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Supplementary Table 1. Human neutrophil flow cytometry panel. 

List of antibodies/markers used to perform flow cytometry on human neutrophils.  

Supplementary Table 2. Mouse neutrophil flow cytometry panel. 

List of antibodies/markers used to perform flow cytometry on mouse neutrophils. 

Marker Channel Clone Vendor Catalog # Dilution Panel 1 Panel 2

LIVE/DEAD Pacific Orange N/A BioLegend 423103 1:300 +

LIVE/DEAD BUV496 N/A BioLegend 423107 1:300 +

DAPI BUV496 N/A Sigma-Aldrich D9542 1:1000 +

CD15 APC-Cy7 W6D3 BioLegend 323047 1:100 + +

CD69 BV421 FN50 BioLegend 310929 1:50 +

CD40 Alexa Fluor 700 5C3 BioLegend 334327 1:50 + +

CD14 PE-Cy7 M5E2 BD Biosciences 557742 1:100 + +

IL4R PE G077F6 BioLegend 355003 1:100 + +

PD-L1 APC 29E2A3 BioLegend 329708 1:20 +

CD101 APC BB27 BioLegend 331007 1:100 +

CXCR4 BV421 12G5 BioLegend 306517 1:100 +

CD62L BV605 DREG-56 BioLegend 304833 1:100 +

Marker Channel Clone Vendor Catalog # Dilution Panel 1 Panel 2

LIVE/DEAD Pacific Orange N/A BioLegend 423103 1:300 +

LIVE/DEAD BUV496 N/A BioLegend 423107 1:300 +

DAPI BUV496 N/A Sigma-Aldrich D9542 1:1000 +

Ly6G APC-Cy7 1A8 BioLegend 127623 1:100 + +

CD69 BV421 H1.2F3 BioLegend 104527 1:100 +

CD40 PE-Cy5 3/23 BioLegend 124617 1:100 + +

CD14 PE-Cy7 Sa14-2 BioLegend 123315 1:100 + +

IL4R PE I015F8 BioLegend 144803 1:100 + +

PD-L1 APC 10F.9G2 BioLegend 124311 1:100 +

CD101 APC Moushi101 ThermoFisher 
Scientific 17-1011-82 1:100 +

CXCR4 BV421 L276F12 BioLegend 146511 1:100 +

CD62L BV605 MEL-14 BioLegend 104437 1:100 +
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Supplementary Figure 1. Overview of the study. 
Depiction of the search criteria for sample selection, processing steps, and analysis approach used in the study
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Supplementary Figure 2. Sequencing depths of individual libraries 
Library size was defined as the number of mapped reads per sample and plotted. The dotted line represents 1 million 
mapped reads. a Library sizes of datasets from the Haemopedia atlas (human). b Library sizes of datasets from the 
Haemopedia atlas (mouse). c Library sizes of datasets used for differential expression testing (human). d Library sizes 
of datasets used for differential expression testing (mouse). Source data are provided as a Source Data file
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Supplementary Figure 3. Enrichment analysis for gene clusters in homeostasis. 
Gene Ontology enrichment analysis results for five clusters showing different expression profiles between human and 
mouse neutrophils. Analysis was restricted to the “Biological Process” domain as defined by the Gene Ontology 
Consortium1, 2.Only significant enrichments are plotted as dots. Dot size corresponds to overlapping gene set size, color 
to the negative logarithm of adjusted P-values. GO terms are ranked according to their mean overlap across all 
significant hits from top to bottom. Source data are provided as a Source Data file.
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Supplementary Figure 4. Transcriptional diversity in inflamed neutrophils. 
a Bar chart indicating the number of genes differentially expressed in each comparison (DE, not conserved), and the 
subset of genes that are differentially expressed and part of the core inflammation program (DE + conserved). Top right, 
median number of genes differentially expressed, and the subset of upregulated and downregulated genes. b Scatter 
plot of mean log2 fold changes in human versus in mouse from n=13 comparisons listed in a. Red, core inflammation 
program genes. We labeled the genes with the 20 highest and 20 lowest mean expression values as well as genes that 
were selected for validation (Fig. 6 and 7). c Individual log2 fold changes for CD101 and CXCR4 from n=13 
comparisons listed in a. P-values have been retrieved from a Wilcoxon signed-rank test and adjusted using the Holm-
Bonferroni method. Here, in vitro and in vivo models of inflammation were separated. Source data are provided as a 
Source Data file.



