Supplementary Information for

Stabilizing ruthenium dioxide with cation-anchored sulfate for durable

oxygen evolution in proton-exchange membrane water electrolyzers

Yanrong Xue,^{1,2,7} Jiwu Zhao,^{1,2,7} Liang Huang,^{1,2} Ying-Rui Lu,³ Abdul Malek,^{1,2} Ge Gao,^{1,2} Zhongbin Zhuang,⁴ Dingsheng Wang,⁵ Cafer T. Yavuz,⁶ Xu Lu^{1,2*}

¹CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.

²KAUST Solar Center (KSC), PSE, KAUST, Thuwal, Kingdom of Saudi Arabia.

³National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan.

⁴State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.

⁵Department of Chemistry, Tsinghua University, Beijing 100084, China.

⁶Advanced Membranes and Porous Materials Center (AMPM), PSE, KAUST, Thuwal, Kingdom of Saudi Arabia.

⁷These authors contributed equally.

*Corresponding author. Email: Xu Lu (xu.lu@kaust.edu.sa).

Table of contents

Supplementary Figures 1-33 Supplementary Notes 1-5 Supplementary Tables 1-8 Supplementary References 1-15 Page 3-36 Page 3, 6, 16, 22, 33 Page 37-44 Page 45

Supplementary Figures

Supplementary Figure 1 Atomic structure of RuO_2 and intermediates during Ru dissolution. Of note, the green ball represents the Ru atom on the grain edge.

Supplementary Notes

Supplementary Note 1: In this work, we use the boundary between RuO_2 (110) and RuO_2 (-110) planes as our model. At first, an H₂O molecule is adsorbed onto a bridging O site on the grain edges and deprotonated to form *OH (a to b). Then, the *OH and a lattice O connected to it are deprotonated to release an O₂ molecule (b to c). In parallel, two H₂O molecules are separately adsorbed on two Ru atoms and deprotonated to form two *OH (c to d). Then, an H₂O molecule is adsorbed onto a new Ru atom adjacent to the Ru atom (green ball) and deprotonated to form *OH. At this time, the Ru-O-Ru (green ball) bond is broken, and the unstable Ru (green ball) group starts to rotate, resulting in the formation of Ru-O-O-Ru (green ball), Ru-O-Ru (the O atom from *OH), and proton transfer process (d to e). Afterward, the Ru-O-Ru (the O atom from *OH) is deprotonated to form Ru-O-Ru (e to f). Next, an H₂O molecule is adsorbed to the Ru atom and deprotonated to form *OH, accompanied by the breaking of a Ru-O-Ru bond (f to g). Finally, the RuO₄ leaves the crystal (g to h).

Supplementary Figure 2 Ball-and-stick model of the RuO_2 (110) plane. Of note, the green and purple balls represent Ru and O atoms, respectively, on the grain edges.

Supplementary Figure 3 Ball-and-stick model of sulfate bound with RuO_2 (110) plane.

Supplementary Figure 4 Ball-and-stick model of Ba-anchored sulfate on the RuO_2 (110) plane. Of note, the green and purple balls represent Ru and O atoms, respectively, on the grain edges.

Supplementary Note 2: In this model, two O atoms of a sulfate bond to Ru atoms, and Ba atom bonds with one O atom of sulfate to fix the sulfate on the RuO_2 (110) plane. When calculating the binding energy of sulfate with other metal cations, Ba was replaced by other elements.

Supplementary Figure 5 Schematic illustrating the synthesis process of $Ba_{0.3}(SO_4)_{\delta}W_{0.2}Ru_{0.5}O_{2-\delta}$.

Supplementary Figure 6 XRD pattern of $Ba_{0.3}(SO_4)_{\delta}W_{0.2}Ru_{0.5}O_{2-\delta}$.

Supplementary Figure 7 SAED pattern of the $Ba_{0.3}(SO_4)_{\delta}W_{0.2}Ru_{0.5}O_{2-\delta}$.

