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S1 Additional information about prior methods

S1.1 UPP-add

UPP [Nguyen et al., 2015] is a method that was designed to align sequence
datasets that have high sequence length heterogeneity. UPP uses two stages,
where the first stage extracts and aligns a subset of the sequences deemed to
be full-length, and the second stage adds in the remaining sequences into the
alignment from the first stage (which we refer to as the “backbone alignment”).
In this paper, we focus on the second stage of UPP, which we will refer to as
UPP-add.

Given a backbone alignment, UPP-add builds an ensemble of Hidden Markov
Models (i.e., an eHMM) to represent the backbone alignment, which it then uses
to add query sequences into the backbone alignment. To build the eHMM, UPP-
add computes a backbone tree on the backbone alignment using the maximum
likelihood heuristic FastTree2 [Price et al., 2010]. Then, UPP-add recursively
decomposes the backbone tree into smaller subtrees by deleting “centroid edges”
until the last decomposition results in subtrees with at most A leaves (A = 10 in
default UPP). Each subtree thus defines a subset of the backbone sequences and
hence also a subalignment (induced by the backbone alignment on the subset
of sequences). For each subalignment, an HMM is created using hmmbuild
from the HMMER suite [Finn et al., 2011]. Each query sequence is searched
against all HMMs in the eHMM using hmmsearch (also from HMMER), and
then mapped to the HMM with the highest bit-score. The alignment of the
query sequence to the subalignment for the selected HMM is computed using
hmmalign (also from HMMER). Because the subalignments are induced by the
backbone alignment, this also defines an alignment of the query sequence to the
backbone alignment, which we refer to as an “extended alignment”. The set of
all such extended alignments (one for each query sequence) are merged using
transitivity to form the final alignment.

S1.2 WITCH-add and WITCH-ng-add

WITCH [Shen et al., 2022] and WITCH-ng [Liu and Warnow, 2023] are two
MSA methods that use the same type of two-stage approach as UPP, where the
first stage extracts and aligns a subset of the sequences, and the second stage
adds the remaining sequences into the backbone alignment. Here we focus on
the second stages of these methods, i.e., WITCH-add and WITCH-ng-add.

Like UPP-add, both WITCH-add and WITCH-ng-add compute the back-
bone tree and eHMM, and then perform an all-against-all search between all
query sequences and all HMMs. Then, for a given query sequence q, they
compute a weight between for each query-HMM pair based on an “adjusted
bitscore”, as described in Shen et al. [2022], and select the top k HMMs for
that query sequence (k = 10 in default WITCH). As described in UPP-add,
each such query-HMM pair defines a specific extended alignment for the query
sequence, i.e., a specific way of adding the query sequence to the backbone align-
ment. WITCH-add and WITCH-ng-add each compute a consensus of these k
extended alignments, and differ in how these consensus alignments are com-
puted. WITCH-add computes a consensus of these k extended alignments using
the Graph Clustering Merger (GCM), a technique from MAGUS [Smirnov and
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Warnow, 2021], while WITCH-ng-add uses a simple variant of Smith-Waterman
[Smith and Waterman, 1981] to compute the consensus alignment. These con-
sensus alignments thus define a single extended alignment for the query sequence
to the backbone alignment. Finally, as in UPP-add, these extended alignments
are merged together using transitivity. WITCH-add in general, has better align-
ment accuracy than UPP-add [Shen et al., 2022], but WITCH-ng-add is faster
than WITCH and at least as accurate [Liu and Warnow, 2023]. Thus, in this
study, we examined WITCH-ng-add but not WITCH-add.

S1.3 Transitivity Merger

Transitivity is a mathematical property for some binary relations. It says that
if X and Y are related, and if Y and Z are related, then X and Z must also
be related. Since homology (i.e., descent from a common ancestor) is such a
relationship, and since the objective of multiple sequence alignment is to detect
homology, we will be able to use transitivity to compatible alignments that share
some letters through transitivity.

