Supporting Information: Electronic Properties and Optical Spectra of Donor-Acceptor Conjugated Organic Polymers

Chandra Shekar Sarap, Yashpal Singh, John Michael Lane, and Neeraj Rai*

Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, 39762, Mississippi, USA

E-mail: *neerajrai@che.msstate.edu

Table S1: Structural parameters of crystalline phase of 1D and 3D polymers of PE, PET, PCPDT-BT, PCPDT-TTQ, PCPDT-TQ, and PCPDT-BBT computed using DFT. Experimental lattice parameters and densities (ρ) for PE and PET are shown in parenthesis.^{S1}

		1							
	1D					3D			
	a′	а	b	с	α	β	γ	ho (g/cm ³)	k-points mesh
PE	F 19	2.55	6.75	4.67	90.0	90.0	90.0	1.16	1045
(C_4H_8)	0.13	(2.55)	(7.12)	(4.85)	(90.0)	(90.0)	(90.0)	(1.05)	10x4x5
PET	01 77	9.68	5.72	3.92	74.88	77.25	74.50	1.60	994
$(\mathbf{C}_{10}\mathbf{O}_4\mathbf{H}_8)$	21.77	(10.75)	(5.96)	(4.56)	(111.5)	(112.0)	(98.5)	(1.60)	2x3x4
PCPDT-BT	24 54	94 49	6 20	5 97	72.04	00.00	80.02	1 /1	1
$(C_{34}S_6N_4H_{20})$	24.04	24.40	0.30	0.07	13.94	09.09	09.95	1.41	1X4X0
PCPDT-TTQ	94 19	21 18	8.01	6.05	115 /9	00.0	00.0	1 50	1.2.2.4
$(C_{54}S_{10}N_8H_{28})$	24.12	24.40	0.01	0.95	113.40	90.0	90.0	1.50	1X3X4
PCPDT-TQ	04.00	8.00	19.07	11.01	109 71	109 74	07 10	1.40	900
$(C_{56}S_6N_8H_{36})$	24.29	8.09	13.97	11.01	103.71	103.74	97.18	1.40	3X2X2
PCPDT-BBT	24.26	0.02	1962	0.02	02.02	116.94	01 47	1 50	222222
$(\mathbf{C}_{48}\mathbf{S}_8\mathbf{N}_8\mathbf{H}_{24})$	24.20	9.02	12.05	9.95	92.05	110.24	91.47	1.59	3X2X3

Table S2:	Electronic	eigenstates	(eV) and	electron	occupancies in	ı valence	and
conduction	band alon	g various k .	-points in	PCPDT-	TQ computed	using HS	SE06
$\mathrm{method.}$							

PCPDT-TQ						
	Valence Band			Conduction Band		
NKPTS	k-points	Energies	Occupancy	Energies	Occupancy	
1	0.00000	-0.155175	0.99999	0.218112	0.00000	
2	0.10179	-0.533547	1.00000	0.455730	0.00000	
3	0.20358	-0.610803	1.00000	0.416906	0.00000	
4	0.30538	-0.048322	0.91415	0.069746	0.02426	
5	0.40717	-0.169290	1.00000	0.448957	0.00000	
6	0.40717	-0.569562	1.00000	0.222252	0.00000	
7	0.46616	-0.167227	1.00000	0.221640	0.00000	
8	0.52514	-0.162237	1.00000	0.220172	0.00000	
9	0.58413	-0.157246	1.00000	0.218717	0.00000	
10	0.64312	-0.155175	0.99999	0.218112	0.00000	
11	0.64312	-0.155175	0.99999	0.218112	0.00000	
12	0.71953	-0.252590	1.00000	0.274023	0.00000	
13	0.79594	-0.462167	1.00000	0.367572	0.00000	
14	0.87236	-0.714602	1.00000	0.446298	0.00000	
15	0.94877	-0.053905	1.00000	0.482241	0.00000	
16	0.94877	-0.972562	0.93633	-0.015411	0.66850	
17	1.07198	-0.515359	1.00000	0.349057	0.00000	
18	1.19519	-0.580288	1.00000	0.550130	0.00000	
19	1.31840	-0.312517	1.00000	0.355356	0.00000	
20	1.44162	-0.155175	0.99999	0.218112	0.00000	
21	1.44162	-0.155175	0.99999	0.218112	0.00000	
22	1.52422	-0.253536	1.00000	0.272010	0.00000	
23	1.60682	-0.464764	1.00000	0.360155	0.00000	
24	1.68943	-0.717957	1.00000	0.431971	0.00000	
25	1.77203	-0.046396	1.00000	0.463445	0.00000	
26	1.77203	-0.976843	0.90529	-0.015369	0.66810	
27	1.88107	-0.513585	1.00000	0.353501	0.00000	
28	1.99010	-0.581472	1.00000	0.555003	0.00000	
29	2.09914	-0.309905	1.00000	0.355612	0.00000	
30	2.20818	-0.155175	0.99999	0.218112	0.00000	
31	2.20818	-0.155175	0.99999	0.218112	0.00000	
32	2.31557	-0.532514	1.00000	0.453721	0.00000	
33	2.42296	-0.612653	1.00000	0.416415	0.00000	
34	2.53036	-0.048454	0.91473	0.068561	0.02624	
35	2.63775	-0.566941	1.00000	0.444709	0.000000	

Table S3: Electronic eigenstates (eV) and electron occupancies in valence and conduction band along various k-points in PCPDT-BBT computed using HSE06 method.

