
A Evolutionary model for class switch recombination
A dependence tree T̄ with n nodes, sometimes referred to as a state tree, is a tree that defines the conditional inde-
pendence structure of the random variables associated with the nodes of the tree [24, 25]. Simply put, it is a type
of Bayesian network, where the underlying directed acyclic graph is a tree. For each node i in dependence tree T̄ ,
we associate a random variable Yi ∈ S, where S is a discrete state space. Additionally, Y1 is the random variable
associated with the root node. The joint probability Y = (Y1, . . . , Yn) of these random variables given the underlying
structure of dependence tree T̄ is defined as follows

P (Y | T̄ ) = P (Y1)
n∏

i=2

P (Yi | Yϕ(i)), (5)

where [n] = {1, . . . , n} and ϕ(i) is a function that returns the parent of node i specified by dependence tree T̄ .
Like Markov chains, this model is parameterized by a distribution over the starting state, πs = P (Y1 = s), where∑

i∈[r] πs = 1, and transition probabilities ps,t = P (Yi = t | Yϕ(i) = s) from state s to t. Transition probabilities
P = [ps,t] ∈ [0, 1]|S|×|S| have the property that

∑
t∈S ps,t = 1 for every state s.

We model class switch recombination with a dependence tree T̄ for each lineage tree T with nodes V (T̄ ) = V (T )
and edges E(T̄ ) = E(T ) and isotype labels β(v) = Yv for every node v. In words, the corresponding dependence
tree T̄ for B cell lineage tree T has the same topology but the dependence tree T̄ has a random variable for isotype
associated with each node.

For the leaf nodes vi ∈ L(T ), i.e., the sequenced B cells, we observe isotype bi directly from scRNA-seq data,
i.e., P (Yvi

= bi) = 1. Additionally, root node v0 in T , represents the naive B cell post V(D)J recombination and
therefore P (Yv0 = 1) = 1, meaning that root of the dependence tree has isotype state IgM and π1 = 1. This means
that any dependence tree without Yv0 = 1 has zero probability and we omit the initial state probability term. For any
other node u in T , we have β(u) = Yu. Thus, to compute (5) for isotype labels β(v), it suffices to know the isotype
transition probabilities P, which we formally define below.

(Main Text) Definition 2. An r × r matrix P = [ps,t] is an isotype transition probability matrix provided for all
isotypes s, t ∈ [r] it holds that (i) ps,t = 0 if t > s, (ii) ps,t ≥ 0, and (iii)

∑r
t=1 ps,t = 1 for all isotypes s ∈ [r].

The additional conditions on the transition probabilities beyond row stochasticity on the transition probabilities
are to properly model the irreversibility of class switch recombination. Using the above model for class switch recom-
bination, we compute the likelihood CSR(T, β,P) for observed isotypes b given a lineage tree with isotypes β and
isotype transition probabilities as follows.

CSR(T, β,P) = Pr(b | T, β,P) (6)

=
∏

(u,v)∈E(T )

pβ(u),β(v)

=
∏

v∈V (T )\{v0}

∏
(s,t)∈[r]×[r]

p
1(β(v)=t,β(ϕ(v))=s)
s,t

=
∏

(s,t)∈[r]×[r]

p
Ns,t

s,t

where Ns,t is the count of occurrences in lineage tree T such that β(v) = t and β(ϕ(v)) = s. This is easily extended
for a forest of k lineage trees T1, . . . , Tk with corresponding isotypes β1, . . . , βk. Given isotype transition probabilities
P, the joint probabilities CSR(T1, β1,P), . . . ,CSR(Tk, βk,P) are conditionally independent, resulting in the joint
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likelihood

k∏
j=1

CSR(Tj , βj ,P) =
k∏

j=1

Pr(bj | Tj , βj ,P) (7)

=
k∏

j=1

∏
(u,v)∈E(Tj)

pβj(u),βj(v)

=
k∏

j=1

∏
v∈V (Tj)\{v0}

∏
(s,t)∈[r]×[r]

p
1(βj(v)=t,βj(ϕ(v))=s)
s,t

=
∏

(s,t)∈[r]×[r]

p
∑k

j=1 Nj,s,t

s,t

where Nj,s,t is the count of occurrences in lineage tree Tj such that β(v) = t and β(ϕ(v)) = s.

B Combinatorial characterization and complexity results

B.1 B cell lineage forest inference
Recall the B CELL LINEAGE FOREST INFERENCE PROBLEM (BLFI) from Sec. 2, restated below for convenience.

(Main Text) Problem 1 (B CELL LINEAGE FOREST INFERENCE (BLFI)). Given MSAs A1, . . . ,Ak and isotypes
b1, . . . ,bk for k clonotypes, find isotype transition probabilities P∗ for r isotypes and lineage trees T ∗

1 , . . . , T
∗
k for

(A1,b1), . . . , (Ak,bk) whose nodes are labeled by sequences α∗
1, . . . , α

∗
k and isotypes β∗

1 , . . . , β
∗
k , respectively, such

that
∑k

j=1 SHM(T ∗
j , α

∗
j ) is minimum and then

∏k
j=1 CSR(T

∗
j , β

∗
j ,P

∗) is maximum.

Theorem 1. The BLFI problem is NP-hard even if k = 1 and r = 1.

We prove that the BLFI problem is NP-hard via a simple reduction from the LARGE PARSIMONY problem [41].
Although this problem is well known, we restate it here for completeness.

Problem 3 (LARGE PARSIMONY (LP)). Given a matrix A ∈ {0, 1}n×m, find a rooted tree T whose nodes
are labeled by sequences α : V (T ) → {0, 1}m such that the n leaves are labeled by the rows of A and∑

(u,v)∈E(T ) D(α(u), α(v)) is minimium.

The reduction to BLFI proceeds by using the same MSA A directly for a single clonotype, i.e., k = 1. Additionally,
we restrict the number r of isotypes to 1, and set isotypes b = [1]n.

Lemma 1. Tree T and node labeling α form an optimal solution to LP instance A if and only if tree T , sequences α
and isotypes β, the isotype transition probabilities P form an optimal solution to BLFI instance (A,b).

Proof. (⇒) Let tree T and sequence labeling α be an optimal solution to the LP problem. We will show that T and
α can be augmented to form an optimal solution to the corresponding BLFI problem. We set P = [1]. We also set
β(v) = 1 for all nodes v ∈ T . We claim that (T, α, β,P) form an optimal solution to BLFI. Assume for a contradiction
there exists a solution (T ′, α′, β′,P′) such that SHM(T ′, α′) < SHM(T, α), or SHM(T ′, α′) = SHM(T, α) and
CSR(T ′, β′,P′) > CSR(T, β,P). Clearly, any feasible solution to BLFI must use β(v) = 1 for all nodes v and
P = [1] as r = 1. This means that any feasible solution to BLFI will have a CSR objective value of 1. Therefore,
CSR(T ′, β′,P′) = CSR(T, β,P) = 1. Hence, SHM(T ′, α′) < SHM(T, α). As can be seen in (1), the SHM
objective equals the objective of the LP problem. Therefore, T ′ and α′ have a lower parsimony score than T and α, a
contradiction.