The Transitivity Merger is used in any two-phase method that constructs
an alignment on a subset and then adds each of the remaining sequences to the
subset alignment. The collection of extended alignments (one such alignment
for each remaining sequence) must be merged together, and the merging process
is produced using transitivity. Thus, it is a fundamental step in UPP Nguyen
et al. [2015]. However, it is also used in PASTA Mirarab et al. [2015], which
produces disjoint alignments, then merges pairs of these alignments, producing
overlapping subsets that are compatible with each other. To merge this set of
overlapping alignments, it uses transitivity. Thus, it is also a fundamental step
in PASTA.

In Figure S2 we provide an example of how transitivity is used to merge two
alignments, in the context of a two-phase method where the backbone alignment
is divided into two subsets. The backbone alignment has four sequences and
is split into two subalignments, each with two sequences. Then, two query
sequences AACTA and AATCAA are added to these two subalignments, producing
two extended subalignments. Since the two subalignments were taken from the
backbone alignment, each site in each extended subalignment corresponds to
either a specific site in the backbone alignment or corresponds to an insertion.
In general, insertions can be between sites, but in the example shown, each
insertion is at the end of the subalignment. We show how this information is
used to merge the two extended subalignments.

The first A in query sequence AACTA is aligned to the first column of the first
subalignment, which implies it will be placed in the first column of the final
alignment, which will also contain the nucleotides from the first column of the
backbone alignment. This is an application of transitivity.

The same argument shows that the first A in query sequence AATCAA is aligned
to the first column of the second subalignment, which implies it also will be
placed in the first column of the backbone alignment. Thus, the first As in these
query sequences will be considered homologous to each other, as well as to all
the nucleotides in the first column of the backbone alignment, and placed in the
first column of the final alignment. This is also an application of transitivity.

In contrast, the last A in each of the two query sequences is placed in the last
column by itself within their extended subalignments. This means each of these
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As are not considered homologous to any letter in their extended subalignments,
and hence, they cannot be in a column with any other letter in the final align-
ment. Hence, the final alignment must have two final columns, each containing
one of these two final As and no other letters (otherwise, some homology would
be implied). However, the order of these two final columns is not determined,
so the transitivity merge allows both outcomes.

S1.4 Adjusted Bitscore

The adjusted bitscore is given by the following equation:

wHi,q = P (Hi|q) =
1∑d

j=1 2
BS(Hj ,q)−BS(Hi,q)+log2

sj
si

(1)

where Hi represents a hidden Markov model (HMM), q is a query sequence to
be added, d is the total number of HMMs, BS(Hi, q) is the bitscore between
Hi and q (computed by HMMER [Finn et al., 2011]), and si is the number of
sequences in the alignment that generates Hi. For additional details, see Shen
et al. [2022], Section 2.4.
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S2 Commands for software

All commands are based on the assumption that 16 CPU cores are available.

S2.1 Backbone generation and sequence-adding methods

1. For Experiment 0 only, we computed a MAGUS backbone alignment
(GitHub version committed on April 5th 2021):

$ python3 magus.py --recurse false -np 16 \

-i [unaligned backbone sequences] -d [outdir] \

-o [output alignment]

2. We used FastTree2 (v2.1 multi-threaded version) to generate a backbone
tree from a given constraint (backbone) alignment for each dataset (-nt -

gtr for nucleotide or -lg for amino acids):

$ FastTreeMP {-nt -gtr|-lg} [backbone alignment] > [backbone

tree]

3. We used RAxML-ng (v1.0.3) to generate the reference tree for Rec and
Res datasets (for selecting a clade of sequences in Experiment 2 - adding
to a clade-based backbone). We ran bootstrapping on their reference
alignments and used the first tree returned:

$ raxml -ng --bootstrap --msa [reference alignment] --model LG+

G \

--bs-trees 500 --force perf_threads \

--threads 16 --prefix [output prefix]

4. WITCH-ng-add (v0.0.2) to add query sequences to an existing backbone
alignment and tree:

$ witch -ng add -i [query sequences path] -b [backbone

alignment] \

-t [backbone tree] -o [output alignment] --threads 16

5. MAFFT/MAFFT-linsi --add (MAFFT v7.490) to add query sequences to
an existing backbone alignment:

$ [mafft/mafft -linsi] --quiet --thread 16 --add [query

sequences] \

[backbone alignment] > [output alignment]