PCPDT-BBT						
	Valence Band			Conduct	tion Band	
NKPTS	k-points	Energies	Occupancy	Energies	Occupancy	
1	0.00000	0.070886	0.02248	0.419819	0.00000	
2	0.09715	-0.154835	0.99999	0.369137	0.00000	
3	0.19429	-0.600328	1.00000	0.216960	0.00000	
4	0.29144	-0.744150	1.00000	-0.021326	0.72681	
5	0.38858	0.057371	1.00000	-0.222148	1.00000	
6	0.38858	-0.523277	0.05233	0.410371	0.00000	
7	0.45088	0.059564	0.04602	0.411696	0.00000	
8	0.51317	0.064540	0.03397	0.414975	0.00000	
9	0.57546	0.069117	0.0253	0.418367	0.00000	
10	0.63776	0.070886	0.02248	0.419819	0.00000	
11	0.63776	0.070886	0.02248	0.419819	0.00000	
12	0.72603	0.025730	0.23338	0.427343	0.00000	
13	0.81431	-0.094584	0.99627	0.448331	0.00000	
14	0.90259	-0.269501	1.00000	0.477172	0.00000	
15	0.99086	-1.189682	1.00000	0.499544	0.00000	
16	0.99086	-0.485838	1.00000	0.445510	0.00000	
17	1.10700	-0.576846	1.00000	0.112739	0.00071	
18	1.22313	-0.497748	1.00000	0.048066	0.08700	
19	1.33927	-0.271090	1.00000	0.328017	0.00000	
20	1.45541	0.070886	0.02248	0.419819	0.00000	
21	1.45541	0.070886	0.02248	0.419819	0.00000	
22	1.56075	0.023958	0.24901	0.425870	0.00000	
23	1.66610	-0.100380	0.99774	0.443554	0.00000	
24	1.77145	-0.279169	1.00000	0.469826	0.00000	
25	1.87680	-1.196277	1.00000	0.492800	0.00000	
26	1.87680	-0.496987	1.00000	0.440332	0.00000	
27	1.97490	-0.582804	1.00000	0.111315	0.00082	
28	2.07299	-0.496178	1.00000	0.047397	0.09003	
29	2.17109	-0.270321	1.00000	0.329907	0.00000	
30	2.26918	0.070886	0.02248	0.419819	0.00000	
31	2.26918	0.070886	0.02248	0.419819	0.00000	
32	2.38214	-0.155990	0.99999	0.370633	0.00000	
33	2.49509	-0.601150	1.00000	0.225888	0.00000	
34	2.60805	$-0.72224\overline{5}$	1.00000	$-0.00712\overline{6}$	0.57987	
35	2.72100	-0.480893	1.00000	-0.221307	1.00000	

Figure S1: Partial density of states of PE and PET computed using DFT. The relative contributions of the individual orbitals (s, P_x , P_y and P_z) of the C, O and H atoms are shown.

Figure S2: Partial density of states of PCPDT-BT and PCPDT-TTQ computed using DFT. The relative contributions of the individual orbitals (s, P_x , P_y and P_z) of the C, S, N, O and H atoms are shown.

Figure S3: Partial density of states of PCPDT-TQ and PCPDT-BBT computed using DFT. The relative contributions of the individual orbitals (s, P_x , P_y and P_z) of the C, S, N, O and H atoms are shown.

Figure S4: Local density of states (LDOS) of PCPDT-BT, PCPDT-TTQ, PCPDT-TQ and PCPDT-BBT computed using DFT. The relative contributions of the donor, acceptor and substitution units are shown.

Table S4: The band gap computed at Γ -point using G_0W_0 , HSE06 and PBE methods. For PCPDT-TTQ, the band gap at G_0W_0 and PBE are computed with shifted k-point (0.2 -0.1 -0.2). Please see Methodology section in main article for more details.

	Electronic Gap at Γ -point (eV)					
	$\mathbf{G}_0 \mathbf{W}_0$	HSE06	PBE			
PE	10.286	9.185	7.682			
PET	6.044	4.542	3.534			
PCPDT-BT	1.713	1.188	0.650			
PCPDT-TTQ	1.144	0.757	0.429			
PCPDT-TQ	-	0.373	0.232			
PCPDT-BBT	-	-	0.172			

Table S5: Macroscopic static dielectric constant (ϵ) computed using density functional perturbation theory (DFPT) and BSE for various polymers. Known experimental dielectric constant values are also shown.^{S2–S4}