(⇐) Let (T, α, β,P) be an optimal solution to BLFI. Again, as the SHM objective equals the objective of the LP
problem, it directly follows that (T, α) form an optimal solution to the LP problem instance.
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B.2 Most parsimonious tree refinement
B.2.1 Combinatorial characterization

Recall from the main text the definition of isotype transition probabilities P, the CSR log-likelihood for isotypes b
of a tree T with nodes labeled by isotypes β, and the MOST PARSIMONIOUS TREE REFINEMENT problem, provided
below for convenience.

(Main Text) Definition 2. An r × r matrix P = [ps,t] is an isotype transition probability matrix provided for all
isotypes s, t ∈ [r] it holds that (i) ps,t ≥ 0, (ii) ps,t = 0 if s > t, and (iii)

∑r
t=1 ps,t = 1 for all isotypes s ∈ [r].

log CSR(T, β,P) = log
∏

(u,v)∈E(T )

pβ(u),β(v) =
∑

(u,v)∈E(T )

log pβ(u),β(v).

(Main Text) Problem 2 (MOST PARSIMONIOUS TREE REFINEMENT (MPTR)). Given a tree T on n leaves, isotypes
b = [b0, . . . , bn] and isotype transition probabilities P, find a tree T ′ with root v′0 and isotype labels β′ : V (T ′) → [r]
such that (i) T ′ is a refinement of T , (ii) β′(v′0) = b0 = 1, (iii) β′(v′i) = bi for each leaf v′i ∈ {v′1, . . . , v′n} and
(iv) log CSR(T ′, β′,P) is maximum.

Let σ be a mapping from V (T ′) to V (T ) that reverses all EXPAND operations of each node u′ in refinement T ′

in order to obtain back the node σ(u′) = u from which it was derived in the original tree T . We say that an isotype
labeling β′ : V (T ′) → [r] of T ′ is transitory if along each directed edge (u′, v′) of T ′ either the isotype changes or u′

and v′ correspond to two distinct nodes of T . More formally, we have the following definition.

Definition 3. Let T ′ be a refinement of a tree T whose leaves are labeled by isotypes b. Then, an isotype labeling β′

of T ′ is transitory provided (i) β′(v′0) = 1 where v′0 is the root of T ′, (ii) β′(v′) = bσ(v′) for each leaf v′ ∈ L(T ′),
(iii) β′(u′) ≤ β(v′) for each edge (u′, v′) of T ′, and (iv) β′(u′) = β′(v′) only if σ(u′) ̸= σ(v′) for each edge (u′, v′)
of T ′.

Importantly, among the set of optimal solutions (T ′, β′) to each MPTR problem instance (T,b,P) there exist
solutions where β′ is transitory.

Lemma 2. Let (T,b,P) be an MPTR problem instance. There exist an optimal solution (T ′, β′) where β′ is transitory.

Proof. We prove this by contradiction. Let (T ′, β′) be an optimal solution where β′ is not transitory. First, observe
that it holds that β′(u′) ≤ β(v′) for each edge (u′, v′) of T ′. To see why, if there were an edge (u′, v′) such that
β′(u′) > β(v′) then CSR(T ′, β′,P) = −∞ as log ps,t = −∞ if s > t. However, setting β′(u′) = 1 for nodes u′

would result in log-likelihood greater than −∞. Since (T ′, β′) is a feasible solution to MPTR respecting irreversibility
of isotype transitions, it means that condition (iv) of Definition 3 is violated. Let (u′, v′) be an edge such that β′(u′) =
β′(v′) and σ(u′) = σ(v′). We can contract this edge, retaining the isotype labeling β′ for the remaining nodes, such
that the resulting tree remains a refinement of T and the objective value remains unchanged as log ps,s = 0. Repeating
this procedure for all edges (u′, v′) such that β′(u′) = β′(v′) and σ(u′) = σ(v′) results in (T ′′, β′′), where T ′′ is a
refinement of T labeled by β′′, with the same optimal score as (T ′, β′). Clearly, (T ′′, β′′) is transitory, proving the
lemma.

B.2.2 Complexity

Note that maximizing the CSR log-likelihood is equivalent to maximizing the CSR likelihood, which is the objective
function we will use in this subjection. That is,

CSR(T, β,P) =
∏

(u,v)∈E(T )

pβ(u),β(v).

We now prove the following theorem.

Theorem 2. The MPTR problem is NP-hard.
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We show that MPTR is NP-hard by reduction from SET COVER.

Problem 4 (SET COVER). Given a universe U of elements {u1, . . . u|U|} and a collection S of subsets {S1, . . . , S|S|}
such that

⋃|S|
i=1 Si = U , find a cover C ⊆ S such that

⋃
S∈C S = U and the size |C| of the cover is minimum.

Note that while the order of the subsets in collection S does not matter for SET COVER, our reduction will assume
the subsets to be in an arbitrary but fixed order. Similarly, we will assume U to be ordered arbitrarily. SET COVER has
been proven to be NP-hard in Karp’s 21 NP-complete problems [42]. We describe a polynomial time reduction from
SET COVER to MPTR. To that end, given the set U of elements and the collection S of subsets, we construct a tree T
with |U|+ 1 leaves, r = |U|+ |S|+ 2 isotypes, observed isotypes b ∈ [r]|U|+1, and r × r transition probabilities P.
The steps are as follows.

1. To construct tree T , we begin by adding the root node v0. Following that, we attach two children, denoted as
v̄0 and v|U|+1, to the root node v0. Finally, for each element uq ∈ U , we add an edge (v̄0, vq) in tree T . The
constructed tree T has |U|+ 3 nodes and |U|+ 2 edges.

2. We consider a total of r = |S| + |U| + 2 isotypes, each corresponding to either a subset Si ∈ S, an element
uq ∈ U , or one of the special symbols ⊤ or ⊥. Specifically, the first isotype stands for the special symbol ⊤,
followed by |S| isotypes representing each subset Si ∈ S, succeeded by |U| isotypes representing each element
uq ∈ U , and concluding with the last isotype signifying the special symbol ⊥. For convenience, we define a
function R : S ∪ U ∪ {⊤,⊥} → [r] to map the subsets Si ∈ S , the elements uq ∈ U , and the special symbols
⊤ and ⊥ to their representative isotype indices as follows.

R(X) =


1, if X = ⊤,
i+ 1, if X = Si,
|S|+ q + 1, if X = uq,
|S|+ |U|+ 2, if X = ⊥.

3. For the observed isotypes, we set b0 = b|U|+1 = R(⊤) = 1, and bq = R(uq) for 1 ≤ q ≤ |U|.

4. We define ϵ to be a constant such that 0 < ϵ ≤ 1/(|S| + |U| + 1). Next, we construct the isotype transition
probabilities P parameterized by ϵ as follows.