S2.2 Evaluation

1. FastSP (v1.7.1) to obtain SPFN and SPFP. We average these two results
to produce an overall “Alignment error”. The “-ml -mlr” options will
ignore columns with lowercase letters (considered as insertions in UPP
and WITCH):

$ java -jar FastSP.jar -ml -mlr -e [estimated alignment] \

-r [reference alignment] -o [output file]
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2. Runtime is obtained by adding the following command before any soft-
ware:

$ { /usr/bin/time -v [software command and options] ; } \

> [runtime information]

3. Empirical dataset statistics (i.e., p-distance, % gaps, etc.) are obtained
using the following script (https://wiki.illinois.edu/wiki/display/
warnowlab/Get+alignment+statistics). Alternatively link from Drop-
box (https://www.dropbox.com/s/wqt8hpvqkdjge04/alignment_stats.
zip?dl=0):

$ java -cp ./ alignment_stat AlignmentStatistics \

[alignment file] [output file]
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S3 Datasets

S3.1 Empirical statistics

Table S1 provides empirical statistics for the datasets used in this study. We
include both nucleotide (NT) and protein (AA) datasets. Datasets marked
with (∗) denote training datasets. The number of replicates (if more than one)
is specified with a parenthesis after the dataset name.

The p-distance is defined as follows. The Hamming distance between two
(aligned) sequences is defined as the number of columns that have different let-
ters and neither is gapped. The normalized Hamming distance is the Hamming
distance divided by the total number of columns where both sequences have
letters, thus producing values between 0.0 and 1.0. This value is known as the
p-distance.

The percent gaps is the percentage of the alignment that is occupied by “-”.
The Indelible, ROSE, and RNASim datasets are all simulated, and the re-

maining sequence datasets are biological. Except for Rec and Res, there are ei-
ther true (known because simulated) or curated alignments on all the sequences
in the dataset. The Rec and Res datasets have curated alignments only on a
subset of the sequences (66 for Rec and 112 for Res). See the main paper for
additional details.
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Table S1: Empirical statistics of study datasets. “*” marks the training
dataset. Numbers in parentheses after dataset names indicate the number
of replicates.

Dataset # Seqs
p-distance

% gaps
Avg. Seq.
length

Align
lengthAvg. Max

Indelible datasets (NT)
- 5000M2-het(10)∗ 5000 0.686 0.789 97.9 1025 48,887
- 5000M3-het(10) 5000 0.664 0.764 96.0 1001 25,262
- 5000M4-het(10) 5000 0.528 0.671 96.0 1001 24,415
ROSE datasets (NT)
- 1000M1(10) 1000 0.696 0.768 74.2 1011 3934
- 1000M2(10) 1000 0.681 0.761 73.6 1014 3896
- 1000M3(10) 1000 0.658 0.741 62.3 1007 2688
- 1000M4(10) 1000 0.496 0.607 60.6 1008 2575
RNASim dataset (NT)
- RNASim10k(10) 10,000 0.411 0.616 82.2 1551 8694
CRW datasets (NT)
- 16S.3 6323 0.315 0.833 82.1 1557 8716
- 16S.T 7350 0.345 0.901 87.4 1492 11,856
- 16S.B.ALL 27,643 0.210 0.769 79.9 1372 6857
10AA datasets (AA)
- 1GADBL 100 561 0.457 0.715 33.7 325 490
- RV100 BBA0039 807 0.416 1.000 85.3 395 2696
- RV100 BBA0067 410 0.783 0.922 57.5 464 1092
- RV100 BBA0081 353 0.863 1.000 65.2 586 1682
- RV100 BBA0101 509 0.784 1.000 87.9 492 4081
- RV100 BBA0117 460 0.754 1.000 48.4 57 110
- RV100 BBA0134 717 0.729 1.000 85.2 470 3184
- RV100 BBA0154 303 0.660 0.850 59.3 518 1275
- RV100 BBA0190 397 0.688 1.000 64.6 886 2504
- coli epi 100 320 0.583 0.871 10.7 133 149
Rec and Res datasets (AA)
- Rec 96,773 0.807 0.926 48.9 101 205
- Res 186,802 0.735 0.908 31.2 133 208
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S3.2 Dataset Generation: INDELible

Table S2: Indel rate and tree scale parameters for generating the 5000M-
het series data, where l is the tree scale parameter, defining the maximum
path-length in the non-ultrametric model tree, and r defines the indel rate.

