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Fig. S1. Morphology characterizations. High-resolution transmission electron microscopy 

(HRTEM) images of (A) TiO2 and (B) Pdn-TiO2. High-angle annular dark-field scanning 

transmission electron microscopy (HAADF-STEM) images of (C) TiO2 and (D) Pdn-TiO2. 
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Fig. S2. Nitrogen (N2) adsorption analysis. (A) N2 adsorption-desorption isotherms and (B) the 

corresponding pore size distributions for Pd1-TiO2 and Pdn-TiO2. 
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Fig. S3. Atomic structure characterizations. (A) Pd K-edge X-ray absorption near edge structure 

spectra and (B) Fourier-transformed k2-weighted extended X-ray absorption fine structure 

(EXAFS) spectra for Pd foil, PdO and Pd1-TiO2. 

fig. S3B exhibits a shoulder for PdO reference, which is closely aligned with the Pd foil. The 

EXAFS fitting in table S2 indicates that the shoulder peak can be assigned to Pd-Pd coordination. 
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Fig. S4. CO adsorption diffuse reflectance infrared Fourier transform spectroscopy 

(DRIFTS) spectra. (A) Pd1-TiO2 and (B) Pdn-TiO2. 
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Fig. S5. Pd 3d X-ray photoelectron spectroscopy (XPS) spectra. (A) Pdn-TiO2 and (B) Pd1-

TiO2. 
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Fig. S6. C2 hydrocarbon (C2Hx) production for bare TiO2 and a series of TiO2 catalysts 

modified with metal species following 3 h of photoreaction. 
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Fig. S7. Characterization of Pd1-TiO2-0.5 and Pd1-TiO2-2. (A) X-ray diffraction (XRD) 

patterns for TiO2, Pd1-TiO2-0.5 and Pd1-TiO2-2. (B) CO adsorption DRIFTS spectra of Pd1-TiO2-

0.5 and Pd1-TiO2-2. (C) HAADF-STEM image and (D) Energy dispersive spectroscopy (EDS) 

mapping of Pd1-TiO2-0.5. (E) HAADF-STEM image and (F) EDS mapping of Pd1-TiO2-2. 

The XRD patterns for Pd1-TiO2-0.5 and Pd1-TiO2-2 exhibit the diffraction peaks for anatase TiO2 

without Pd-related features (fig. S7A). For the CO adsorption, a typical band for linearly adsorbed 

CO is observed at 2050~2150 cm-1 (fig. S7B). The result indicates the atomic dispersion of Pd 

species on Pd1-TiO2-0.5 and Pd1-TiO2-2. This is also confirmed by the HAADF-STEM images 

(fig. S7, C to F), in which atomic Pd sites are dispersed on TiO2 nanosheets.  
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Fig. S8. Control experiments. (A) Summary of experimental control conditions for photocatalytic 

substrate oxidation over Pd1-TiO2. (B) Photocatalytic generation of C2 hydrocarbons on Pd1-TiO2 

by converting succinic acid in the presence of tert-butanol or by using different starting substrates 

such as propionic acid, CO2, and ethane (C2H6). C2 hydrocarbon production is expressed per mass 

of photocatalyst. 
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Fig. S9. Material characterization of the post-reaction sample. (A) XRD pattern, (B) Pd 3d 

XPS spectra, (C) HRTEM and (D) HAADF-STEM images of Pd1-TiO2. 
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Fig. S10. Pd 3d XPS spectrum of the recovered Pd1-TiO2 after illumination and vacuum 

drying. 
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Fig. S11. UV-vis absorption spectra of succinic acid substrate solution, diluted PE 

decomposition solution, and pure polyethylene (PE) decomposition solution. 
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Fig. S12. The PE-to-single product (C2H4 or propionic acid) conversion achieved via 

oxidation-photocatalysis and high-temperature thermocatalysis. Catalysts and reaction 

processes for reported data are as follows: Y zeolite pyrolysis (72), HZSM-5 pyrolysis (73), 

Al(OH)3 pyrolysis (74), HZSM-11 pyrolysis (75), blend with naphtha for pyrolysis-steam cracking 

(76), biomass co-gasification (77), HZSM-5 pyrolysis-steam cracking (78), non-catalysis pyrolysis 

(79) and microwave assisted chemical oxidation (80).