Static Dielectric Constant									
	DFPT			BSE			Expt.		
	ϵ_{xx}	ϵ_{yy}	ϵ_{zz}	ϵ	ϵ_{xx}	ϵ_{yy}	ϵ_{zz}	ϵ	ϵ
PE	2.85	2.88	2.89	2.87	1.75	1.80	1.98	1.84	2.25
PET	3.08	1.93	2.06	2.36	2.04	1.51	1.14	1.56	${\sim}3.5$
PCPDT-BT	31.16	2.94	3.11	12.40	23.51	1.21	1.73	8.82	3.6
PCPDT-TTQ	19.17	4.00	3.79	8.99	12.29	2.16	2.01	5.49	-
PCPDT-TQ	37.72	2.68	3.48	14.62	26.80	1.68	2.06	10.18	-
PCPDT-BBT	89.57	3.57	2.97	32.04	37.69	2.10	1.39	13.73	-

	No of electrons	No of k points	No. of empty levels		
	INC. OF electrons	140. Of κ -points	$\mathbf{G}_0 \mathbf{W}_0$	DFPT	
PE	24	84	56	56	
PET	72	32	168	48	
PCPDT-BT	212	6	428	188	
PCPDT-TTQ	344	16	696	296	
PCPDT-TQ	336	8	664	304	
PCPDT-BBT	304	6	616	216	

Table S6: The number of electrons, k-points, and empty levels for various polymers considered in G_0W_0 and DFPT calculations.

Table S7: Macroscopic static dielectric constant (ϵ) computed using DFPT for PCPDT-TTQ, PCPDT-TQ and PCPDT-BBT with Γ -centered and the Monkhorst-Pack scheme. The shifted k-grid in the Monkhorst-pack is also shown.

	Γ- Centered		Monkhorst-Pack Scheme		
	k-grid	ϵ	k-grid	ϵ	
PCPDT-BT	1x3x2	12.40	$\begin{array}{c} 1 \text{x} 2 \text{x} 2 \\ 0.2 \ 0.3 \ 0.1 \end{array}$	11.55	
PCPDT-TTQ	$1 x 4 x 4 \\ 0.2 \ 0.3 \ 0.1$	9.38	$\begin{array}{c} 1 \text{x} 2 \text{x} 2 \\ 0.2 \ 0.3 \ 0.1 \end{array}$	8.99	
ΡΟΡΠΤ-ΤΟ	12924	14 62	$\begin{array}{c} 1 \text{x} 2 \text{x} 4 \\ 0.1 \ 0.3 \ 0.2 \end{array}$	11.79	
101D1-1Q	17274	14.02	$\begin{array}{c} 2x2x7 \\ 0.1 \ 0.3 \ 0.2 \end{array}$	12.91	
PCPDT-BBT	1x2x3	32.04	$\begin{array}{c} 1 \text{x} 2 \text{x} 2 \\ 0.1 \ 0.3 \ 0.2 \end{array}$	32.79	

Co-ordinates of polymers optimized using PBE method including spin-orbit coupling and van der Waals interactions.

Optimized coordinates of PE

СН		
4 8		
Direct		
0.50000000000000000	0.7939120855990751	0.9376661365629175
0.0000000000000000000000000000000000000	0.7060859632823124	0.0629998974370807
0.0000000000000000000000000000000000000	0.2060879144009249	0.4376661365629175
0.50000000000000000	0.2939140367176876	0.5629998974370807
0.50000000000000000	0.9553966668499640	0.9702888190631285
0.50000000000000000	0.7718434030368897	0.7038105552198175
0.0000000000000000000000000000000000000	0.5446023920314147	0.0303791919368734
0.0000000000000000000000000000000000000	0.7281567218444920	0.2968554027801815
0.0000000000000000000000000000000000000	0.2281565969631103	0.2038105552198175
0.0000000000000000000000000000000000000	0.0446033331500360	0.4702888190631285
0.50000000000000000	0.2718432781555080	0.7968554027801815
0.50000000000000000	0.4553976079685853	0.5303791919368734

Optimized coordinates of PET

СНО		
10 8 4		
Direct		
0.6478146033640897	0.0692158382322745	0.2566720130611486
0.5155850061096245	0.1091193649269471	0.1433406459202970
0.4495072493452312	0.9095004273009977	0.1967723388229530
0.5160851398070605	0.6716291989554080	0.3661861130218824
0.6483187459171944	0.6317265687759601	0.4794885631861305
0.7143538474136406	0.8313650387963634	0.4262789541789616
0.8531238069651010	0.8006073525557511	0.5534508195879582
0.3106692618267957	0.9402390696452372	0.0699625494968430
0.1049304802297044	0.2306666597762330	0.8629379330651048
0.0587189681258522	0.5103022783426923	0.7613719375943901
0.7026323056467660	0.2201863149194665	0.2129656909315543
0.4625835452122047	0.2936408911570254	0.0123278473273132
0.4613156292721925	0.5206214724517224	0.4097181279886968
0.7013600310838584	0.4471702341387456	0.6103195383058448
0.1168171350370173	0.1442416300193727	0.6364018860229095
0.0274738250035682	0.1509088388613833	0.0826027090901036
0.1362428293224269	0.5901116784509455	0.5419704791512316
0.0466494712635637	0.5967486336326502	0.9879895271547667
0.9014153090792760	0.9726566811208173	0.5742209414185950
0.2623703632130159	0.7681792376363603	0.0492445479462944
0.9199386075546911	0.5593791930480663	0.6444934022522162
0.2438139259239520	0.1814924653580690	0.9792795059653869