Supplementary Figure 8 a-i TEM images of (a) $Ba_{0.2}(SO_4)_{\delta}W_{0.1}Ru_{0.7}O_{2-\delta}$, (b) $Ba_{0.4}(SO_4)_{\delta}W_{0.2}Ru_{0.4}O_{2-\delta}$, and (c) $Ba_{0.4}(SO_4)_{\delta}W_{0.3}Ru_{0.3}O_{2-\delta}$, (d) as-prepared RuO_2 , (e) $W_{0.3}Ru_{0.7}O_2$, (f) $Ba_{0.4}Ru_{0.6}O_2$, (g) $(SO_4)_{\delta}RuO_{2-\delta}$, and (h) $Ba_{0.4}(SO_4)_{\delta}Ru_{0.6}O_{2-\delta}$, and (i) $W_{0.3}(SO_4)_{\delta}Ru_{0.7}O_{2-\delta}$.

Supplementary Figure 9 XRD patterns of as-prepared RuO₂, W_{0.3}Ru_{0.7}O₂, Ba_{0.4}Ru_{0.6}O₂, (SO₄)_{δ}RuO_{2- δ}, Ba_{0.4}(SO₄)_{δ}Ru_{0.6}O_{2- δ}, and W_{0.3}(SO₄)_{δ}Ru_{0.7}O_{2- δ}.

Supplementary Figure 10 a-h The mean OER polarization curves with error bars for (a) commercial RuO₂, (b) as-prepared RuO₂, (c) W_{0.3}Ru_{0.7}O₂, (d) Ba_{0.4}Ru_{0.6}O₂, (e) (SO₄) $_{\delta}$ RuO_{2- $\delta}$}, (f) Ba_{0.4}(SO₄) $_{\delta}$ Ru_{0.6}O_{2- δ}, (g) W_{0.3}(SO₄) $_{\delta}$ Ru_{0.7}O_{2- δ}, and (h) Ba_{0.3}(SO₄) $_{\delta}$ W_{0.2}Ru_{0.5}O_{2- δ} based on three independent tests.

Supplementary Figure 11 a TEM images of commercial RuO₂. **b** XRD patterns of commercial RuO₂ and as-prepared RuO₂. **c** OER polarization curves of commercial RuO₂ and as-prepared RuO₂. **d** Chronopotentiogram of commercial RuO₂ and as-prepared RuO₂ at 10 mA cm⁻² in 0.5 M H₂SO₄.

Supplementary Figure 12 a-c The mean OER polarization curves with error bars for (a) $Ba_{0.2}(SO_4)_{\delta}W_{0.1}Ru_{0.7}O_{2-\delta}$, (b) $Ba_{0.4}(SO_4)_{\delta}W_{0.2}Ru_{0.4}O_{2-\delta}$, (c) $Ba_{0.4}(SO_4)_{\delta}W_{0.3}Ru_{0.3}O_{2-\delta}$ based on three independent tests. d OER polarization curves of RuO_2 , $Ba_{0.2}(SO_4)_{\delta}W_{0.1}Ru_{0.7}O_{2-\delta}$, $Ba_{0.3}(SO_4)_{\delta}W_{0.2}Ru_{0.5}O_{2-\delta}$, $Ba_{0.4}(SO_4)_{\delta}W_{0.2}Ru_{0.4}O_{2-\delta}$, and $Ba_{0.4}(SO_4)_{\delta}W_{0.3}Ru_{0.3}O_{2-\delta}$.

Supplementary Figure 13 Nyquist plots of commercial RuO₂, W_{0.3}Ru_{0.7}O₂, (SO₄) $_{\delta}$ RuO_{2- δ}, Ba_{0.4}(SO₄) $_{\delta}$ Ru_{0.6}O_{2- δ}, and Ba_{0.3}(SO₄) $_{\delta}$ W_{0.2}Ru_{0.5}O_{2- δ}.

Supplementary Figure 14 a-f Cyclic voltammograms of (a) commercial RuO₂, (b) as-prepared RuO₂. (c) $W_{0.3}Ru_{0.7}O_2$, (d) $(SO_4)_{\delta}RuO_{2-\delta}$, (e) $Ba_{0.4}(SO_4)_{\delta}Ru_{0.6}O_{2-\delta}$, and (f) $Ba_{0.3}(SO_4)_{\delta}W_{0.2}Ru_{0.5}O_{2-\delta}$ at scan rates of 20, 60, 100, 140, and 180 mV s⁻¹. g C_{dl} plots of as-prepared RuO₂ at 1.25 V.