Condition l (tree scale) r (indel rate)

5000M2 30 4.4× 10−4

5000M3 20 3.3× 10−4

5000M4 5 1.32× 10−3

We present details for generating our new simulated conditions using IN-
DELible [Fletcher and Yang, 2009] below. Our simulation parameters are
based on those of the 1000M series of the ROSE simulated dataset [Liu et al.,
2009]. We uploaded all of our INDELible control files generating this data
to https://github.com/ThisBioLife/5000M-234-het to allow easy reproduc-
tion.

S3.2.1 Model trees

Our model trees were generated by a two-step process. We first generated ran-
dom 5000-species birth-death trees (one tree per replicate) using the DendroPy
[Sukumaran and Holder, 2010] treesim.birth death tree function, setting the
birth rate initially at 1 with the standard deviation of the change to the birth
rate set to 0.2 (see the documentation on this Dendropy function on the birth-
death process and the implication of this parameter), with a zero death rate.
Then, taking only the topology of the tree generated in the prior step, we in-
structed INDELible to assign branch lengths to the tree such that the resulting
tree is both non-ultrametric and has a maximum path-length l. We vary l to
control the scale of the tree and hence the rate of evolution of the condition.
The choice of l across conditions can be seen in Table S2.

S3.2.2 Indel length distribution & indel rates

Our model for sequence length heterogeneity assumes a base (“short indel”)
distribution of indel lengths. In our case, we simply took the “medium” length
distribution from the “M”-series ROSE simulated datasets [Liu et al., 2009] as
the short indel distribution. Given an indel event, with probability p = 0.85,
it draws its length from the short indel distribution. Otherwise, it draws its
length from a long indel distribution, in our case set to NB(130, 0.5). The
indel length distribution is thus equivalently a mixture distribution of the short
indel distribution (prior probability 0.85) and the long indel distribution (prior
probability 0.15). We directly computed the probability mass function (PMF)
of this mixture distribution, truncated the PMF, and fed the truncated PMF
to INDELible as part of the input. The truncated PMF can be found alongside
the uploaded control files in the Github repository linked.

Similar to the original ROSE dataset, we also varied the indel rates across
conditions, with the choices for the indel rate r shown in Table S2. The indel
rates were chosen analogous to the original indel rates of the ROSE dataset.
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S3.2.3 GTR parameters

Table S3: GTR matrix parameters for generating the 5000M-het series
dataset. The parameters are set according to the parameters for the ROSE
simulated data [Liu et al., 2009].

GTR Parameters

T->C 1.2619573850882344
T->A 0.14005536945585983
T->G 0.2877830346145434
C->A 0.35766826674033914
C->G 0.3082674310184066
A->G 1

The rest of the parameters (e.g., GTR+Γ parameters and the initial sequence
length) were chosen to be the same as the ROSE simulated dataset generated
for the SATé study [Liu et al., 2009] and can be found in the uploaded control
files (https://github.com/ThisBioLife/5000M-234-het). We also provide
the parameters here:

• GTR parameters: see Table S3

• Stationary frequencies (TCAG): 0.311475, 0.191363, 0.300414, 0.196748

• α (for the gamma distribution): 1

• Initial sequence length: 1000
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S3.3 Dataset Generation: Rec and Res

S3.3.1 Background

Software is available that maps mobile DNAs within bacterial and archaeal
genomes [Hudson et al., 2015, Mageeney et al., 2020], where each mapping is
associated with the sequence of the integrase enzyme that catalyzes the site-
specific integration of the mobile DNA.

S3.3.2 Generation

Protein sequences were taken from 350,378 bacterial and archaeal genome se-
quences (see https://databank.illinois.edu/datasets/IDB-2419626) us-
ing Prodigal [Hyatt et al., 2010]. Serine recombinases were identified using the
Pfam HMMs [Mistry et al., 2021] Resolvase (Res) for the catalytic domain and
Recombinase (Rec) for the integrase-specific domain. Seed sequences are in-
cluded for evaluation later (112 and 66 Pfam seed sequences for Res and Rec,
respectively).