Optimized coordinates of PCPDT-BT

C S N H

 $34\ 6\ 4\ 20$

0.3359222438299838	0.1571322238739867	0.9055967370988682
0.2887480367790758	0.0190156934688730	0.0410141603504428
0.3062382116918769	0.8221782768767838	0.2153398856350464
0.3655478705922732	0.8220661219331049	0.2152177294032853
0.3830580491784374	0.0188419395598203	0.0408348610664291

0.2046169101810236	0.8512883978417847	0.1544241600762817
0.2323843117090121	0.0358076586441882	0.0071874799939451
0.4672129296162524	0.8511434680409025	0.1542815807702240
0.4394397754873296	0.0356177112190537	0.0069821029332644
0.3358912606616542	0.3941893768242863	0.9280665069016365
0.3360069165467863	0.1538814716724133	0.6201209621778858
0.1460256209040054	0.8194743600585497	0.1506503955238756
0.1155508736063666	0.9367418366362301	0.9259926382059049
0.1147683273972504	0.6912309950135551	0.3542720626904767
0.0564319786919683	0.9367774759999392	0.9259373683926029
0.0570115463303225	0.6912365956644138	0.3542089754509306
0.0258406229405921	0.8194581501433120	0.1505848450547305
0.8359222438299838	0.1571322238739867	0.9055967370988682
0.7887480367790758	0.0190156934688730	0.0410141603504428
0.8062382116918769	0.8221782768767838	0.2153398856350464
0.8655478705922732	0.8220661219331049	0.2152177294032853
0.8830580491784374	0.0188419395598203	0.0408348610664291
0.7046169101810236	0.8512883978417847	0.1544241600762817
0.7323843117090121	0.0358076586441882	0.0071874799939451
0.9672129296162524	0.8511434680409025	0.1542815807702240
0.9394397754873296	0.0356177112190537	0.0069821029332644
0.8358912606616542	0.3941893768242863	0.9280665069016365
0.8360069165467863	0.1538814716724133	0.6201209621778858
0.6460256209040054	0.8194743600585497	0.1506503955238756
0.6155508736063666	0.9367418366362301	0.9259926382059049
0.6147683273972433	0.6912309950135551	0.3542720626904767
0.5564319786919683	0.9367774759999392	0.9259373683926029

0.5570115463303225	0.6912365956644138	0.3542089754509306
0.5258406229405921	0.8194581501433120	0.1505848450547305
0.2506813121897125	0.6574958645540789	0.3420358481732748
0.4211151324843740	0.6573617535932286	0.3418925199341203
0.0861148428881577	0.1512935042969730	0.5088145684364846
0.7506813121897125	0.6574958645540789	0.3420358481732748
0.9211151324843740	0.6573617535932286	0.3418925199341203
0.5861148428881577	0.1512935042969730	0.5088145684364846
0.1370422441027230	0.0551393518801859	0.6975875131786822
0.0350797983014388	0.0552058286382433	0.6975010506633410
0.6370422441027230	0.0551393518801859	0.6975875131786822
0.5350797983014388	0.0552058286382433	0.6975010506633410
0.2116109594258759	0.1746173451789943	0.8764026478152473
0.4602139978046083	0.1744741834272716	0.8762112767265933
0.3722979309323549	0.4838470067897447	0.8352419005459240
0.2995371407104699	0.4841223609269250	0.8352421120904339
0.3358246284568622	0.3963580954815811	0.1305790808807643
0.2994324206368475	0.2365579136477223	0.5208145405195168
0.3726057762473189	0.2364675309228517	0.5206593434268854
0.3360514281031897	0.9837941332413109	0.6057727124725005
0.1356486028040678	0.5986194795310738	0.5302872986920661
0.0360477282707876	0.5985635194185903	0.5302456347183337
0.7116109594258759	0.1746173451789943	0.8764026478152473
0.9602139978046154	0.1744741834272716	0.8762112767265933
0.8722979309323549	0.4838470067897447	0.8352419005459240
0.7995371407104699	0.4841223609269250	0.8352421120904339
0.8358246284568551	0.3963580954815811	0.1305790808807643

0.7994324206368546	0.2365579136477223	0.5208145405195168
0.8726057762473189	0.2364675309228517	0.5206593434268854
0.8360514281031897	0.9837941332413109	0.6057727124725005
0.6356486028040678	0.5986194795310738	0.5302872986920661
0.5360477282707876	0.5985635194185903	0.5302456347183337