(a) We set the transition probability from R(⊤) to R(⊤) or R(Si) for any set Si ∈ S to be ϵ and to R(uq) for
any uq ∈ U to be 0.

pR(⊤),R(⊤) = ϵ,

pR(⊤),R(Si) = ϵ ∀1 ≤ i ≤ |S|,
pR(⊤),R(uq) = 0 ∀1 ≤ q ≤ |U|.

(b) We set the transition probability from R(⊤) to R(⊥) to be 1− (1 + |S|)ϵ.

pR(⊤),R(⊥) = 1− (1 + |S|)ϵ.

(c) We set the transition probability pR(Si),R(Sj) for any Si, Sj ∈ S to be ϵ if i < j, and 0 otherwise.

pR(Si),R(Sj) =

{
ϵ, if i < j,
0, if i ≥ j,

∀1 ≤ i, j ≤ |S|.

(d) We set the transition probability from R(Si) to R(uq) for any set Si ∈ S and any element uq ∈ U to be ϵ
if uq ∈ Si, and 0 otherwise.

pR(Si),R(uq) =

{
ϵ, if uq ∈ Si,
0, if uq /∈ Si,

∀1 ≤ i ≤ |S|, 1 ≤ q ≤ |U|.
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𝒰 = {𝑢!, 𝑢", 𝑢#, 𝑢$, 𝑢%}

𝒮 = 𝑆!, 𝑆", 𝑆#, 𝑆$

𝑆! = {𝑢!, 𝑢", 𝑢#}
𝑆" = {𝑢#, 𝑢$}
𝑆# = {𝑢!, 𝑢", 𝑢%}
𝑆$ = {𝑢!, 𝑢#, 𝑢$}

𝒞 = {𝑆", 𝑆#}

⊥𝒖𝟓𝒖𝟒𝒖𝟑𝒖𝟐𝒖𝟏𝑺𝟒𝑺𝟑𝑺𝟐𝑺𝟏⊤

1 − 5𝜖𝜖𝜖𝜖𝜖𝜖⊤

1 − 6𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝑆&
1 − 4𝜖𝜖𝜖𝜖𝜖𝑆'
1 − 4𝜖𝜖𝜖𝜖𝜖𝑆(
1 − 3𝜖𝜖𝜖𝜖𝑆)

1𝑢&
1𝑢'
1𝑢(
1𝑢)
1𝑢*
1⊥

�̅�!"

𝑣#" 𝑣!" 𝑣$"𝑣%" 𝑣&"𝑣'"

𝑣("

�̅�$"
𝛽" �̅�!" = 𝑆$

𝛽" 𝑣( = ⊤

�̅�)

𝑣$ 𝑣% 𝑣#𝑣! 𝑣&𝑣'

𝑣(

𝑏*! = 𝑢!, … , 𝑏*" = 𝑢', 𝑏*# = 𝑏*$ = ⊤

⊤

Isotype transition probability matrix 𝐏

Tree 𝑇 with observed isotypes 𝐛

Refined tree 𝑇′ with isotype labeling 𝛽′

(a) SET COVER instance (𝒰, 𝒮)
with output 𝒞

(b) MPTR instance (𝑇, 𝐛, 𝐏) with 
output (𝑇!, 𝛽!)

Empty cells correspond to 0

𝛽" �̅�$" = 𝑆%

Figure S1: Polynomial time reduction from SET COVER to MPTR. (a) shows a SET COVER instance (U ,S), with the corre-
sponding minimum set cover C. The constructed MPTR instance (T,b,P), along with the output (T ′, β′) is shown in (b). Isotypes
are indicated through colors. The mapping function R is omitted, with the isotypes directly represented by elements, subsets, ⊤, or
⊥. The empty boxes in the transition probability matrix P corresponds to 0.

(e) For each Si ∈ S , we set the transition probability from R(Si) to R(⊤) to be 0 and to R(⊥) to be 1 −
(|S| − i+ |Si|)ϵ.

pR(Si),R(⊤) = 0 1 ≤ i ≤ |S|,
pR(Si),R(⊥) = 1− (|S| − i+ |Si|)ϵ 1 ≤ i ≤ |S|.

(f) For any uq ∈ U , we set the transition probability from R(uq) to any other isotype except ⊥ to be 0. We
set pR(uq),R(⊥) for any uq ∈ U to be 1.

pR(uq),R(X) = 0 ∀1 ≤ q ≤ |U|, X ∈ S ∪ U ∪ {⊤},
pR(uq),R(⊥) = 1 ∀1 ≤ q ≤ |U|.

(g) Last, we set the transition probability pR(⊥),R(⊥) to be 1.

pR(⊥),R(⊥) = 1

Clearly, by construction matrix P obtained from a SET COVER instance (U ,S) is an isotype transition probability
matrix as P is upper triangular, each entry is non-negative and each row sums to 1. In addition, this reduction takes
polynomial time.

To prove hardness, let (T ′, β′) be an optimal solution to the MPTR instance composed of the input tree T , observed
isotypes b, and isotype transition probabilities P corresponding to SET COVER instance (U ,S).

Lemma 3. CSR(T ′, β′,P) > 0 for the refined tree T ′ and the isotype labeling β′ inferred by MPTR.

Proof. We prove this by showing that for any constructed input tree T , observed isotypes b and isotype transition
probabilities P, there exists a refined tree T ′ and isotype labeling β′ such that CSR(T ′, β′,P) > 0. We provide
a proof by constructing a refined tree T ′ with isotype labeling β′. The tree T ′ will expand the unique polytomous
node v̄0 into a chain v̄′1 → . . . → v̄′|S|. We leave the remaining nodes v0, v1, . . . , v|U|+1 of T unaltered, letting
v′0, v

′
1, . . . , v

′
|U|+1 denote their corresponding nodes in T ′. Next, for each 1 ≤ q ≤ |U|, we pick a subset Si such that

uq ∈ Si, and add edge (v̄′i, v
′
q) in T ′ and set β′(v′q) = R(uq). We add the edges (v′0, v

′
|U|+1) and (v′0, v̄

′
1). Finally,

we set β′(v′0) = β′(v′|U|+1) = R(⊤). Clearly all the edges in T ′ have nonzero isotype transition probabilities, so
CSR(T ′, β′,P) > 0.
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Corollary 2. The root v′0 of T ′ is labeled by isotype ⊤.

Proof. Due to the presence of leaf v|U|+1 with isotype b|U|+1 = R(⊤), the root v′0 of T ′ must be labeled by isotype
β′(v′0) = R(⊤), otherwise there would be a zero-probability edge.

Corollary 3. No node v′ of T ′ is labeled by isotype ⊥.

Corollary 4. Each edge (v′, v′′) of T ′ has an isotype transition probability of pβ′(v′),β′(v′′) = ϵ.

Observe that v̄0 is the only polytomous node in T . We will now prove that v̄0 is the only node of T that is expanded
in the refined tree T ′.

Lemma 4. Node v̄0 is the only node of T that is expanded in T ′.