Link to the Res seed sequences: http://pfam.xfam.org/family/PF00239#
tabview=tab3

Link to the Rec seed sequences: http://pfam.xfam.org/family/PF07508#
tabview=tab3

Sequence trimming Two separate sequence datasets (i.e., Rec and Res) were
prepared for the serine recombinases trimmed either according to the Recombi-
nase or Resolvase HMM hits.

S3.3.3 Evaluation

We compare the estimated alignments to the seed Pfam alignments for both
Rec and Res to obtain SPFN, SPFP, and the expansion score (see main text for
definitions).
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S4 Computational issues for MAFFT-linsi-add
and MAFFT-add

S4.1 Experiment 0: MAFFT-linsi-add scalability issue on
5000-taxon datasets

In Experiment 0, we limited the runtime to 12 hours, 64 GB of memory, and 16
cores. We varied the number of queries to be added in this experiment. However,
when we tried running MAFFT-linsi --add (MAFFT-linsi-add) on our training
5000M2 datasets with the full set of 4000 query sequences to a 1000-taxon full-
length backbone alignment, we encountered either out-of-memory issues (64 GB
memory limit) or crashes.

The out-of-memory error message looks like the following:

slurmstepd: error: Detected 1 oom -kill event(s) in

StepId =5376434. batch cgroup. Some of your processes may have been

killed by the cgroup out -of-memory handler.

The crash error message looks like the following:

Command exited with non -zero status 1

S4.2 Experiment 2: MAFFT-add out-of-memory issues

In Experiment 2, we allowed 24 hours and 128 GB memory, as well as 16 cores.
We ran MAFFT-add (default option) for all three ways of defining the backbone
sequences on the Res dataset with ∼ 186k sequences. This analysis produced
out-of-memory issues for MAFFT--add, with the following error message:

slurmstepd: error: *** JOB 8737367 ON ccc0281 CANCELLED AT

2023 -05 -05 T17 :47:50 ***

slurmstepd: error: Detected 1 oom -kill event(s) in StepId =8737367.

batch. Some of your processes may have been killed by the

cgroup out -of-memory handler.
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S5 Additional Figures

Figure S1: Experiment 0: SPFN (top left), SPFP (top right), alignment
error (average of SPFN and SPFP, bottom left), and runtime in hours (bot-
tom right) of MAFFT-add and MAFFT-linsi-add for adding 100, 200, 1000,
or 2000 sequences to a 1000-taxon backbone alignment. The dataset used
is 5000M2-het with 10 replicates, where 1000 full-length sequences are ran-
domly selected and aligned with MAGUS [Smirnov and Warnow, 2021] to
form the backbone alignment. Averages over ten replicates are shown. Error
bars shown for alignment errors are standard errors and standard deviations
for runtime. We exclude replicate 4 because MAFFT-linsi-add encountered
out-of-memory issues when adding 100 or 200 query sequences. Addition-
ally, MAFFT-linsi-add either encountered out-of-memory issues or did not
complete within 12 hours when adding 1000 or 2000 query sequences and
thus is not shown.
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Figure S2: A simple example of how transitivity merging works when merging
two extended subalignments, each adding one query new sequence. Insertion
letters are marked in bold and italicized. The two insertion letters, marked in
the final columns of the two extended subalignments, are put into separate
columns in the final alignment. See text for additional discussion.
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Figure S3: Experiment 1: We show alignment error SPFN (top left) and
SPFP (top right) as well as runtime (bottom) for EMMA run with differ-
ent settings of l and u (the algorithmic parameters governing subset size).
Parameters l and u are drawn from {10, 25, 50, 100}, and with l < u. This
experiment was performed with a backbone of 1000 randomly selected se-
quences of 10 replicates of the 5000M2-het model condition. Alignment
error is calculated on query sequences only, and white squares mark the av-
erages.
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(a) Expansion score