Optimized coordinates of PCPDT-TTQ

C S N H

54 10 8 28

0.2547986926451458	0.0138777278199811	0.9723123559081657
0.2817723802934751	0.1198649693989751	0.8825178344547027
0.3377822732452671	0.1178741792169617	0.8995600645750201
0.3566944026430363	0.0133366830427306	0.0071097885055877
0.5170654803544679	0.0493298695389512	0.9938818708019994
0.4876469174154749	0.1400244893672138	0.8915833901685346
0.4319606037934705	0.1295937611163822	0.9081299007173342
0.4148750583650838	0.0233532499716489	0.0157248487654584
0.3843353140608201	0.2032075594480176	0.8295272764847681
0.0750037971778426	0.9594929951761344	0.9915523601805702
0.1015229897252041	0.0466093213385790	0.8749303238808039
0.1605754476716612	0.0580201053764497	0.8613351105225746
0.1972004809134944	0.9890950269914640	0.9730478342471258
0.1709100392876621	0.8931926406363075	0.0810473433544274
0.1122557435883849	0.8726635265523086	0.0831375655865543
0.1237674969378517	0.6912052547844709	0.2706645252451381
0.1820800575027377	0.7154260572469298	0.2734266410530211

0.2215374677525048	0.6359889859517125	0.3684675624878793
0.2736433255929356	0.7041903922658079	0.4386604708190660
0.3040164743925828	0.5928731979836712	0.5118837918903338
0.2751969268088459	0.4384240233085848	0.4931294088580458
0.0925133455016578	0.5925677321249054	0.3700213243026482
0.0962461895456954	0.5953420149571045	0.5699234172367369
0.0510350700523858	0.5105452238444173	0.6202071522694439
0.0140938509068675	0.4379337635820661	0.4550503875019487
0.3816924023463173	0.4166375734139791	0.9407400427048742
0.3872690375523220	0.1330590750131435	0.5863050381668202
0.7548027326245261	0.9860883149975734	0.0271147598301908
0.7817413568825771	0.8799448515781663	0.1167359629298730
0.8377538822371733	0.8822921878348069	0.1000592871380164
0.8566419438246058	0.9871972930409214	0.9929108313006907
0.0169870535579548	0.9512816917127722	0.0057586926508293
0.9876102363532340	0.8600355937403421	0.1075824048191052
0.9319283549896085	0.8708318647892526	0.0915798935541403
0.9148166110459997	0.9775743896913553	0.9846375151175621
0.8843021258876789	0.7971868793089740	0.1703020494989147
0.5750733739623186	0.0411630729661212	0.0083507666247016
0.6015524970153692	0.9538390170141255	0.1247443932838408
0.6605982509367507	0.9422521447094780	0.1382018486629306
0.6972398239688573	0.0111519950982668	0.0265858823256906
0.6709820021187127	0.1073113553742999	0.9189036911183024
0.6123530445134691	0.1280230710095580	0.9170057033336505
0.6238285449018832	0.3093710353601438	0.7295749422871012
0.6821420700489682	0.2850958080276058	0.7265792032695089

0.7214985105982024	0.3642838502215255	0.6307329454496866
0.7734946691964382	0.2958703132810285	0.5592727227462575
0.8037172732456455	0.4067806916043679	0.4849322508617391
0.7749431902013484	0.5614593429666144	0.5043848904315738
0.5925427492654194	0.4077970475128012	0.6300930138037728
0.5962120489210818	0.4048767115965859	0.4301036979483825
0.5509941129949212	0.4895364935593065	0.3797570393408876
0.5140830648210937	0.5620556443602567	0.5448778338846125
0.8817141135857085	0.5837411638776899	0.0596389563082198
0.8873284574366735	0.8676442132025457	0.4135886474212427
0.3028400956710584	0.9155418695975825	0.0846395271062690
0.4704808846346253	0.9457292395793715	0.1080119377078148
0.1204046160921948	0.1877353946544460	0.6408466860733526
0.2115199947854762	0.4307089951700860	0.3907829213357630
0.0332333548765078	0.4794004362395228	0.2432607598260930
0.8028094191958388	0.0846950168308425	0.9150728040120342
0.9703914799811599	0.0553482758448496	0.8922725015226476
0.6203726328349575	0.8123502724579836	0.3584985940426080
0.7114869549594047	0.5696830730333815	0.6086059486560913
0.5332513587210599	0.5207794260081968	0.7567760511987984
0.1754832635496797	0.1354884779429568	0.7312068836530585
0.0745563644256748	0.1172220632002237	0.7579148230412542
0.0922767545776040	0.7668515301012775	0.1733695177572088
0.2030027255717783	0.8146421854857238	0.1776257703777944
0.6754937314238489	0.8645510946435451	0.2681427690725542
0.5745719932534001	0.8830880612836793	0.2415854234416841
0.5923485939321296	0.2339395275502696	0.8270593138840852