Supplementary Note 3: For particles, both the specific surface area and the ECSA increase with the decrease of the size. In comparison to commercial RuO₂, the size of as-prepared RuO₂ is smaller, resulting in a larger C_{dl} and ECSA (Supplementary Fig. 14g). After the formation of Ru alloys with Ba or W, the particle size becomes larger, leading to a smaller ECSA. Additionally, Ru coordinates with sulfate to easily form a large nanosheet-like structure, which can also reduce the ECSA.

Supplementary Figure 15 Areal mass activity at 1.45 V of commercial RuO₂, W_{0.3}Ru_{0.7}O₂, (SO₄) $_{\delta}$ RuO_{2- δ}, Ba_{0.4}(SO₄) $_{\delta}$ Ru_{0.6}O_{2- δ}, and Ba_{0.3}(SO₄) $_{\delta}$ W_{0.2}Ru_{0.5}O_{2- δ}.

Supplementary Figure 16 OER polarization curves of Ba_{0.4}Ru_{0.6}O₂ and commercial RuO₂.

Supplementary Figure 17 Chronopotentiogram of $(SO_4)_{\delta}RuO_{2-\delta}$ and $Ba_{0.4}(SO_4)_{\delta}Ru_{0.6}O_{2-\delta}$ at 10 mA cm⁻² in 0.1 M HClO₄.

Supplementary Figure 18 a OER polarization curves of commercial RuO₂, W_{0.3}Ru_{0.7}O₂, (SO₄) $_{\delta}$ RuO_{2- δ}, and W_{0.3}(SO₄) $_{\delta}$ Ru_{0.7}O_{2- δ}. **b** Chronopotentiogram of W_{0.3}Ru_{0.7}O₂, (SO₄) $_{\delta}$ RuO_{2- δ}, and W_{0.3}(SO₄) $_{\delta}$ Ru_{0.7}O_{2- δ} at 10 mA cm⁻² in 0.5 M H₂SO₄.

Supplementary Figure 19 OER polarization curves of commercial RuO_2 and $Ba_{0.3}(SO_4)_{\delta}W_{0.2}Ru_{0.5}O_{2-\delta}$ before and after 100,000 cycles.

Supplementary Figure 20 Atomic structure of catalysts and intermediates during the OER process.

Supplementary Note 4: For RuO₂, an H₂O molecule is adsorbed on the 1f-cus Ru site of the RuO₂(110) plane (a to b) and undergoes continuous deprotonation, leading to the formation of *OH and *O on the same site (b to c, c to d). Subsequently, a second H₂O molecule is adsorbed onto the *O and deprotonates,

resulting in the formation of *OOH (d to e). Afterward, the *OOH donates a proton to an adjacent O site to form *OO-H (e to f). Finally, the *OO-H undergoes deprotonation, leading to the release of O_2 (f to g).

For $Ba_{0.4}(SO_4)_{\delta}Ru_{0.6}O_{2-\delta}$, the OER process is similar to RuO_2 . An H₂O molecule is adsorbed on the 1f-cus Ru site (a to b), and deprotonated to form *OH and *O on this site (b to c, c to d). Then, a second H₂O molecule is adsorbed on *O and deprotonates to form *OOH (d to e). Here, the *OOH donates a proton to an adjacent O site, which belongs to a sulfate to form *OO-H (e to f). Finally, the *OO-H is deprotonated and an O₂ is released (f to g).

For Ba_{0.3}(SO₄) $_{\delta}$ W_{0.2}Ru_{0.5}O_{2- δ}, the OER process is identical to that of Ba_{0.4}(SO₄) $_{\delta}$ Ru_{0.6}O_{2- δ}. In Ba_{0.3}(SO₄) $_{\delta}$ W_{0.2}Ru_{0.5}O_{2- δ}, a Ru atom adjacent to the active site in the crystal is replaced with a W atom, forming Ru-O-W. This substitution allows W to modulate the electronic structure of the 1f-cus-Ru site, thereby adjusting the adsorption energy of the reaction intermediates.