(b) SPFP

Figure S4: Experiment 2: Expansion score (top) and SPFP (bottom) when
adding to large random backbone alignments. In each sub-figure, the top
panel denotes biological datasets, and the bottom panel denotes simulated
datasets. The horizontal dashed line indicates an expansion score of 1.
MAFFT-linsi-add failed to finish within 24 hours for datasets except for
10AA and ROSE 1000M1-4 and was not run on Rec and Res due to their
large numbers of sequences. MAFFT-add encountered out-of-memory issues
on the Res dataset, as discussed in Section S4. Failed runs, or runs not
attempted, are marked with “X”.
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(a) Expansion score

(b) SPFP

Figure S5: Experiment 2: Expansion score (top) and SPFP (bottom) when
adding to small random backbone alignments. In each sub-figure, the top
panel denotes biological datasets, and the bottom panel denotes simulated
datasets. The horizontal dashed line indicates an expansion score of 1.
MAFFT-linsi-add failed to finish within 24 hours for datasets except for
10AA and ROSE 1000M1-4 and was not run on Rec and Res due to their
large numbers of sequences. MAFFT-add encountered out-of-memory issues
on the Res dataset (Section S4). Failed runs, or runs not attempted, are
marked with “X”.
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(a) Expansion score

(b) SPFP

Figure S6: Experiment 2: Expansion score (top) and SPFP (bottom) when
adding to clade-based backbone alignments. In each sub-figure, the top
panel denotes biological datasets, and the bottom panel denotes simulated
datasets. The horizontal dashed line indicates an expansion score of 1.
MAFFT-linsi-add failed to finish within 24 hours for datasets except for
10AA and ROSE 1000M1-4 and was not run on Rec and Res due to their
large numbers of sequences. MAFFT-add encountered out-of-memory issues
on the Res dataset (Section S4). Failed runs, or runs not attempted, are
marked with “X”.
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Figure S7: Experiment 2: SPFN when adding to large random backbone
alignments. The top panel denotes biological datasets, and the bottom
panel denotes simulated datasets. MAFFT-linsi-add failed to finish within
24 hours for datasets except for 10AA and ROSE 1000M1-4 and was not
run on Rec and Res due to their large numbers of sequences. MAFFT-add
encountered out-of-memory issues on the Res dataset (Section S4). Failed
runs, or runs not attempted, are marked with “X”.
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Figure S8: Experiment 2: SPFN when adding to small random backbone
alignments. The top panel denotes biological datasets, and the bottom
panel denotes simulated datasets. MAFFT-linsi-add failed to finish within
24 hours for datasets except for 10AA and ROSE 1000M1-4 and was not
run on Rec and Res due to their large numbers of sequences. MAFFT-add
encountered out-of-memory issues on the Res dataset (Section S4). Failed
runs, or runs not attempted, are marked with “X”.
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Figure S9: Experiment 2: SPFN when adding to clade-based backbone
alignments. The top panel denotes biological datasets, and the bottom
panel denotes simulated datasets. MAFFT-linsi-add failed to finish within
24 hours for datasets except for 10AA and ROSE 1000M1-4 and was not
run on Rec and Res due to their large numbers of sequences. MAFFT-add
encountered out-of-memory issues on the Res dataset (Section S4). Failed
runs, or runs not attempted, are marked with “X”.
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Figure S10: Experiment 2: Runtime (log-scale) in minutes when adding
to small random backbone alignments. The top panel denotes biological
datasets, and the bottom panel denotes simulated datasets. MAFFT-linsi-
add failed to finish within 24 hours for datasets except for 10AA and ROSE
1000M1-4 and was not run on Rec and Res due to their large numbers
of sequences. MAFFT-add encountered out-of-memory issues on the Res
dataset (Section S4). Failed runs, or runs not attempted, are marked with
“X”. Error bars indicate standard deviation.
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Figure S11: Experiment 2: Runtime (log-scale) in minutes when adding
to clade-based backbone alignments. The top panel denotes biological
datasets, and the bottom panel denotes simulated datasets. MAFFT-linsi-
add failed to finish within 24 hours for datasets except for 10AA and ROSE
1000M1-4 and was not run on Rec and Res due to their large numbers
of sequences. MAFFT-add encountered out-of-memory issues on the Res
dataset (Section S4). Failed runs, or runs not attempted, are marked with
“X”. Error bars indicate standard deviation.
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Figure S12: Experiment 2: Individual SPFN for 10AA datasets when adding
to large random backbone alignments.

