary Table 3.



Supplementary Fig. 10. The MPL1 expression pattern during leaf development detected by RNA in 

situ hybridization. a,b, Longitudinal successive sections of WT vegetative shoot apex. c-h, Longitudinal 

successive sections of leaf primordium at the indicated developmental stages. Similar results were 

obtained from three independent experiments. Scale bars, 50 μm 



Supplementary Fig. 11. The expression patterns of CaSTMa and CaBP1, and differential expression 

analysis of CaKNOXIs between WT and the mpl1-1 mutant. a,b, The expression pattern of CaSTMa in 

successive longitudinal (a) and transverse (b) sections of SAM with P0~P5 leaf primordia detected by 

RNA in situ hybridization. c,d, The expression pattern of CaBP1 in successive longitudinal (c) and 

transverse (d) sections of SAM with P0~P5 leaf primordia. Similar results were obtained from three 

independent experiments. Scale bars, 50 μm. e, RT–qPCR analysis of CaSTMa mRNA expression levels 

in vegetative-shoots between WT and mpl1-1. Data shows mean  SD of 3 biological replicates. The 

values above bars represent the p-value estimated by the two-sided unpaired Student’s t test for the 

comparison between WT and the mpl1-1 mutant. f, Differential expression of CaKNOXIs in vegetative 

shoots between WT and mpl1, based on RNA-seq transcriptome analysis. A heat map was generated using 

fragments per kilobase of exon model per million mapped reads (FPKM). WT and mpl1 biological 

replicates were plotted in the left and right three columns, respectively. 



 

Supplementary Fig. 12. RNA in situ hybridization of CaLFY in shoot apex of WT chickpea. a, The 

expression pattern of CaLFY in longitudinal successive sections of WT vegetative shoot apex. b, The 

expression pattern of CaLFY in transverse successive sections of WT vegetative shoot apex. c, The 

expression pattern of CaLFY in longitudinal successive sections of WT reproductive shoot apex. Similar 

results were obtained from three independent experiments. Scale bars, 50 μm. 

 



 

Supplementary Fig. 13. RNA in situ hybridization of CaLFY during leaf development in WT 

chickpea. Shown are serial coronal sections through leaf primordia at the early P3 (a), late P3 (b), and P5 

(d) stages, and serial sagittal sections through leaf primordia at the P4 (c) and P6 (e) stages. Similar 

results were obtained from three independent experiments. Scale bars, 50 μm. 



 

Supplementary Fig. 14. RNA in situ hybridization of CaLFY during leaf development in the mpl1-1 

mutant of chickpea. Shown are serial coronal sections through leaf primordia at the early P3 (a), late P3 

(b), and P5 (d) stages, and serial sagittal sections through leaf primordia at the P4 (c) and P6 (e) stages. 

Similar results were obtained from three independent experiments. Scale bars, 50 μm. 



 

Supplementary Fig. 15. The differentially expressed genes (DEGs) analysis between WT and mpl1-1. 

a, The heatmap of normalized FPKM value of all the differentially expressed genes (DEGs) in WT and 

mpl1-1 vegetative shoots with three biological replicates. b, Volcano plots showing the DEG number in 

mpl1-1 compared with WT in two-week-old vegetative shoots (SAM to P6). c, RT–qPCR validation of 

expression differences of certain selected genes between WT and mpl1-1. The samples used for the 

analysis consist of a mixture of leaf primordia at stages P4, P5 and P6 that are dissected from the shoot 

apex. Data shows mean  SD of 4 biological replicates. The values above bars represent the p-value 

estimated by the two-sided unpaired Student’s t test for the comparison between WT and the mpl1-1 

mutant. 



 

Supplementary Fig. 16. The morphology changes between WT and mpl1-1 after spraying with H2O 

(Mock) and NPA (100 μM). a, Plant growth response to N-1-naphthylphthalamic acid (NPA). 

Two-week-old plants of WT and mpl1-1 grown in soil were sprayed by mock or 100 μM NPA once every 

three day for 15 days, and plants and compound leaves were photographed at 3 weeks after the spraying 

stopped. Similar results were obtained from three independent experiments. b, Leaflets dissected from the 

11th node compound leaves of WT and mpl1-1 after spraying with H2O (Mock) and NPA (100 μM). Scale 

bars, 2 cm in a and 0.5 cm in b. 

 



 

Supplementary Fig. 17. Models for Chickpea leaf development in WT and mpl1. a-d, Diagrams of 

the undifferentiated/differentiated state (left row) and CaLFY activity (right row) within compound leaf 

primordia of WT. e-h, Diagrams of the undifferentiated/differentiated state (left row) and CaLFY activity 

(right row) within compound leaf primordia of mpl1. i, The loss-of-function of MPL1 converted the LL 

primordia as “pseudo undifferentiated tips”, which have potential to generate new leaflet primordia. 



 

Supplementary Fig. 18. Working Models for leaf development in different mutants of Medicago 

truncatula. a, In WT, PINNA1 and PALM1 are expressed in different regions to repress SGL1 expression, 

maintaining the trifoliate leaf pattern. b, In the palm1 mutant, SGL1 expression expands to basal regions 

of the lateral leaflet primordia at the P3 stage, inducing two extra leaflet primordia emerging from there. 

This converts the trifoliate pattern into a palmate pattern. c, In the pinna1 mutant, the SGL1 expression 

was upregulated and expanded in the terminal leaflet primordia at the P4 stage, inducing ectopic leaflets 

in the terminal leaflet region. This changes the trifoliate pattern into a pinnate pattern. d, In the palm1 

pinna1 double mutant, the palm1 mutation is responsible for the palmate pattern of five 1st-order leaflets, 

while the pinna1 mutation resulted the upregulation and expansion of SGL1 expression in all 1st-order 

leaflet primordia, which promotes the formation of all 2nd-order leaflets, leading to high-order compound 

leaves. 
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