Supplementary Figure 21 Cyclic voltammograms of commercial RuO₂, Ba_{0.4}(SO₄) $_{\delta}$ Ru_{0.6}O_{2- δ}, and Ba_{0.3}(SO₄) $_{\delta}$ W_{0.2}Ru_{0.5}O_{2- δ} in Ar-saturated 0.5 M H₂SO₄ at a scan rate of 50 mV s⁻¹.

Supplementary Figure 22 a-d Ru K-edge EXAFS (points) and the curvefit (line) for (a) RuO₂, (b) $Ba_{0.3}(SO_4)_{\delta}W_{0.2}Ru_{0.5}O_{2-\delta}$, (c) Ru foil, and (d) standard-RuO₂, shown in k³weighted *k*-space. e-h, Ru K-edge EXAFS (points) and the curvefit (line) for (e) RuO₂, (f) $Ba_{0.3}(SO_4)_{\delta}W_{0.2}Ru_{0.5}O_{2-\delta}$, (g) Ru foil, and (h) standard-RuO₂, shown in *R*-space (FT magnitude and imaginary component). The data are k³-weighted and not phase-corrected.

Supplementary Figure 23 a-c High-resolution O 1s XPS spectra of (a) RuO_2 , (b) $(SO_4)_{\delta}RuO_{2-\delta}$, and (c) $Ba_{0.3}(SO_4)_{\delta}W_{0.2}Ru_{0.5}O_{2-\delta}$ before and after OER.

Supplementary Figure 24 Time-resolved *in-situ* XRD patterns of RuO₂ during 200 min acidic OER at 1.55 V.

Supplementary Figure 25 Time-resolved *in-situ* XRD patterns of $Ba_{0.3}(SO_4)_{\delta}W_{0.2}Ru_{0.5}O_{2-\delta}$ during 200 min acidic OER at 1.55 V.

Supplementary Figure 26 a-c Time-resolved *in-situ* ATR-SEIRAS spectra of (a) RuO₂, (b) $(SO_4)_{\delta}RuO_{2-\delta}$, and (c) Ba_{0.3} $(SO_4)_{\delta}W_{0.2}Ru_{0.5}O_{2-\delta}$ over the course of 1 h acidic OER at 1.5 V.

Supplementary Figure 27 Ru Pourbaix diagram for RuO_2 generated with an aqueous ion concentration of 10^{-6} M at 25 °C.

Supplementary Figure 28 a,b Pourbaix decomposition free energy (ΔG_{pbx}) of (a) RuO₂ and (b) Ba_{0.4}(SO₄)_{δ}Ru_{0.6}O_{2- δ} at potentials between 0 and 2.0 V.

Supplementary Figure 29 Ba Pourbaix diagram for $Ba_{0.4}(SO_4)_{\delta}Ru_{0.6}O_{2-\delta}$ generated with an aqueous ion concentration of 10^{-6} M at 25 °C.

Supplementary Figure 30 Atomic structures of catalysts and intermediates during Ru dissolution on $Ba_{0.3}(SO_4)_{\delta}W_{0.2}Ru_{0.5}O_{2-\delta}$.

Supplementary Note 5: In the most possible thermodynamic deactivation pathway of $Ba_{0,3}(SO_4)_{\delta}W_{0,2}Ru_{0,5}O_{2-\delta}$, the adsorption and deprotonation of water are optimized on the most energetically favorable sites. Benefiting from the protection of Ba-anchored sulfate, the deactivation of $Ba_{0,3}(SO_4)_{\delta}W_{0,2}Ru_{0,5}O_{2-\delta}$ needs to overcome two positive free energy difference in the steps from *a* to *b* and *k* to *l*, respectively, while that of RuO₂ is almost spontaneous – that means, it is more difficult and sluggish for $Ba_{0,3}(SO_4)_{\delta}W_{0,2}Ru_{0,5}O_{2-\delta}$ to deactivate than RuO₂.

Supplementary Figure 31 Photograph of the PEMWE.

Supplementary Figure 32 Chronopotentiogram of commercial RuO₂-based PEMWE operated at 500 mA cm^{-2} in 0.5 M H₂SO₄ under 80 °C.