0.7030754373784234	0.1858299018658940	0.8222742204061362
0.2589762429379832	0.1919783411867542	0.8074961060603840
0.5087796355505105	0.2105928478622374	0.8111594930854906
0.2880463137388460	0.8327001768440070	0.4391860461370101
0.3449218124132187	0.6259783646824602	0.5792761157177750
0.1299550495364912	0.6601233405404727	0.6778552077876085
0.0455770392107411	0.5055222692039436	0.7729103464022558
0.3448750628365218	0.4667431023456885	0.8915529809550051
0.4177539164769613	0.4763728709234130	0.8995078144707591
0.3508022964864423	0.1723975113862366	0.5239534090325577
0.3906148296745826	0.9814943916796466	0.5070991484760228
0.7589048379325760	0.8076227343322060	0.1914514086733945
0.0087952872735357	0.7891791669870685	0.1874976528915582
0.7879347776662371	0.1673749290136257	0.5586068568047509
0.8445586045790563	0.3734870298528179	0.4170278345112095
0.6299050234950130	0.3402471446993403	0.3221753168415660
0.5455183210135957	0.4945148981764831	0.2270585740271258
0.8449214675809671	0.5336423635811585	0.1089844486222447
0.9177881295512051	0.5245157464776042	0.1014152743924015
0.8509052858846644	0.8284099632844857	0.4763315791848513
0.8907252888966184	0.0191935886775241	0.4925999929544247
0.8802344522001277	0.5330381618370907	0.8857487272122455
0.9232806674145948	0.8097149992864630	0.4576509129187158
0.4231767436936806	0.1911543516650980	0.5421259410495409
0.3801557063224763	0.4669736043926704	0.1145799045258542
0.2874955051463388	0.3291244466827905	0.5366592536755093
0.9771673136708827	0.3596634252768354	0.4465110911871548

0.78723976166017450.67065918120533040.46061404293448760.47715761008169720.64017076852130830.5532706097217996

Optimized coordinates of PCPDT-TQ

C S N H

56 6 8 36

0.7297832930292714	0.9724239331672990	0.2151719711183659
0.7618701182185248	0.8802148883430121	0.2384885193499855
0.9323519061950236	0.8821449719238075	0.3006561788469284
0.0390545241068949	0.9778020807838530	0.3205431586086362
0.5096392384430501	0.9552069814174970	0.4823702612805576
0.3829720486159971	0.8677083080444490	0.4569923464659169
0.2177759276300790	0.8772496655957198	0.3972160637126834
0.2114250795452222	0.9738980766053444	0.3764569131385542
0.0411510033638862	0.8165400065667896	0.3528154987863701
0.5443777647259154	0.5981372013543336	0.3284640849562521
0.5802480429098651	0.5217412314279528	0.3869755614891162
0.7502094561966857	0.5078370145458777	0.4303108833860847
0.8842520869795862	0.5729272165633716	0.4156880991313514
0.8552235405724815	0.6548623322540337	0.3643154012734300
0.6818624795749031	0.6646361668874547	0.3190990427972835
0.0096239183140128	0.7246261138010652	0.3746387871602437
0.3598592461746435	0.6068045716794899	0.2743734198527150
0.7876488087056899	0.4261859622190229	0.4934961890371383
0.2165236964157629	0.0342623615086382	0.0457046176607250
0.2406366223966572	0.9385158040358306	0.0655927867459738

0.4086942978868962	0.9159094528441756	0.1189931108478675
0.5650932910648905	0.9906580711842352	0.1588379008033982
0.5405388807796569	0.0869570335103234	0.1401017452133217
0.3740841308346745	0.1094501869249598	0.0885765775744716
0.5092455360695212	0.2727598856249074	0.1119692446320073
0.6747822758074236	0.2496609479732541	0.1589617349955503
0.8433245068997550	0.3213780329293954	0.1910592140757501
0.4790676947173722	0.3720594857273198	0.0910460401227482
0.2549849714267722	0.0314162173701433	0.7215874749175484
0.3699701574155014	0.1227433800957769	0.7419237754606200
0.5409327214860085	0.1206318482474558	0.7962974223020822
0.5609819575981376	0.0264605487938780	0.8221259051608101
0.0509965762467246	0.0507216050641688	0.9864985371552564
0.0063159153946373	0.1383940537903072	0.9532363351313577
0.8317289906442014	0.1280847980329085	0.8948239237883229
0.7361141454106672	0.0311203989934867	0.8812999134670321
0.7117279792477689	0.1883555359840585	0.8406353407429137
0.4021682838342500	0.3643602582299437	0.6103321597895217
0.3881209429439920	0.4542657613218637	0.6928112201961767
0.4973701679595806	0.4924982540340466	0.8202152479992222
0.6256090811226755	0.4401262280143285	0.8630018787344227
0.6338434225329408	0.3456047974683045	0.7862660518711948
0.5225002023052028	0.3096296040256448	0.6596697574299952
0.7536902872592179	0.2858078116961309	0.8406160488366297
0.2904131606122533	0.3248152849151609	0.4719114937029545
0.4702069788721346	0.5842088508106045	0.9116111840758165
0.6897145582348472	0.9710961786246983	0.5426221179487385