Proof. By Lemma 2, we may assume that β′ is transitory. Let v′0 be the root of T ′. We prove this lemma by contra-
diction. Let v ̸= v̄0 be a distinct node of T that is expanded in T ′. We distinguish the following three cases.

• v = v|U|+1: In this case, v equals the leaf node v|U|+1 whose parent is the root v0. Consider the corresponding
node v′|U|+1 of T ′ such that σ(v′|U|+1) = v|U|+1 and v′|U|+1 is a leaf of T ′. Since β′ is transitory, we have that
β′(v′0) = β′(v′|U|+1) = R(⊤). Since node v|U|+1 was expanded, node v′|U|+1 has a unique parent v′′|U|+1 ̸= v′0.
As β′ is transitory and β′(v′|U|+1) = R(⊤) and R(⊤) ≤ s for all s ∈ [r], we must have that β′(v′′|U|+1) =

R(⊤). This, however, implies that β′ is not transitory as σ(v′′|U|+1) = σ(v′|U|+1) = v|U|+1 and β′(v′′|U|+1) =

β′(v′|U|+1) = R(⊤), which yields a contradiction.

• v ∈ {v1, . . . , v|U|}: Note that v is a leaf of T . Consider the corresponding node v′ of T ′ such that σ(v′) = v
and v′ is a leaf of T ′. The parent of v in T is node v̄0. Since node v was expanded, node v′ has a unique parent
v′′ such that σ(v′′) = v. Let v′′′ be the unique parent of v′′. By Corollary 4, we have that the two edges (v′′, v′)
and (v′′′, v′′) both have probabilities ϵ, contributing a factor of 2ϵ to the overall probability CSR(T ′, β′,P).
However, by contracting the edge (v′′, v′) and removing the node v′′, we obtain another solution with higher
probability, leading to a contradiction.

• v = v0: Consider the corresponding node v′0 such that σ(v′0) = v0 and v′0 is the root of T ′. There are two cases
two consider. Let v′′0 be a child of v′0 such that σ(v′′0 ) = v0. We distinguish two cases.

– First, β′(v′0) = β′(v′′0 ). By Corollary 2, we have that β′(v′0) = β′(v′′0 ) = R(⊤). By Corollary 4, we
have that the edge (v′0, v

′′
0 ) contributes a factor of ϵ to the overall probability CSR(T ′, β′,P). We can

remove this factor by simply contracting the edge (v′0, v
′′
0 ), resulting in a more optimal solution, which is

a contradiction.

– Second, β′(v′0) ̸= β′(v′′0 ). By Corollary 2, we have that β′(v′0) = R(⊤). By Lemma 3, we have β′(v′′0 ) ∈
{R(S1), . . . , R(S|S|)}. Again, by the same lemma, all children of v′′0 will be labeled by isotypes different
than v′′0 . In particular, each child of v′′0 will either correspond to node v0 or v̄0 of T , labeled from the
set {R(S1), . . . , R(S|S|)} \ {β′(v′′0 )}. Thus, we may contract the edge (v′0, v

′′
0 ), with probability ϵ, and

remove the node v′′0 , reassigning all children of v′′0 to v′0. The resulting tree and isotype labeling will have
a larger probability, a contradiction.

Assume that a series of EXPAND operations on v̄0 in T has generated k nodes in T ′, where k ranges from 1 (no
EXPAND operation) to |U|. We denote v̄′1, . . . , v̄

′
k to be the new nodes in T ′ originating from v̄0 in T , i.e., σ(v̄′1) =

. . . = σ(v̄′k) = v̄0. Let T̄ ′ be the subtree of T ′ induced by nodes v̄′1, . . . , v̄
′
k.

Lemma 5. The refined tree T ′ has |U|+ k + 2 nodes, |U|+ k + 1 edges, and CSR(T ′, β′,P) = ϵ|U|+k+1.

Proof. Since T has |U| + 3 nodes, and, by Lemma 4, the only node v̄0 of T that is expanded, expands to k nodes
v̄′1, . . . , v̄

′
k ∈ V (T ′), the total number of nodes in T ′ is |U|+2− 1+ k = |U|+ k+2. Similarly, the number of edges

in T is |U| + 2, and since T̄ ′ is a tree containing k nodes, it has k − 1 edges. So the total number of edges in T ′ is
|U|+ 2 + k − 1 = |U|+ k + 1. It follows from Corollary 4 that CSR(T ′, β′,P) = ϵ|U|+k+1.

Lemma 6. Nodes v̄′1, . . . , v̄
′
k of T ′ are labeled by k distinct isotypes from the set {R(S1), . . . , R(S|S|)}.
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Proof. By construction of P, R(uq) can only be transitioned into from R(Si) with nonzero probability where uq ∈ Si.
So if there is an edge (v̄′j , v

′
q) in T ′ connecting expanded node v̄′j with leaf v′q labeled with R(u′

q) then β′(v̄′j) = Si

for some Si ∈ S. Using the observation, we begin by showing that each expanded node v̄′i has at least one child
v′q ∈ L(T ′). We do so by contradiction. Suppose the refined tree T ′ has an expanded node v̄′i that does not have any
leaf v′q ∈ L(T ′) as a child. Without loss of generality, assume that v̄′i has a child v̄′′i , which, in turn, is the parent of
a leaf v′q ∈ L(T ′). This means that v̄′′i is labeled with β′(v̄′′i ) = R(Si) for some Si ∈ S . Since R(Si) can only be
transitioned into from R(Sj), where j < i, or R(⊤) with nonzero probability, it holds that β(v̄′i) is either R(Sj) where
j < i or R(⊤). Similarly, the parent of v̄′i should also be labeled either with R(Sj′) where j′ < j or R(⊤). Now
we create a new tree T ′′ by (i) adding the children of v̄′i as the children of the parent of v̄′i, and (ii) deleting the edge
between v̄′i and its parent. Clearly T ′′ has nonzero transition probabilities on all the edges, but has one fewer edge than
T ′. So CSR(T ′′, β′,P) < CSR(T ′, β′,P), which contradicts with the premise that T ′ minimizes CSR(T ′, β′,P).
So each expanded node v̄′j is labeled with R(Si) for some Si ∈ S.

It remains to show that the k nodes v̄′1, . . . , v̄
′
k are labeled by k distinct isotypes from the set {R(S1), . . . , R(S|S|)}.

To see why, observe that, by construction of P, the incident nodes of each edge among nodes v̄′1, . . . , v̄
′
k must be

labeled by distinct isotypes from the set {R(S1), . . . , R(S|S|)}, as pR(Si),R(Si) = 0 for all Si ∈ S.

Lemma 7. There exists an minimum set cover of size k if and only if there is an optimal solution (T ′, β′) such that
CSR(T ′, β′,P) = ϵ|U|+k+1.