Selected reports on thermocatalytic conversion of plastic waste into C2H4/propionic acid were 

added in fig. S12 for comparison with our low-temperature oxidation-photocatalysis. Pyrolysis of 

PE waste requires high temperatures (>450 °C) and yields the major products of C5-C20+ 

hydrocarbons as well as C1-C4 hydrocarbons. High temperatures, fluidized bed systems and 

catalysts were explored to improve C2H4 recovery. Gasification of PE is conducted at >600oC to 

convert carbon-based feedstocks into primarily gaseous products. Steam gasification of PE has 

been reported to produce C2H4 at relatively high temperature (900 oC). Two step processes, 

including gasification-FT synthesis, pyrolysis-steam cracking, can achieve a high yield of light 

olefins. Propionic acid has been rarely reported to be generated from PE waste. Microwave-

assisted chemical oxidation of PE yields a series of carboxylic acids including a portion of 

propionic acid. 
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Fig. S13. Energy band structure characterizations. (A) Mott-Schottky (MS) plot, (B) XPS 

valence band (VB) spectrum and (C) schematic for energy band structure for TiO2. (D) MS plot, 

(E) XPS VB spectrum and (F) schematic for energy band structure for Pd1-TiO2.
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Fig. S14. Transient surface photovoltage spectrum for Pdn-TiO2. 
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Fig. S15. XPS spectra. (A) An enlarged view of Pd 3d XPS spectrum and (B) O 1s XPS spectrum 

for Pd1-TiO2 in dark and under illumination. 
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Fig. S16. DRIFTS characterizations. DRIFTS spectra for different concentrations of (A) 

succinic acid and (B) propionic acid on Pd1-TiO2 in the dark. (C) In situ DRIFTS spectra for the 

substrate conversion on Pdn-TiO2. 
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Fig. S17. Electron paramagnetic resonance (EPR) charcaterizations. (A) In situ EPR spectra 

for TiO2 with and without reaction substrates under light irradiation. (B) In situ EPR spectra for 

hydroxyl radical (·OH) detection over TiO2, Pd1-TiO2 and Pdn-TiO2 without reaction substrates 

under light irradiation. 
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Fig. S18. XPS spectra. (A) C 1s XPS spectra for Pd1-TiO2 before and after photoreaction. (B) In 

situ high-resolution Pd 3d XPS spectra for Pd1-TiO2 with the substrate and illumination. 



Table S1. Physicochemical properties of Pd1-TiO2 and Pdn-TiO2. 

Sample 
Pd 

(wt.%) 

Surface area 

(m2 g−1) 

Average pore size 

(nm) 

Pd1-TiO2 0.64 176 9.9 

Pdn-TiO2 0.70 199 10.7 

Table S2. EXAFS fitting results for Pd1-TiO2 and PdO. CN is the coordination number, R 

distance between absorber and backscatter atoms and σ2 Debye-Waller factor. 

Sample Shell CN R (Å) σ2(Å2) 

Pd1-TiO2 

Pd-O 2.9 2.05 0.006 

Pd-Pd 3.0 2.75 0.011 

Pd-Ti 2.1 2.94 0.012 

PdO 

Pd-O 1.8 2.02 0.003 

Pd-Pd (shoulder) 1.1 2.92 0.004 

Pd-Pd 0.8 2.96 0.002 

Table S3. Photocatalytic generation of C2 hydrocarbons from succinic acid substrate at 

different pH values over Pd1-TiO2. 

pH value 
C2H4 production 

(µmol gcat
−1 h−1) 

C2H6 production 

(µmol gcat
−1 h−1) 

1 192.51 124.04 

4 531.16 501.84 

7 4.59 6.85 

10 N/A N/A 



Table S4. Photocatalytic generation of C2 hydrocarbons from succinic acid substrate over 

Pd1-TiO2 at 30oC, 50oC and 70oC. 

Temperature (oC) 
C2H4 production 

(µmol gcat
−1 h−1) 

C2H6 production 

(µmol gcat
−1 h−1) 

30 531.16 501.84 

50 498.41 440.06 

70 444.88 417.24 

Table S5. Inductively coupled plasma optical emission spectrometry. The Pd loading in Pd1-

TiO2 before and after photoreactions. 

Conditions Pd (wt.%) 

Before reaction 0.64 

Post reaction 0.63 

Table S6. The amounts of H2 and CO2 evolved. Photocatalytic substrate conversion over TiO2, 

Pd1-TiO2 and Pdn-TiO2 following 3 h light irradiation. 