Supplementary Figure 5. High concordance of complementary linear mixed modeling approach with individual 
differential expression tests and fisher P-values. 
a Volcano plot showing the differentially expressed genes according to a linear mixed model testing between healthy 
control and non-healthy samples. N = 141 upregulated, N = 42 downregulated genes in inflamed neutrophils. Core 
inflammation genes identified by Fisher’s combined approach are highlighted in orange. N = 59 genes identified core 
inflammation genes pass the threshold in our linear mixed model and are shared. b Boxplot showing the π 1-statistic of 
top differentially expressed genes as identified according to the linear mixed model for each individual differential 
expression test. c Histogram showing an enrichment of low fisher P-values π1  ≈  0.71) for genes that are up- and 
downregulated according to the linear mixed model. Source data are provided as a Source Data file.
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Supplementary Figure 6. Comparison of differential expression testing between individual studies. 
a Boxplots depicting the π 1-statistic of all differentially expressed gene sets (Y-axis) in all other comparisons, 
respectively. Points are colored by species of the respective studies. b Enrichment scores of differentially expressed 
gene sets in each comparison (Y-axis) in the ranked differential expression lists of all other comparisons, respectively. 
Points are colored by species of the respective comparison. The entry “fisher” refers to the gene set derived from the 
Fisher’s combined test as described in Fig. 3b and Methods. c Pearson’s r of log2 fold changes of differentially 
expressed genes in each comparison that are also differentially expressed in other comparisons. Point size 
corresponds to overlap of differentially expressed genes, color to the negative logarithm of the P-value obtained from a 
Pearson product-moment correlation test. 6 correlations could not be determined due to a low overlap in differentially 
expressed genes. Source data are provided as a Source Data file.
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Supplementary Figure 7. WGCNA analysis across all studies used for differential expression analysis. 
a Association of gene modules with each experimental condition and species. Eigengenes, a proxy of module 
expression, were modeled as a combination of condition and species for each module, using a linear model. The 
heatmap shows effect size estimates resulting from this modeling procedure. Effect size estimates resulting from non-
significant associations were set to 0 to allow hierarchical clustering. For each module, a Fisher’s exact test was 
performed to test for association with the core inflammatory response signature. Adjusted P-values are annotated on 
the right, gray indicates non-significance. Additionally, module size, defined as the number of genes assigned to that 
module, is annotated. b Relative expression profiles (z-score) of genes in modules that are significantly associated with 
the fisher core inflammatory response signature. Rows correspond to genes, columns to samples. Relative expression 
was calculated after batch correction for each study (ComBat). Black bars on the right of the expression profiles indicate 
gene membership in the fisher core signature. Source data are provided as a Source Data file.
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Supplementary Figure 8. Species-specific Transcription Factor Enrichment Analysis. 
a Enrichment of transcription factors in genes associated with resting neutrophils is highly concordant between species. 
N = 250 genes with a negative log2(FC) in inflammation were sorted in ascending order of adjusted P-values for each 
comparison, and regulatory activity was derived as outlined in Methods. For each transcription factor, mean ChEA3-
derived activity across human (x) and mouse (y) comparisons is shown; high values indicate high predicted activity. Top 
10 transcription factors with the highest predicted activity as well as FOXO3, FOXO1, TFEB, RARA, STAT5B, and ATF7 
are highlighted. b Enrichment of transcription factors in genes associated with inflamed neutrophils is highly concordant 
between species.   
For each transcription factor, mean ChEA3-derived activity across human (x) and mouse (y) comparisons is shown; 
high values indicate high predicted activity. Top 10 transcription factors with the highest predicted activity as well as 
NFIL3, FOSB, FOS, CEBPB, and JUNB are highlighted. c Transcription factor enrichment in down- and upregulated 
genes in inflammation is shared across studies. Enrichment of transcription factors was calculated based on the top 250 
down- (left) or upregulated (right) genes in each independent comparison in our differential expression analysis. The 
inferred activity of transcription factors (rows) is shown scaled across gene sets. Adjusted P-values from a t-test 
between inferred activity in down- vs. upregulated gene sets for each transcription factor are shown in the “Sig.” column. 
Transcription factors with the 10 lowest P-values per direction as well as those labeled in a,b were labeled. d Scatter 
plot of mean log2 fold changes per species for TF encoding genes. The collection of TF-encoding genes was retrieved 
from DoRothEA3 (v1.8.0). Genes with the 10 highest and 10 lowest sums of expression were labeled. e Scatter plot of 
transcription factor enrichment scores calculated per species using decoupleR4 (v2.2.2). The transcription factors with 
the 10 highest scores were labeled. Source data are provided as a Source Data file.
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Supplementary Figure 9. Core inflammation genes show preferential downregulation after Cebpb knockout in 
mouse zymosan-stimulated HoxB8 cells.  
Volcano plots (middle) depict the expression change between the labeled comparisons (left). Members of the core 
inflammation program are colored in red, while the genes with the highest combined significance and effect sizes are 
labeled. Histograms (right) show the percentage of expression-matched background genes (as described in Fig. 5e and 
Methods). The red arrows indicate the observed percentage for core inflammation program members and is annotated 
with the respective overrepresentation P-value (one-sided, Wallenius method). 
a Comparison of wildtype HoxB8 and HoxB8 carrying a Cebpb knockout in resting state. b Comparison of wildtype 
HoxB8 and Cebpb-/- HoxB8 after zymosan challenge. Source data are provided as a Source Data file.
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Supplementary Figure 10. Flow cytometry analysis of neutrophil aging in vitro. 
MFI values of surface proteins depicted in Fig. 6c, with and without 2 days of cell culture. In addition, MFI values of 
CXCR4, CD62L, and CD101 derived from a different experimental series are shown. Source data are provided as a 
Source Data file.

Supplementary Figure 11. Flow cytometry analysis of mouse and human neutrophils. 
Gating strategy for human (top) and mouse (bottom) neutrophils.
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