Proof. (⇒) Let C = {S∗
1 , . . . , S

∗
k} be a set cover of minimum size k. Without loss of generality, we further assume

that R(S∗
i ) < R(S∗

i+1) for any 1 ≤ i ≤ k − 1. Next, we build a refined tree T ′ with isotype labeling β′ by expanding
the node v̄0 ∈ V (T ) to k nodes v̄′1, . . . , v̄

′
k ∈ V (T ′). More specifically, we replace v̄0 with v̄′1, . . . , v̄

′
k ∈ V (T ′) such

that (i) v0 is connected to v̄′1 by an edge, (ii) there is an edge (v̄′i, v̄
′
i+1) in T ′ for each 1 ≤ i ≤ k − 1, (iii) v̄′i is

labeled with R(S∗
i ), i.e. β′(v̄′i) = R(S∗

i ), and (iv) for each child vq of v̄0 in T , there exists exactly one edge (v̄′i, vq)
in T ′ where uq ∈ S∗

i . Clearly T ′ is a refinement of tree T , and all the newly added edges have nonzero transition
probabilities ϵ. Hence, CSR(T ′, β′,P) = ϵ|U|+k+1.

All that remains to show is that (T ′, β′) is optimal. We show this by contradiction. Let (T ′′, β′′) be an optimal
solution such that CSR(T ′′, β′′,P) < CSR(T ′, β′,P) = ϵ|U|+k+1. By Lemma 4, we have that only the node v̄0 of
T is expanded in T ′′ corresponding v̄′′1 , . . . , v̄

′′
k′ nodes in T ′′. Since CSR(T ′′, β′′,P) < CSR(T ′, β′,P), it must hold

that k′′ < k. By Lemma 6 we have that the k′ labels of nodes v̄′′1 , . . . , v̄
′′
k′ correspond to k′ distinct subsets of S.

By Lemma 3, we have that these k′ subsets of S form a cover of the universe U , leading to a contradiction. Hence,
(T ′, β′) is optimal.

(⇐) Now assume that there exists an optimal solution (T ′, β′) such that CSR(T ′, β′,P) = ϵ|U|+k+1. Note that
the restriction that CSR(T ′, β′,P) = ϵ|U|+k+1 is without loss of generality due to Lemma 5. Now according to
Lemma 6, there are k expanded nodes in T ′ labeled with R(S∗

1 ), . . . , R(S∗
k). We define C = {S∗

1 , . . . , S
∗
k}. Now

each leaf v′q ∈ L(T ′) labeled with R(uq) is the child of an expanded node v̄′i ∈ V (T ′) labeled with R(S∗
i ). Since

CSR(T ′, β′,P) > 0 by Lemma 3, the transition probability from R(S∗
i ) to R(uq) is strictly greater than 0, which

means uq ∈ S∗
i . So every element in U is covered by one of the subsets from C. So C is a set cover of size k.

It remains to show that C is a minimum-size set cover. Assume for a contradiction that there exists a cover C′ =⊆ S
such that |C′| = k′ < k = |C|. Let C′ = {C ′

1, . . . , C
′
k′} where the subsets follow the same order as in the original

reduction to MPTR. We construct a refined tree T ′′ with isotype labeling β′′ corresponding to C′ by expanding the
unique polytomous node v̄0 of T into a chain v̄′′1 → . . . → v̄′′k′ , with one node v̄′′i for each subset Ci ∈ C′ labeled
by β′′(v̄′′i ) = R(Ci), and connecting each leaf vq ∈ {v1, . . . , v|U|} to a single expanded node v̄′′i such that uq ∈ C ′

i.
Since C′ is a cover of U , each leaf vq ∈ {v1, . . . , v|U|} will be connected. Moreover, tree T ′′ with isotype labeling β′′

form a solution to MPTR. Clearly, T ′′ has |U|+ k′ + 2 nodes and |U|+ k′ + 1 edges. Moreover, each edge of T ′′ has
a nonzero isotype transition probability equal to ϵ, so CSR(T ′′, β′′,P) = ϵ|U|+k′+1 < ϵ|U|+k+1 = CSR(T ′, β′,P), a
contradiction.

C Supplementary Methods

C.1 Tree refinement
We solve an instance (T,b,P) of the MPTR problem (Fig. S2a) by reducing it to a graph problem. Given an instance
(T,b,P) of the MPTR, we construct a directed graph GT,b, called the expansion graph, with nodes V (GT,b) ⊆
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Figure S2: Algorithm for solving the MPTR problem (a) An instance (T,b,P) of the MPTR problem. (b) To construct the
expansion graph GT,b for tree T whose leaves have isotypes b, each original node u in V (T ) corresponds to a set X(u) of nodes
in GT,b. Edges are added to capture all transitory refinements of tree T . (c) We use the expansion graph GT,b with weighted edges
to find a valid, maximum weight subtree in GT,b, depicted in green. (d) This selected subtree is an optimal solution (T ′, β′) to the
MPTR problem instance (T,b,P).

V (T )× [r] and edges E(GT,b). At a high level, nodes of V (GT,b) are of the form (u, s) where u ∈ V (T ) is a node
of the input tree T and s ∈ [r] is an isotype state. Formally, we have the following definition.

Definition 4. A directed graph GT,b is an expansion graph of a rooted tree T whose leaves are labeled by isotypes b
provided V (GT,b) =

⋃
u∈V (T ) X(u) where

X(u) =

{
{(u, bu)}, if u ∈ L(T ),
{(u, s) | s ∈ {1, . . . ,max{bv | v ∈ L(Tu)}}}, if u ∈ V (T ) \ L(T ),

(8)

and E(GT,b) = {((u, s), (v, t)) | (u, v) ∈ E(T ), s ≤ t} ∪ {((u, s), (u, t)) | u ∈ V (T ), s < t}.

In the above definition X(u) is the set of nodes of GT,b corresponding to node u of T , accounting for the fact
that leaves u of T retain their isotype state in any refinement T ′ of T . On the other hand, internal nodes u of T may
be subject to EXPAND operations such that the corresponding nodes of T ′ are assigned isotypes s ranging from state
1 to the maximum isotype state among all descendant leaves of u in T . The edges of GT,b respect the irreversibility
property of isotypes as well as the parental relationships of nodes of T . See Fig. S2c for an example expansion graph
GT,b.

We now define constrained subtrees, termed valid, of the expansion graph GT,b.

Definition 5. A subtree T ′ of GT,b is valid provided (i) T ′ is rooted at (v0, 1) where v0 is the root of T and (ii) there
is a unique edge ((u, s), (v, t)) in E(T ′) for each edge (u, v) of T .

We now show that the set of valid subtrees of GT,b corresponding to trees T ′ with isotype labelings β′ is equivalent
to the set composed of pairs (T ′, β′) where T ′ is a refinement of T and β′ is a transitory isotype labeling of T ′.

Lemma 8. Let T ′ be a refinement of T whose leaves are labeled by isotypes b and let β′ be an isotype labeling of T ′.
Then, β′ is transitory if and only if (T ′, β′) induces a valid subtree of GT,b.