Figure S13: Experiment 2: Individual SPFN for 10AA datasets when adding
to small random backbone alignments.
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Figure S14: Experiment 2: Individual SPFN for 10AA datasets when adding
to large clade-based alignments.
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S6 Additional Tables

Table S4: Average expansion scores of EMMA, WITCH-ng-add, MAFFT
--add, and MAFFT-linsi --add for different model conditions on all datasets.
“X” denotes that the method failed due to runtime (24-hour limit) or out-
of-memory issues (128 GB). All values are rounded to the nearest tenth.

EMMA WITCH-ng-add MAFFT --add MAFFT-linsi --add
large random backbone

10AA 2.0 9.3 2.2 2.1
16S.3 2.1 6.7 2.1 X
16S.T 2.1 42.7 2.2 X

16S.B.ALL 3.9 12.0 2.1 X
Rec 3.3 4.2 2.8 X
Res 1.7 2.0 X X

1000M1 1.2 6.6 3.7 1.1
1000M2 1.0 4.9 2.8 1.0
1000M3 1.0 3.4 2.3 1.0
1000M4 1.0 1.6 1.0 0.9

5000M3-het 1.0 3.3 1.0 X
5000M4-het 1.0 2.0 1.0 X
RNASim10k 2.8 7.3 1.2 X

small random backbone
10AA 2.0 14.1 2.1 1.9
16S.3 3.0 9.1 2.0 X
16S.T 3.1 48.9 1.9 X

16S.B.ALL 5.6 17.4 1.9 X
Rec 3.2 4.5 2.8 X
Res 2.9 2.9 X X

1000M1 1.6 12.8 3.1 1.1
1000M2 1.3 9.2 2.5 1.0
1000M3 1.1 6.4 2.4 1.0
1000M4 1.0 2.2 0.9 0.9

5000M3-het 2.0 8.1 0.5 X
5000M4-het 1.6 3.6 0.9 X
RNASim10k 3.2 15.4 1.3 X

large clade-based backbone
10AA 1.7 38.1 1.7 1.5
16S.3 4.0 184.7 1.6 X
16S.T 4.8 148.8 1.5 X

16S.B.ALL 6.3 105.6 1.7 X
Rec 2.3 4.3 2.7 X
Res 1.9 2.2 X X

1000M1 2.0 128.4 2.5 0.9
1000M2 1.5 112.9 2.1 0.9
1000M3 1.3 100.7 2.5 0.9
1000M4 1.1 7.3 0.9 0.9

5000M3-het 2.2 50.1 0.7 X
5000M4-het 2.0 20.3 0.9 X
RNASim10k 3.9 50.8 1.2 X
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Table S5: Memory usage (mean, minimum, and maximum in GB) of EMMA,
WITCH-ng-add, and MAFFT--add for different model conditions on all
datasets. For min/max memory usage, we also show the specific dataset in
parentheses. The maximum memory usage of MAFFT--add is the memory
limit (128 GB) for Res, and led to out-of-memory crashes. MAFFT-linsi--add
only ran on the datasets with at most 1000 sequences, and so its memory
usage is not comparable to the other methods. All values are rounded to
the nearest hundreds.

backbone type method
memory
mean

memory
min

memory
max

large random EMMA 0.57 0.04 (RV100 BBA0117) 4.93 (16S.3)
large random WITCH-ng-add 0.93 0.01 (RV100 BBA0117) 8.06 (16S.B.ALL)
large random MAFFT--add 2.53 0.03 (coli epi 100) 127.95 (Res)
small random EMMA 1.21 0.03 (RV100 BBA0117) 6.16 (RV100 BBA0101)
small random WITCH-ng-add 1.23 0.01 (RV100 BBA0117) 11.23 (16S.B.ALL)
small random MAFFT--add 2.52 0.03 (coli epi 100) 127.95 (Res)
clade-based EMMA 1.23 0.04 (coli epi 100) 4.47 (16S.3)
clade-based WITCH-ng-add 0.92 0.00 (RV100 BBA0117) 12.84 (16S.B.ALL)
clade-based MAFFT--add 2.66 0.03 (coli epi 100) 127.95 (Res)
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