0.8007265555818179	0.0642619518421128	0.5592806002264368
0.9858786124456245	0.0860764662178752	0.6206695006064535
0.0739729015355906	0.0123682422686286	0.6647770256318424
0.9623858418515994	0.9193932890472851	0.6496590925713477
0.7768230976280179	0.9010300904448485	0.5993356880155503
0.7616798080764369	0.7557258371216733	0.6672884315596264
0.9456292744756993	0.7661666573044030	0.6979729293296018
0.0365930729790946	0.6882901892537205	0.7419887624485071
0.6533186382647784	0.6764372939680214	0.7004753999173872
0.9244678495237721	0.0636249916753968	0.2689829223770630
0.4112731627430648	0.0506608308278587	0.4275158803055277
0.1927875750546875	0.7679956633581000	0.0762428147732166
0.3687932652260244	0.9415783392568429	0.7755602982780445
0.8632388738042849	0.9543238324834959	0.9402635952098635
0.9075192017720966	0.2338264426986285	0.5667366730779548
0.3971594798695648	0.8208940711388450	0.1279700161367003
0.1093365744525343	0.8603836604858444	0.0371600453318095
0.3661907647208480	0.2035146646083916	0.0802343049459395
0.6840619763604536	0.1585563181143925	0.1739668893896820
0.0593701271484335	0.1804578883298262	0.6305225035369091
0.7422033274786486	0.1421941147605352	0.5236612794453492
0.6827257881052660	0.8192517922197098	0.6136678646076419
0.0398077754709192	0.8476172258779968	0.6897919065848086
0.6545921788859346	0.8172390150854483	0.2056069583674613
0.4212606473661751	0.8034234706232084	0.4874691825318322
0.4736531011303029	0.4713625079016666	0.3978983840351233
0.0176885480645907	0.5629453845960413	0.4496743527225391

0.6522252206274644	0.7264921467197780	0.2797639103722673
0.3123647607314837	0.5665584412480271	0.1699627301007496
0.3465871405789258	0.6852319679832775	0.2839303697203377
0.2734249850574315	0.5733244528352444	0.3228492629526869
0.9253633453121353	0.4217968657831648	0.5131904071517823
0.7122782795852203	0.3524656432241571	0.4313943400917495
0.7535039260172454	0.4381568324322913	0.5862220642326577
0.1279671242741500	0.7013918402795696	0.4196860876951831
0.8864704615371224	0.3171854516723656	0.1027392137809713
0.9431386263826909	0.3001382342404995	0.2606859210830237
0.8336113481534753	0.3995294425721099	0.2309155632716156
0.4346907433062484	0.3638534740073425	0.9860737709483161
0.5937156933142731	0.4320246305036335	0.1330510969859233
0.3751986499209110	0.3949409091888327	0.1331052065525995
0.3216189544438137	0.1857759014175144	0.7148728355428418
0.1065972850156598	0.2039586800316044	0.9738037059646132
0.2908580516835002	0.4963864203516195	0.6572491067275053
0.7137352022201497	0.4700881509063919	0.9610004974203079
0.5318612854331661	0.2380696773508291	0.5980294706050344
0.2113729323167561	0.3784842741062633	0.4430757787070903
0.2019714945746998	0.2542303320706765	0.4584097202385635
0.3689597178842234	0.3077782984123871	0.4033773656736059
0.3766070121890408	0.5623373798451397	0.9630309795618501
0.4171177344111499	0.6368431080605461	0.8603533912096992
0.5903211210442052	0.6247695474345392	0.9865297090456977
0.8876722581991174	0.3248548229398409	0.8898918787701220
0.1770988769743198	0.7156606400610741	0.7733929297939923

0.0055918290963604	0.6181347725664494	0.6632042466203245
0.9954042378911865	0.6694221048090299	0.8229302258963997
0.6824920031191013	0.6919207548354009	0.8069790861813289
0.6784463321707506	0.6011371341071055	0.6636839746780083
0.5155254297959360	0.6762680355362676	0.6611707086849350

Optimized coordinates of PCPDT-BBT

C S N H

48 8 8 24

0.8868886475180489	0.0893178939541670	0.0466928421395352
0.7702817628694376	0.1149528153626278	0.1072436216938470
0.9213399689775770	0.9832353812651107	0.0159662922857251
0.6799234486081929	0.0342396118631001	0.1432047730857633
0.7168099604939258	0.9285102827458900	0.1142498118383060
0.8311923144945794	0.9029694549621112	0.0522099488704200
0.5662797089274818	0.0540919328843543	0.2022059632562545
0.5183713018062193	0.1538922319403255	0.2359171350776847
0.4063355503319173	0.1469526069977221	0.2964981395779418
0.3639632789316565	0.0376985611973950	0.3067173053094052
0.0416411813126700	0.0396990546776195	0.4657619974124927
0.0999485589939368	0.1418532433776747	0.4502249078345812
0.2153790707959260	0.1380250602356909	0.3945665713828461
0.2485459399139103	0.0323750512275112	0.3646883180015479
0.3131073431891380	0.2141682502982576	0.3540475285008782
0.5676888957798880	0.5038631804948039	0.2699742684620503
0.4872320409668234	0.5986360525976906	0.2629827833976677