Proof. (⇒) Let β′ be a transitory isotype labeling of T ′. We start by showing that (T ′, β′) induce a connected subtree
of GT,b. First, let u′ be a node of T ′ labeled by isotype β(u′). We claim that (u′, β(u′)) ∈ X(u). We distinguish
the two cases. First, u′ ∈ L(T ′). Let u = σ(u′) be the original leaf node u of T . Since β′ is transitory, we have
β(u′) = bσ(u′) = bu. Hence, (u′, β(u′)) ∈ X(u) for each leaf node u′ ∈ L(T ′). Second, u′ ∈ V (T ′) \ L(T ′). Let
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u = σ(u′) be the original internal node u of T . Suppose for a contradiction (u′, β′(u′)) ̸∈ X(u)). This means that
β′(u′) > max{bv ∈ L(Tu)}. As such, there would be an edge (u′′, v′′) such that β′(u′′) > β′(v′′) where u′′ is a node
in the subtree T ′

u′ rooted at node u′. However, this would mean that β′ would violate condition (iii) of Definition 3, a
contradiction. Thus, (u′, β(u′)) ∈ X(u) for each internal node u′ ∈ V (T ′ \ L(T ′). Hence, (u′, β(u′)) ∈ V (GT,b).

We now prove that each edge (u′, v′) of T ′ whose incident nodes are labeled by (β′(u′), β′(v′)) corresponds to
an edge ((u′, β′(u′)), (v′, β′(v′))) of GT,b. This follows directly from conditions (iii) and (iv) of Definition 3 and the
definition of E(GT,b) in Definition 4. This implies that the subgraph of GT,b induced by (T ′, β′) is a (connected)
subtree of GT,b.

We now must show that this induced subtree of GT,b is valid. By condition (i) of Definition 3, we have that
β′(v′0) = 1 for the root v′0 of T ′. As such, the induced subtree of GT,b is rooted at (v′0, 1). Finally, we must show
there is a unique edge ((u, s), (v, t)) in the induced subtree of GT,b for each original edge (u, v) of T . This follows
from the fact that T ′ is a refinement of T . Thus the subgraph of GT,b induced by (T ′, β′) is a valid subtree of GT,b.

(⇐) Consider a valid subtree of GT,b, resulting in a tree T ′ and isotype labeling β′. To see why T ′ is a refinement
of T , observe that edges ((u, s), (u, t)) correspond to an EXPAND operation on node u of T . It remains to show that
β′ is transitory. By condition (i) of Definition 5, we have that the root of T ′ is labeled by state 1, satisfying condition
(i) of Definition 3. Conditions (ii) and (iii) of Definition 3 are met by construction of GT,b. Finally, condition (iv) of
Definition 3 follows from condition (ii) of Definition 5. Hence, the isotype labeling β′ of T ′ is transitory.

The following key proposition follows from the previous two lemmas.

Proposition 2. Let GT,b be an expansion graph of a rooted tree T whose leaves are labeled by isotypes b. Then,
given isotype transition probablities P, a valid subtree (T ′, β′) of GT,b maximizing

∑
(u′,v′)∈E(T ′) log pβ′(u′),β′(v′)

is an optimal solution to MPTR instance (T,b,P).

To find such a valid subtree with maximum log-likelihood, we formulate the following MILP based on a multi-
commodity flow formulation for modeling connectivity. We make use of two sets of decision variables. The first is
f t
(u,s),(v,t) ∈ R≥0, which represents the amount of flow on edge (u, v) designated for sink q ∈ L(T ). The second is
x(u,s),(v,t) ∈ {0, 1}, which indicates if edge (u, v) has non-zero flow.

min
∑

((u,s),(v,t))∈E(GT,b)

x(u,s),(v,t) log ps,t (9)

s.t. ∑
(v,t)∈η+((u,s))

fq
(u,s),(v,t) =

∑
(v,t)∈η−((u,s))

fq
(v,t),(u,s), ∀(v, s) ∈ V (GT,b) \ {(v0, 1)}, v /∈ L(T ), q ∈ L(T ),

(10)∑
(u,s)∈η−((q,bq))

fq
(u,s),(q,bq)

= 1, ∀q ∈ L(T ), (11)

∑
(v,t)∈η+((v0,1))

fq
(v0,1),(v,t)

= 1, ∀q ∈ L(T ), (12)

fq
(u,s),(v,t) ≤ x(u,s),(v,t), ∀q ∈ L(T ), ((u, s), (v, t)) ∈ E(GT,b), (13)∑
(u,s)∈X(u)

∑
(v,t)∈X(v)

x(u,s),(v,t) = 1, ∀(u, v) ∈ E(T ), (14)

0 ≤ fq
(u,s),(v,t) ≤ 1, ∀q ∈ L(T ), ((u, s), (v, t)) ∈ E(GT,b), (15)

x(u,s),(v,t) ∈ {0, 1}, ∀((u, s), (v, t)) ∈ E(GT,b), (16)

where η+((u, s)) is the set of direct successors of node (u, s) in graph E(GT,b) and η−((u, s)) is the set of direct
predecessors of node (u, s).

Constraints (10), (11), (12) enforce flow conversation and ensure that each terminal receives one unit of flow.
Below is a description of each of the above constraints. Constraint (13) links the flow variables to the choice of edges
in the resulting refinement. Finally, constraint (14) ensures that refined tree T ′ can be obtained from tree T via a series
of EXPAND operations.
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C.2 Maximum likelihood estimate of isotype transition probabilities
Given a forest T1, . . . , Tk of lineage trees correspondingly labeled by isotypes β1, . . . , βk, we seek the maximum
likelihood estimate of isotype transition probabilities P∗.

P∗ = argmax
P

∏
(s,t)∈[r]×[r]

p
∑k

j=1 Nj,s,t

s,t (17)

subject to ∑
t∈[r]

ps,t = 1, ∀s ∈ [r]. (18)

We solve this constrained optimization problem using Lagrange multipliers λs for each state s. We first take the
log of likelihood

∏k
j=1 CSR(Tj , βj ,P) with respect to isotype transition probabilities P.

log
k∏

j=1

CSR(Tj , βj ,P) = log
∏

(s,t)∈[r]×[r]

p
∑k

j=1 Nj,s,t

s,t (19)

=
∑

(s,t)∈[r]×[r]

 k∑
j=1

Nj,s,t

 log ps,t.

To our log-likelihood, we add the term λs

(∑
s∈[r] ps,t − 1

)
for each isotype s, resulting in new objective

L(P, λ1, . . . , λr) =

 ∑
(s,t)∈[r]×[r]

 k∑
j=1

Nj,s,t

 log ps,t +
∑
s∈[r]

λs

∑
t∈[r]

ps,t − 1

 (20)

Then, we set the partial derivative of L(P, λ1, . . . , λr) with respect to each parameter ps,t and λs and solve the
resulting system of equations. For each λs, we obtain our constraint,

∂L
∂λs

= 0 =

∑
t∈[r]

ps,t − 1


∑
t∈[r]

ps,t = 1 (21)

For each parameter ps,t, we set the partial derivative to 0 and solve for ps,t as a function of λs.