Supplementary Figure 33 Chronopotentiogram and voltage degradation of $Ba_{0.3}(SO_4)_{\delta}W_{0.2}Ru_{0.5}O_{2-\delta}$ -based PEMWE operated at 1 A cm⁻² in distilled water under 80 °C. Of note, the gray asterisks represent the replenishment of fresh electrolytes, and the difference in cell voltage between 0.5 M H₂SO₄ and distilled water results from the impedance difference between the electrolyte and the MEA.

Supplementary Tables

Metal	Binding Energy (eV)						
Au	-3.26	Те	-7.01	Al	-8.65	Re	-14.5
Ag	-4.03	Ni	-7.11	Fe	-8.82	V	-14.6
Cd	-4.8	Ge	-7.23	Mg	-8.94	Sc	-14.8
Se	-5.15	Pt	-7.33	Ir	-9.5	Ti	-15.3
Ga	-5.17	Sn	-7.36	Be	-10.2	Pr	-15.6
Zn	-5.49	Sb	-7.51	Sr	-10.4	Y	-15.9
Cu	-5.63	Pb	-7.56	Са	-10.5	La	-16
Pd	-5.81	In	-7.78	Ru	-10.5	Мо	-16
Na	-5.92	Со	-7.85	Ba	-10.8	Ce	-17.1
Κ	-6.04	Bi	-7.93	Eu	-11.4	Gd	-17.1
Li	-6.52	Rh	-8.01	Cr	-12.1	Zr	-18.6
As	-6.87	Mn	-8.6	Nd	-14.5	Nb	-19
W	-19.19	Hf	-19.3	Та	-20.2		

Supplementary Table 1. The binding energy of various metal cations with sulfate on the surface of RuO₂ (110) plane.

Catalysts	Loading (µg cm ⁻²)	ECSA (cm ² _{oxide})	Overpotential (V) @ 10 mA cm ⁻²	<i>j</i> _m @ 1.45 V (A mg ⁻¹ _{oxide})	$j_{s} @ 1.45 V$ (mA cm ⁻² _{oxide})
RuO ₂	125	83.4	282	0.003	0.005
$W_{0.3}Ru_{0.7}O_2$	125	52.3	216	0.020	0.047
$(SO_4)_{\delta}RuO_{2-\delta}$	125	71.1	225	0.013	0.023
$Ba_{0.4}(SO_4)_{\delta}Ru_{0.6}O_{2-\delta}$	125	54.6	232	0.009	0.022
$Ba_{0.3}(SO_4)_{\delta}W_{0.2}Ru_{0.5}O_{2-\delta}$	125	39.7	206	0.034	0.105

Supplementary Table 2. OER performances of the Ru-based catalysts in this work.

Catalyst	Ru Loading (µg)	Ba Loading (µg)	W Loading (µg)	Dissolved Ru (µg)	Dissolved Ba (µg)	Dissolved W (μg)
RuO ₂	95.05			33.84		
$W_{0.3}Ru_{0.7}O_2$	70.12		55.24	16.90		7.23
$(SO_4)_{\delta}RuO_{2-\delta}$	100.25			19.25		
$Ba_{0.4}(SO_4)_{\delta}Ru_{0.6}O_{2-\delta}$	62.54	46.93		7.19	1.59	
$Ba_{0.3}(SO_4)_{\delta}W_{0.2}Ru_{0.5}O_{2-\delta}$	45.12	33.82	34.76	3.20	0.81	3.22

Supplementary Table 3. The amount of dissolved Ru, Ba and W for various catalysts after OER.

Catalyst	Ru loss (%)	Ba loss (%)	W loss (%)	Reaction time (h)	S-number
RuO ₂	35.6			1.5	418
$W_{0.3}Ru_{0.7}O_2$	24.11		13.08	55	30682
$(SO_4)_{\delta}RuO_{2-\delta}$	19.19			160	78360
$Ba_{0.4}(SO_4)_{\delta}Ru_{0.6}O_{2-\delta}$	11.49	3.39		316	414346
$Ba_{0.3}(SO_4)_{\delta}W_{0.2}Ru_{0.5}O_{2-\delta}$	7.09	2.40	9.26	1000	2946151

Supplementary Table 4. The stability number (S-number) of various catalysts after OER stability test.