Sample Reaction time (h) 
H2 yield 

(mmol) 

CO2 yield 

(mmol) 

TiO2 3 N/A 0.11 

Pd1-TiO2 3 0.04 0.49 

Pdn-TiO2 3 0.03 0.38 



Table S7. Solar-driven upcycling of plastic waste for selected state-of-the-art catalysts. 

Catalyst Substrate(s) 
Light 

source(s) 

Catalyst 

mass 

(mg or 

cm-2) 

Time 

(h) 

Gaseous product 

production 

(µmol gcat
−1 h−1 or 

µmol cm-2 h-1) 

Liquid phase 

product yield 

(µmol or %) 

Reference 

Pd1-TiO2 
10 mg mL−1 succinic 

acid in 0.1 M HNO3 
365 nm LED 10 3 

C2H4: 531.16, C2H6: 501.84 

H2, CO2 
Propionic acid: 493.3 This work 

Pd1-TiO2 
2 mg mL-1  

PE solution 
365 nm LED 30 3 

C2H4: 23.28, C2H6: 32.73 

H2, CO2 
Propionic acid: 23.9 This work 

P25|Pt 
10 mg mL−1 succinic 
acid in 0.1 M HNO3 

AM 1.5G 4 24 C2H6: 56.3, H2, CO2 Propionic acid: 92.6 (7) 

NCNCNx|Pt 
10 mg mL−1 succinic 

acid in 0.1 M HNO3 
AM 1.5G 4 24 

C2H4: 1.3, C2H6: 7.2 

H2, CO2 
Propionic acid: 17 (7) 

P25|Pt 
2.7 mg mL-1  

PE solution 
AM 1.5G 4 96 

C2H4: 0.21, C2H6: 2.6 

H2, CO2 
N/A (7) 

MoS2/CdS 
25 mg mL-1  

PE solution 
AM 1.5G 100 5 CH4: 196.2, H2: 900 Formic acid: 9100 (45) 

d-NiPS3/CdS 

10 mg mL−1 

Polylactic acid 

(PLA) in 2 M KOH 

300 W Xe 
lamp 

1 3 H2: 39760 
Pyruvate: 39.03 (9 h), 

carbonate 
(66) 

d-NiPS3/CdS 
50 mg mL−1 

polyethylene glycol 

(PET) in 2 M KOH 

300 W Xe 

lamp 
1 3 H2: 31380 

Glycolate: 16.42 (9 h) 

carbonate 
(66) 

CNx|Ni2P 
50 mg mL−1 PLA  

in 1 M KOH 
AM 1.5G 3.2 20 H2: 47 Acetate: 0.1 (120 h) (81) 

CNx|Ni2P 
25 mg mL−1 PET  

in 1 M KOH 
AM 1.5G 3.2 20 H2: 26 Glyoxal: 9.3 (120 h) (81) 

Nb2O5 
150 mg PE 

in 50 mL water 

300 W Xe 

lamp, AM 

1.5G filter 

50 40 CO2 Acetic acid: 1.58 (46) 

Co-Ga2O3 
100 mg PE 

in 100 mL water 

300 W Xe 
lamp, AM 

1.5G filter 

50 24 
H2: 692, CO: 177.8 

CO2 
N/A (82) 

Fluorenone 
20.8 mg polystyrene 
(PS) in 2 mL ethyl 

acetate 

450 nm LED 40 µmol 48 CO, CO2 Benzoic acid: 38% (14) 

Triflic acid 

104 mg PS in 2 mL 

of benzene and 
acetonitrile 

405 nm LED 5 mol% 15 N/A Formic acid: 72% (83) 

ZnO/UiO66-
NH2 

1 g Polyvinyl 

chloride  

in 50 mL water 

300 W Xe 
lamp 

100 35 H2 Acetic acid: 9.2% (84) 

M. b-CDPCN 
50 mg mL−1 PLA 

and CO2 
395 nm LED N/A 576 CH4: 12.57 N/A (85) 

C3N4 
500 mg PS 

 in acetonitrile 

300 W Xe 

lamp, 150oC 
200 160 CO2 Benzoic acid: 2184 (86) 