∂L
ps,t

= 0 =

∑k
j=1 Nj,s,t

ps,t
− λs

λs =

∑k
j=1 Nj,s,t

ps,t

ps,t =

∑k
j=1 Nj,s,t

λs

Given the constraint (21), we have that

∑
t∈[r]

ps,t =

∑
t∈[r]

∑k
j=1 Nj,s,t

λs
= 1, (22)
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and

λs =
∑
t∈[r]

k∑
j=1

Nj,s,t.

This yields the following maximum likelihood estimate p∗s,t,

p∗s,t =

∑k
j=1 Nj,s,t∑

t∈[r]

∑k
j=1 Nj,s,t

Lastly, to account for unobserved isotype transitions where isotype s ≤ t, we add a pseudocount of 1, resulting in
updated isotype transition probabilities

p∗s,t =

∑k
j=1 Nj,s,t + 1∑

t∈[r]

(∑k
j=1 Nj,s,t + 1

) . (23)

In the main text, we additionally use the shorthand Ns,t =
∑k

j=1 Nj,s,t.
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D Simulation details
We designed in silico experiments to evaluate TRIBAL with known ground-truth isotype transition probabilities P
and lineage trees T labeled by sequences α and isotypes β. Specifically, we used an existing BCR phylogenetic
simulator [13] that models SHM )(Appendix D.1 but not CSR. We generated isotype transition probabilities P with
r = 7 isotypes (as in mice) under two different models of CSR (Appendix D.2). Briefly, both CSR models assume the
probability of not transitioning is higher than the probability of transitioning, but in the sequential model there is clear
preference for transitions to the next contiguous isotype, while in the direct model the probabilities of contiguous and
non-contiguous class are similar (Fig. S3) Given P, we evolved isotype characters down each ground truth lineage
tree T .

We generated 5 replications of each CSR model for k = 75 clonotypes and n ∈ {35, 65} cells per clonotype,
resulting in 20 in silico experiments, yielding a total of 1500 ground truth lineage trees. We generated our in silico
experiments to evaluate all aspects of TRIBAL while benchmarking against existing methods including dnapars [7],
dnaml [7] and IgPhyML [10].

D.1 SHM simulation and benchmarking
The Davidsen and Matsen SHM simulator models the generation of B cell lineage trees via a Poisson branching process
with selection towards BCRs with increased affinity [13]. We used the provided Docker Hub image container 1 to
generate our ground truth B cell lineage trees T and sequence labels α. In addition, we used the provided benchmarking
pipeline to run dnapars [7], dnaml [7] and IgPhyML [10]. Below is the command to generate our in silico experiments
for n ∈ {35, 65} cells and k = 75 clonotypes and run comparison methods.

simulate
--igphyml
--dnapars
--dnaml
--selection
--target_dist=5
--target_count=100
--carry_cap=1000
--T=35
--lambda=2.0
--lambda0=0.365
--n={n}
--nsim={k}
--random_naive=sequence_data/AbPair_naive_seqs.fa

D.2 CSR simulation
After generating each ground truth B cell lineage tree T as described above, we then evolved isotype characters down
each tree T using two different models for class switch recombination to obtain ground truth isotypes β. First, we
describe the two different CSR models that we used to generate ground truth isotype transition probabilities P. Then,
we describe the generation of these isotype transition probability matrices under these two models.

We grouped each isotype transition probability ps,t where s <= t into one of three categories: (i) stay, (ii) next,
and (iii) jump(Fig S3a). In stay, the B cell does not undergo any class switching and the isotype does not change. In
next, a B cell class switches to the next contiguous heavy chain locus. In jump, the B cell class switches by jumping
to an isotype heavy chain constant locus that is not contiguous.

Next, we describe how we generated ground truth isotype transition probabilities P under both direct and sequen-
tial CSR models. To simulate isotype transition probabilities with direct switching, we randomly sampled a probability
of transitioning 1− θ ∈ {0.1, 0.15, . . . , 0.35}. We then set the initial isotype transition probabilities as

1krdav/bcr-phylo-benchmark
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(a)  class switch category (b)  direct model (c) sequential model

Figure S3: Class switch recombination models for in silico experiments. a) Examples of different isotype transition probability
parameter groups. (b) Examples of simulated isotype transition probabilities P for the direct model of CSR. In the direct model,
when a B cell class switches is no systematic preference for transition to the next sequential state or jumping to a non-contiguous
isotype. (c) In the sequential model, a B cell undergoing CSR has a strong affinity for the next contiguous heavy chain locus.

p′s,t =


0, if s > t,

min(θ + ϵ, τ), if s = t,

min( 1−θ
r−s + ϵ, τ), if s < t,

where we add Gaussian noise ϵ ∼ N (µ, σ) with mean µ = 0.05 and standard deviation σ = 0.025 to each parameter.
To avoid negative transition probabilities we set τ = 0.01. Fig. S3b shows an example of a simulated isotype transition
probability matrix under the direct CSR model.

p′s,t =


0, if s > t,

min(θ + ϵ, τ), if s = t,

min(1− θ + ϵ, τ), if t = s+ 1,

τ, otherwise.

We then set parameter p′s,t := p′s,t/
∑

s∈[r] p
′
s,t to ensure each row in the isotype transition probability matrix P

sums to 1. Fig. S3b shows an example of a simulated isotype transition probability matrix under the direct model.
Fig. S3c shows an example of a simulated isotype transition probability matrix under the sequential CSR model.

D.3 Inference using TRIBAL
We ran TRIBAL in two ways, referred to as TRIBAL and TRIBAL-NO REFINEMENT, in order to assess the impor-
tance of the tree refinement stage of our algorithm. As the naming convention implies, the main difference between
TRIBAL and TRIBAL-NO REFINEMENT, is that in TRIBAL-NO REFINEMENT the input trees are not refined
and the isotypes β̂ are inferred using the Sankoff [29] algorithm with weights w

(ℓ)
s,t = − log p

(ℓ)
s,t . All other steps of

TRIBAL algorithm remain the same.
Due to large input sets Tj for some simulated clonotypes j, we sample 50 trees from Tj for consideration of

candidate lineage tree T
(ℓ)
j within each iteration ℓ. We additionally include the previous optimal lineage tree T (ℓ−1)

of iteration ℓ− 1 in the sampled trees for each clonotype j to ensure convergence.
We used a convergence threshold of 0.5 and a maximum of 10 iterations per restart. A total of 5 restarts were

performed by iterating through θ ∈ {0.55, 0.65, 0.75, 0.85, 0.95} for each restart.