Catalyst	Loading (µg cm ⁻²)	Electrolyte	Overpotential @10 mA cm ⁻² (mV)	Overpotential increase @10 mA cm ⁻²	Ref.
Ni-RuO ₂	400	0.1 M HClO ₄	214	Stable for 200 h	1
Co-RuIr	50	0.1 M HClO ₄	235	Stable for 25 h	2
Faceted Ru	127	0.1 M HClO ₄	180	85 mV for 4 h	3
Ru ₁ -Pt ₃ Cu	21	0.1 M HClO ₄	220	30 mV for 28 h	4
Bi _x Er _{2-x} Ru ₂ O ₇	830	0.1 M HClO ₄	180	Stable for 100 h	5
Cu-doped RuO ₂	275	0.5 M H ₂ SO ₄	188	83 mV for 8 h	6
CaCu ₃ Ru ₄ O ₁₂	250	$0.5 \mathrm{~M~H_2SO_4}$	171	21 mV for 24 h	7
$Cr_{0.6}Ru_{0.4}O_2$	283	$0.5 \mathrm{~M~H_2SO_4}$	178	Stable for 10 h	8
$W_{0.2}Er_{0.1}Ru_{0.7}O_{2-\delta}$	330	0.5 M H ₂ SO ₄	168	83 mV for 500 h	9
Li _{0.52} RuO ₂	637	$0.5 \mathrm{~M~H_2SO_4}$	156	Stable for 70 h	10
$Y_{1.7}Sr_{0.3}Ru_2O_7$	71	$0.5 \mathrm{~M~H_2SO_4}$	264	Stable for 28 h	11
RuNi ₂ ©G-250	320	$0.5 \mathrm{~M~H_2SO_4}$	227	Stable for 3 h	12
$Ba_{0.3}(SO_4)_{\delta}W_{0.2}Ru_{0.5}O_{2-\delta}$	125	0.5 M H ₂ SO ₄	206	43 mV for 1,000 h	This work

Supplementary Table 5. Summary of the reported Ru-based OER catalysts under acidic conditions.

Catalyst	Path	R(Å) ^a	N^b	$\sigma^2 (10^{-3} \text{\AA}^2)^{c}$	$\frac{\Delta E_0}{(\text{eV})^{\text{d}}}$	R factor
	Ru-O	1.97	4.4	2.4		
RuO ₂	Ru-Ru	2.7	1	1.2	-1.32	0.016
	Ru-O	3.16	2.5	3.5		
	Ru-O	1.97	4	0.6		
$Ba_{0.3}(SO_4)_{\delta}W_{0.2}Ru_{0.5}O_{2-\delta}$	Ru-Ru	2.69	1	4.2	-1.71	0.019
	Ru-O	3.15	2	11.4		
Ru foil	Ru-Ru	2.67	12	3.6	3.59	0.013
	Ru-O	1.96	6	-0.3		
Standard RuO ₂	Ru-Ru	2.66	6	-1.5	-0.32	0.018
	Ru-O	3.17	2	4.9		

Supplementary Table 6. Curvefit parameters for Ru K-edge EXAFS for various samples ($S_0^2=0.9$).

^a*R*: Bond distance; ^b*N*: coordination numbers; ^c σ^2 : Debye-Waller factors; ^d ΔE_0 : the inner potential correction; S₀²: the amplitude reduction factor, which was set to 0.9 in the fittings; R factor: goodness of fit.

RuO ₂		$\mathrm{Ba}_{0.4}(\mathrm{SO}_4)_{\delta}\mathrm{Ru}_{0.6}\mathrm{O}_{2\cdot\delta}$						
Ru	0	Ru	0	Ba	0			
RuO ₂	-3.95	RuO ₂	-6.00	Ba ²⁺ (aq)	-6.17			
$\operatorname{RuO_4^{2-}}(\operatorname{aq})$	-4.98	$\operatorname{RuO_4^{2-}}(\operatorname{aq})$	-4.98	BaOH ⁺ (aq)	-7.83			
RuO ₄ ⁻ (aq)	-4.58	RuO ₄ ⁻ (aq)	-4.58	$SO_4^{2-}(aq)$	-8.43			
H ₂ RuO ₅ (aq)	-6.07	$H_2RuO_5(aq)$	-6.07	BaSO ₄	-14.60			

Supplementary Table 7. Free energies of formation for DFT-computed phases in Pourbaix analysis.