Co SSCs 
500 mg PET in 

ethylene glycol 

simulated 

sunlight, 
180oC 

15 3 N/A 
bis(2-hydroxyethyl) 

terephthalate: 82.6% 
(87) 

Cu30Pd70|Pero
vskite|Pt 

50 mg mL−1 PET  
in 1 M KOH 

AM 1.5G 
Electrode
: 1.5 cm2 

10 H2: 77.6 µmol cm-2 h-1 Glycolic acid: 82 (88) 

nanoNi-P 
40 mg mL−1 PET  

in 2 M KOH 
AM 1.5G 

Electrode

: 1.0 cm2 
1 H2: 3.1 µmol cm-2 h-1 Formic acid: 244.6 (89) 

Generation of valuable major products are included. 



Selected reports on photocatalytic treatment of plastic waste are added in table S7, including (1) 

plastic photoreforming, (2) chemical oxidation-decarboxylation, (3) photocatalytic degradation-

CO2 reduction as well as (4) homogeneous catalytic C-C/C-H activation. (1) Photoreforming of 

plastic waste involves: i) decomposition of plastic waste into monomers; ii) photocatalytic 

hydrogen evolution coupled with oxidation of monomers into oxygenates. Advanced CdS-based 

photocatalysts exhibit excellent performance with a hydrogen evolution of ~40 mmol gcat
-1 h-1. 

However, the oxidation reaction still suffers from low selectivity towards a single high-value 

product and overoxidation to CO2. (2) The reported PE upcycling via chemical oxidation-

decarboxylation represents an emerging strategy to simultaneously generate valuable light olefins 

and single carboxylic acid with high selectivity. Side products generated from chemical oxidation 

may compete with the main reaction and reduce its activity. (3) One-pot photodegradation coupled 

with CO2 reduction can decompose plastic waste with a conversion of nearly 100%, while enabling 

CO2 photoreduction. The two-step process can be carried out under mild conditions, but generally 

requires tens of hours of irradiation to achieve complete decomposition of plastic waste. (4) 

Upcycling of aromatic polymers has been reported using homogeneous photocatalysts and O2. 

Photo-driven hydrogen atom transfer followed by C-C cleavage enable the direct conversion of 

plastic waste into aromatic oxygenates with high yields (> 40%). Organic solvents are employed 

to dissolve plastics but make the reaction system complex and toxic. 

Additionally, other solar-driven chemical recycling methods are also reported in table S7, 

including photo-biocatalysis, photothermal catalysis and photoelectrocatalysis. The biotic-abiotic 

hybrid methanation of microplastics exhibits excellent stability (up to 4 months) and high 

selectivity to CH4, but the CH4 yield needs to be improved. Photothermal catalysis can utilize 

sunlight to heat up the reaction system and boost plastic conversion, but it also aggravates 

overoxidation. The photothermal effect is a promising strategy that can be applied to 

thermocatalytic plastic conversions. The current studies on photoelectrocatalysis focus on the 

reforming of plastics into H2 and chemicals. Compared to photoreforming, plastic monomer 

oxidation on the photoelectrode surface can be regulated to achieve high selectivity (up to 90%) 

to a single valuable oxygenate. 



Table S8. Quantification of components of PE decomposition solution following 

pretreatment. 

Conditions 
Concentration (5-fold diluted) (mg mL-1) 

Succinic acid Acetic acid Glutaric acid Adipic acid 

160oC 8 h 1.98 0.30 0.89 0.01 

Table S9. C2 hydrocarbon evolution on Pd1-TiO2 in PE solutions with ultrapure water, 

seawater, rainwater, and simulated nitric acid wastewater as solvents. C2 hydrocarbon 

production is expressed per mass of photocatalyst. 

Sample Solvent 
C2H4 production 

(µmol gcat
−1 h−1) 

C2H6 production 

(µmol gcat
−1 h−1) 

Pd1-TiO2 

Ultrapure water 23.28 32.73 

Seawater 13.65 19.16 

Rainwater 15.42 18.80 

Simulated wastewater 17.85 20.20 

Table S10. Pd 3d5/2 XPS of Pd1-TiO2 in dark and under illumination. 

Samples Peak Positions (eV) FWHM Percentage 

In dark 
Pd0 336.20 2.00 68% 

Pd2+ 337.42 1.90 32% 

Light irradiation 
Pd0 336.18 2.00 73% 

Pd2+ 337.40 1.90 27% 
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