D.4 Performance metrics
To evaluate performance of isotype transition probability inference, P̂, we utilized Kullback-Leibler (KL) divergence.
To assess accuracy of lineage tree inference, we used normalized Robinson-Foulds (RF) distance to assess accuracy of
the topology of the inferred tree T̂ , most recent common ancestor (MRCA) distance to assess accuracy of the inferred
sequences α̂, and Class Switch Recombination (CSR) error to assess accuracy of the inferred isotypes β̂.
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ground truth lineage tree	𝑇 inferred lineage tree	𝑇%
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MRCA(𝑇,3 𝑢, 𝑣)

𝐷 𝛼 𝑇, 𝑢, 𝑣 , 𝛼" 𝑇$, 𝑢, 𝑣 = 𝐷(𝐶𝐶𝐺𝐴, 𝐴𝐶𝐺𝑇) = 2	

(a) MRCA distance

ground truth lineage tree	𝑇 inferred lineage tree	𝑇#

𝑢

𝑢

1 2 3 4 1 4

𝑢

CSR	error(𝑢) = 3 − 1 = 2

ground truth class switches for B cell 𝑢=3 inferred class switches for B cell 𝑢=1

(b) CSR error
Figure S4: Performance metrics for B cell lineage tree inference. (a) An example calculation for MRCA distance leaves u and
v. (b) An example calculation of CSR error for lineage u.

Kullback-Leibler (KL) divergence. To evaluate accuracy of isotype transition probability inference, we used Kull-
back–Leibler (KL) divergence [27] to compare the inferred transition probability distribution p̂s of each isotype s to
the simulated ground truth distribution ps. KL divergence DKL is defined as

DKL(p̂s||ps) =
∑
q∈[r]

p̂s,t log(p̂s,t/ps,t) (24)

The lower the KL divergence, the more similar the two distributions.

Normalized Robinson-Foulds (RF) distance. To assess the accuracy of topology of the inferred B cell lineage tree
T̂ with respect to simulated ground truth tree T , we used normalized Robinson-Foulds (RF) distance. For this metric,
we treat both trees as unrooted. For an unrooted tree, if you remove an edge (but not its endpoints), it defines a
bipartition of the leaf set [43]. Doing this for every edge in tree T yields a set B(T ) of bipartitions. RF distance is
defined as the size of the symmetric difference between bipartitions B(T ) and B(T̂ ) [28]. We then normalize this by
the total number of bipartitions in each tree. Thus, normalized RF is computed as follows

normalized RF(T, T̂ ) =
|B(T )△B(T̂ )|
|B(T )|+ |B(T̂ )|

. (25)

Most Recent Common Ancestor (MRCA) distance. To assess the accuracy of the inferred ancestral sequence
reconstruction α̂ with respect to simulated ground truth α, we used a metric called Most Recent Common Ancestor
(MRCA) distance introduced by Davidsen and Matsen [13]. For any two simulated B cells (leaves), the MRCA
distance is the Hamming distance between the MRCA sequences of these two B cells in both the ground truth and
inferred lineage trees. This distance is then averaged over all pairs of simulated B cells. A graphical depiction of this
metric is show in Fig. S4a.

More formally,

MRCA distance(α, α̂) =
2

n(n− 1)m

∑
u,v∈L(T )

D(α̂(T̂ , u, v), α(T, u, v)), (26)

where in a slight abuse of notation α(T, u, v) is the sequence of the most recent common ancestor (MRCA) of nodes
u and v in lineage tree T and m is the length of MSA.

Class switch recombination (CSR) error. We assessed the accuracy of isotype inference by a new metric called
CSR error, which is computed for each B cell i and clonotype j and is the absolute difference between the number of
ground-truth class switches and inferred number of class switches that occurred along its evolutionary path from the
root (Fig. S4b). Since dnaml, dnapars and IgPhyML do not infer isotypes for internal nodes, we pair these methods
with the Sankoff algorithm [29] using ws,t equals 1 if s = t, 0 if s < t and ∞ otherwise.
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Figure S5: Simulations results for k = 75 clonotypes and n = 65 cells per clonotype.
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Figure S6: KL divergence from ground truth isotype transition probabilities aggregated over all isotype starting states,
except IgA, by isotype starting state with varying the number k clonotypes, the number n of cells and CSR model.
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Figure S7: KL divergence from ground truth isotype transition probabilities by isotype starting state for k ∈ {25, 50}
clonotypes
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dataset clonotypes k total median cells max cells median distinct
cells n per clonotype per clonotype isotypes per clonotype

NP-KLH-1 167 1776 7 89 3
NP-KLH-2a 70 537 6 32 2
NP-KLH-2b 58 357 5 21 2

Table S1: Summary of NP-KLH mouse scRNA-seq datasets

E.1 Average clade entropy for a leaf labeling
We describe a metric used to assess the average entropy contained within a leaf-labeling of the clades of a tree. First,
we introduce some notation. Let Σ be an alphabet. Let clade u of tree T be the subtree Tu rooted at node u. Let
δ(u) ⊆ L(T ) be the subset of leaves that are descendants of node u. Let ℓ : L(T ) → Σ be a leaf labeling. Given a
clade u and leaf-labeling ℓ, the entropy of a clade with respect to its leaf labels is defined as

H(u, ℓ) = −
∑
s∈[r]

p(s) log p(s), (27)

where p(s) =
∑

v∈δ(u) 1(ℓ(v) = s)/|δ(u)|. The average clade entropy H̄ is computed over all clades except the
leaves L(T ) and the root r as follows

H̄(T, ℓ) =

∑
u∈V̄ H(u, ℓ)

|V̄ |
, (28)

where V̄ = V (T ) \ ({r} ∪ L(T )) is the set of non-trivial clades.
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Figure S9: Earliest observed level of mutation in a B cell lineage tree. Level 0 represents the MRCA.
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Figure S10: TRIBAL inferred isotype transition probabilities for NP-KLH. (a) Isotype transition probabilities for NP-KLH-
1. (b) Isotype transition probabilities for NP-KLH-2a. (c) Isotype transition probabilities for NP-KLH-2b. (d) The distribution
of Jensen-Shannon divergence (JSD) for pairwise comparisons of rows of the inferred isotype transition probabilty matrices for
IgM through Ig2c. IgE was excluded from comparison due to a lack of observed B cells within each dataset to yield informative
estimates. IgA is excluded as the inference of this row is trivial.
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Figure S11: Scatterplot comparing HLP19 likelihood for IgPhyML trees to the HLP19 likelihood computed for TRIBAL
trees for ABC datasets.

dataset clonotypes k total median cells max cells median distinct
cells n per clonotype per clonotype isotypes per clonotype

mouse 1 24 224 7.5 31 2
mouse 2 15 218 7 81 3
mouse 3 15 157 7 39 3

Table S2: Summary of ABC mouse scRNA-seq datasets
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Figure S12: TRIBAL inferred isotype transition probabilities for ABC datasets. (a) Isotype transition probabilities for Mouse
1. (b) Isotype transition probabilities for Mouse 2. (c) Isotype transition probabilities for NP-Mouse 3. (d) The distribution
of Jensen-Shannon divergence (JSD) for pairwise comparisons of rows of the inferred isotype transition probability matrices for
IgM through Ig2c. IgE was excluded from comparison due to a lack of observed B cells within each dataset to yield informative
estimates. IgA is excluded as the inference of this row is trivial.
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