Anode catalyst	Mass loading (mg cm ⁻²)	PEM	Cell temperature (°C)	Electrolyte	Current density (A cm ⁻²)	Cell voltage increase	Ref.
PtCo-RuO ₂ /C	2.5	N212	80	Distilled water	1	11 mV for 24 h	13
RuO ₂ /SnO ₂	3	N115	30	Distilled water	0.25	~ 400 mV for 235 h	14
RuO ₂ NS	1.2	N212	90	Distilled water	1	Stable for 10 h	15
Ni-RuO ₂	~3.1	N117	Room temperature	0.1 M HClO ₄	0.2	Stable for 1,000 h	1
$W_{0.2}Er_{0.1}Ru_{0.7}$ $O_{2-\delta}$	Not given	N117	Room temperature	0.5 M H ₂ SO ₄	0.1	~ 100 mV for 120 h	9
$Ba_{0.3}(SO_4)_{\delta}W_{0.2}Ru_{0.5}O_{2-\delta}$	3	N115	80	0.5 M H ₂ SO ₄	0.5	108 mV for 300 h	This work

Supplementary Table 8. Summary of the reported PEMWE stability using different Ru-based OER catalysts.

Supplementary References

- 1 Wu, Z. Y. *et al.* Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. *Nat. Mater.* **22**, 100-108 (2023).
- 2 Shan, J., Ling, T., Davey, K., Zheng, Y. & Qiao, S. Z. Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments. *Adv. Mater.* **31**, e1900510 (2019).
- 3 Poerwoprajitno, A. R. *et al.* Formation of branched ruthenium nanoparticles for improved electrocatalysis of oxygen evolution reaction. *Small* **15**, e1804577 (2019).
- 4 Yao, Y. *et al.* Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. *Nat. Catal.* **2**, 304-313 (2019).
- 5 Zhou, G. *et al.* Spin-related symmetry breaking induced by half-disordered hybridization in $Bi_xEr_{2-x}Ru_2O_7$ pyrochlores for acidic oxygen evolution. *Nat. Commun.* **13**, 4106 (2022).
- 6 Su, J. *et al.* Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: highly robust electrocatalysts for oxygen evolution in acidic media. *Adv. Mater.* **30**, 1801351 (2018).
- 7 Miao, X. *et al.* Quadruple perovskite ruthenate as a highly efficient catalyst for acidic water oxidation. *Nat. Commun.* **10**, 3809 (2019).
- 8 Lin, Y. *et al.* Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. *Nat. Commun.* **10**, 162 (2019).
- 9 Hao, S. *et al.* Dopants fixation of ruthenium for boosting acidic oxygen evolution stability and activity. *Nat. Commun.* **11**, 5368 (2020).
- 10 Qin, Y. *et al.* RuO₂ electronic structure and lattice strain dual engineering for enhanced acidic oxygen evolution reaction performance. *Nat. Commun.* **13**, 3784 (2022).
- 11 Zhang, N. *et al.* Metal substitution steering electron correlations in pyrochlore ruthenates for efficient acidic water oxidation. *ACS Nano* **15**, 8537-8548 (2021).
- 12 Cui, X. *et al.* Robust interface Ru centers for high-performance acidic oxygen evolution. *Adv. Mater.* 32, e1908126 (2020).
- 13 Jin, H. *et al.* Safeguarding the RuO₂ phase against lattice oxygen oxidation during acidic water electrooxidation. *Energy Environ. Sci.* **15**, 1119 (2022).
- 14 Lim, J. Y. *et al.* Highly stable RuO₂/SnO₂ nanocomposites as anode electrocatalysts in a PEM water electrolysis cell. *Int. J. Energy Res.* **38**, 875-883 (2014).
- 15 Huang, H. *et al.* Structure engineering defective and mass transfer-enhanced RuO₂ nanosheets for proton exchange membrane water electrolyzer. *Nano Energy* **88**, 106276 (2021).