0.3522160608688480	0.6037428155056617	0.2971288000830299
0.2945364787472400	0.5109052169506541	0.3338396241545070
0.3689414462179101	0.4134780771028730	0.3374046727264428
0.5080704776668910	0.4128701308505853	0.3086837031762713
0.2975834583277859	0.3204881296416531	0.3712265767917273
0.7140365501657442	0.4972914931878094	0.2359139893744242
0.2751519901461776	0.7075536624265126	0.2986753118965666
0.8749140800240269	0.9104313668331088	0.5357911844821999
0.7543053471620169	0.8853386077612058	0.5922134607044569
0.9245138269895676	0.0162575319525970	0.5197505785908660
0.6743881636686169	0.9663123775455205	0.6381720233980843
0.7263819390932795	0.0718955281681204	0.6242795421044534
0.8457390173397101	0.0969492199988196	0.5671485479952167
0.5577014961681641	0.9465189014612392	0.6939614918183139
0.4962903100985088	0.8464220245923926	0.7129296296115371
0.3860144694691172	0.8525148280135753	0.7754676996577103
0.3579117242214593	0.9616426825946931	0.8009059321581162
0.0344541720742413	0.9591792292249366	0.9580427173350330
0.0772878860695485	0.8568749923122141	0.9267599331507483
0.1933006829675818	0.8606079665814761	0.8715493228951416
0.2421870296589930	0.9663954078641694	0.8583286972818911
0.2843089142694879	0.7847495420448496	0.8238818978019395
0.5586372700359163	0.4990589019864231	0.7713801668467184
0.5016169871834535	0.4010374480727350	0.7973521391684599
0.3689224841573520	0.3936071347984793	0.8348790133715056
0.2917666528896206	0.4861288253448137	0.8439707266928238
0.3440117040742479	0.5858382582976276	0.8163704613046221

0.4779152706776557	0.5895692202882259	0.7802044042088667
0.2646137522585192	0.6785547918803587	0.8376477225565466
0.7045885126002389	0.5103577859373516	0.7369499038804577
0.3126173710220641	0.2887538676784231	0.8675155393889256
0.8863749843653466	0.2790320702465934	0.0715764152808944
0.7217980931352201	0.7391606794582017	0.0940635818109854
0.8500004925970472	0.7209281564052219	0.5375760760436208
0.7592359329267637	0.2611563585903482	0.6318617897639740
0.1367918878217367	0.9385552069177905	0.4071379409783304
0.4641654506735691	0.9488673161897623	0.2460370935916671
0.1446539445106509	0.0601565228329406	0.9152776514972487
0.4695603209408290	0.0512052564197347	0.7529063419077886
0.7598013468229681	0.2201078869438930	0.1251958193515321
0.9597116037530569	0.1759569909198788	0.0227121959001266
0.6481915108166518	0.8417766972515111	0.1428324716843008
0.8428937544451927	0.7977404663575456	0.0356345740687729
0.7301303972312283	0.7802982624443686	0.5971931074651806
0.9368916209529132	0.8235168435418601	0.5015673385311459
0.6694279475525988	0.1587648290524655	0.6644484464235205
0.8732368222984306	0.2021049467821854	0.5664016359455246
0.5692294517741558	0.2250863428469856	0.2113937763377720
0.0533403104909738	0.2128473307707424	0.4798355947776471
0.5306807690140829	0.6712980684194534	0.2327059142373074
0.1893468146666208	0.5133555994804908	0.3605588433779019
0.5740606689350614	0.3405789736473679	0.3206677605427402
0.7758208728592422	0.4226171140793156	0.2727139834839107
0.8049690874044586	0.5634695387537860	0.2911971544338101

0.6746999938560450	0.4998474428534934	0.1141921179029524
0.2549385388912029	0.7521145702082066	0.1994717900153233
0.3574006827037621	0.7577483919814156	0.3982710725189094
0.1560833583822614	0.6967314299779801	0.3025701065847102
0.2091873330717746	0.3394332284080477	0.4154721871460936
0.5375447634429307	0.7759244677514872	0.6767580786438145
0.0198741095265831	0.7860567158908296	0.9456467237088333
0.5629449822999817	0.3287076269711520	0.7918084087698460
0.1915250466463263	0.4819016215915184	0.8774169270925825
0.5250543078819874	0.6652512873102623	0.7642132397605650
0.7558642318009063	0.5924438167309916	0.7608899562081177
0.6681339879317036	0.4903041319094612	0.6173187147509225
0.8030699472068576	0.4578880303613104	0.8032020385784477
0.4175287888716284	0.2377666471489590	0.9218318719817375
0.2222376414845684	0.2463216911483883	0.7634863225661022
0.2527727597518563	0.2988285707848846	0.9420542862744483
0.1730404947260809	0.6596442975596304	0.8786881147698153

References

- (S1) Mark, J. Polymer Data Handbook; Oxford University Press: Oxford, U.K., 2009.
- (S2) Armin, A.; Stoltzfus, D. M.; Donaghey, J. E.; Clulow, A. J.; Nagiri, R. C. R.; Burn, P. L.; Gentle, I. R.; Meredith, P. Engineering dielectric constants in organic semiconductors. J. Mater. Chem. C 2017, 5, 3736–3747.
- (S3) Sears, F. W.; Zemansky, M. W.; Young, H. D. University Physics, 6th Ed.,; Addison Wesley, 1982.

(S4) Konieczna, M.; Markiewicz, E.; Jurga, J. Dielectric properties of polyethylene terephthalate/polyphenylene sulfide/barium titanate nanocomposite for application in electronic industry. *Polymer Engineering & Science* 2010, 50, 1613–1619.