1	Supplementary Materials
2	
3	A Broadly Neutralizing Antibody Inhibits SARS-CoV-2 Variants
4	Through a Novel Mechanism of Disrupting Spike Trimer Integrity
5	
6	Yunping Ma ^{1,2#} , Qiyu Mao ^{1#} , Yingdan Wang ^{1#} , Zhaoyong Zhang ^{3#} , Jiali Chen ¹ ,
7	Aihua Hao ¹ , Palizhati Rehati ¹ , Yanqun Wang ³ , Yumei Wen ¹ , Lu Lu ¹ , Zhenguo
8	Chen ¹ , Jincun Zhao ^{3,4*} , Fan Wu ^{2*} , Lei Sun ^{1*} , Jinghe Huang ^{1*}
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	 ¹Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Shanghai Fifth People's Hospital, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China. ²Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China. ³State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; ⁴Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
24 25	[#] These authors contributed equally: Yunping Ma, Qiyu Mao, Yingdan Wang, Zhaoyong Zhang
26 27 28	*Correspondence: Jincun Zhao (zhaojincun@gird.cn), Fan Wu (wufan@fudan.edu.cn), Lei Sun (Ilsun@fudan.edu.cn), Jinghe Huang (Jinghehuang@fudan.edu.cn)
29 30 31	Keywords: COVID-19; SARS-CoV-2; Neutralizing Ab; Omicron BQ.1.1 and XBB.1.16

32 Materials and Methods

33 Cell lines, participants

34 Huh-7 cells and 293T cells were maintained in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 1,000 35 units/mL penicillin and 1,000 µg/mL streptomycin. All cell lines were cultured at 36 37℃ in 5% CO2. HEK293F suspension cells were maintained in serum free 37 38 SMM 293-TII Expression Medium (Sino Biological Inc.), and cultured at 37°C in 5% CO2 with shaking at 120rpm. The study protocol was approved by the 39 Ethics Committee of the Shanghai Public Health Clinical Center (YJ-2020-40 S021-01). Written informed consent approved by the Institutional Review Board 41 42 was signed by all participants.

43 **RBD Proteins Generation**

Sequence of RBD protein (residues Arg319-phe541) were synthesized (GenScript), and cloned into pSecTag expression vectors with 8×His tag at Cterminal. HEK293F suspension cells were transiently tranfected with recombinant RBD expression plasmid using Ez Trans reagent (Life-iLab, China). Five days after transfection, the media was collected by centrifugation, followed by purification using Ni Sepharose High performance (GE health) following manufacturers' protocol.

51 **Production of Pseudoviruses**

The spike genes of the wild-type SARS-CoV-2 strain and the Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), BA.1, BA.2.12.1, BA.2.75, and BA.5 variants were synthesized and cloned into the pcDNA3.1 vector. Plasmids containing the spike genes of the BA.2.75 and BA.5 subvariants were generated from the pcDNA3.1-BA.2.75-Spike and pcDNA3.1-BA.5-Spike plasmids, respectively, using site-directed mutagenesis. Oligonucleotides complementary to the template and containing the targeted substitutions were synthesized. Plasmids with specific mutations in the spike gene were produced through PCR-based cloning. The pseudovirus plasmids and the pNL4-3.Luc.R-E- backbone plasmid were transiently co-transfected into HEK293T cells using Ez Trans transfection reagent (Life-iLab, China), and the culture medium was changed to fresh growth medium (DMEM supplemented with 10% FBS). After 48 hours, the supernatants were collected, stored at -80°C, and subsequently thawed for use in pseudovirus neutralization assays.

66 Memory B cells sorting and antibody cloning, sequencing and production

B cells labeling and sorting were performed as previously described¹. In brief, 67 peripheral blood from patients was collected, and peripheral blood 68 mononuclear cells (PBMCs) were isolated by density gradient centrifugation 69 70 with Ficoll-Paque. Memory B lymphocytes (CD19+lgA-lgD-lgM-) were negatively selected, suspended in interleukin-2 (IL-2), IL-21, and irradiated 71 3T3-msCD40L cells. The cells were then sorted into 386-well plates, and 72 73 supernatants were collected after 14 days to assess neutralizing activity against SARS-CoV-2. Antibody cloning and sequencing were performed as previously 74 reported²⁻⁴. The somatic hypermutation rate (SHM) and CDRH3 sequence were 75 determined using IMGT/V-QUEST. The variable regions of the heavy chain (VH) 76 and light chain (VL) of the monoclonal antibodies (mAbs) were inserted into 77 IgG1 antibody expression vectors. The heavy chain and light chain expression 78 plasmids were transiently co-transfected into HEK293F cells, supernatants 79 were harvested after 5 days, and antibodies were purified using protein G 80 81 beads.

82 **Pseudovirus Neutralization assay**

The neutralization assay was performed as previously described^{5,6}. In brief,
Huh-7 cells were seeded in 96-well plates with growth medium (DMEM
supplemented with 10% FBS) 12 hours before pseudovirus infection.
Monoclonal antibodies (10 µL of 5-fold serial dilutions in growth medium) were

incubated with pseudovirus (40 µL) for 30 minutes at 37°C and then added to 87 the cells. Background control wells received 50 µL of growth medium, and virus 88 control wells received 10 µL of growth medium and 40 µL of pseudovirus. After 89 24 hours of infection, the cells were replenished with 150 µL of fresh growth 90 medium. Following an additional 24 hours of incubation, the supernatants were 91 aspirated, and the Huh-7 cells were lysed to assess luciferase expression 92 (PerkinElmer EnSight). The inhibition rate was calculated using the following 93 94 equation:

95 %Neut =
$$\frac{(average RLU of virus control - RLU of sample)}{(average RLU of virus control - average RLU of background)} * 100$$

Neutralization IC50 were determined by a "Sigmoidal dose-response with
 absolute IC50 IC80" regression in GraphPad Prism 9.

98 ELISA

To assess the binding of monoclonal antibodies to the receptor-binding domain 99 (RBD) of SARS-CoV-2 variants, recombinant RBD proteins were immobilized 100 on 96-well ELISA plates at 1-3 µg/mL in 100 µL at 4°C overnight. After blocking 101 with non-fat milk in PBS, serial 5-fold dilutions of the monoclonal antibodies 102 were added to the plates and incubated for 60 minutes at 37°C. The plates were 103 washed with PBST, and a secondary antibody (goat anti-human IgG-HRP) was 104 added. ABTS was added, and antibody binding was determined by measuring 105 absorbance at 405 nm using a microplate reader. 106

107 Biolayer interferometry (BLI) binding assay

Antibody binding affinities were determined using an Octet-RED96 system (FortéBio) with NTA biosensors. PBST (0.05% Tween-20 in PBS) was used as the running buffer. Antibodies and proteins were diluted in PBST beforehand. Recombinant RBDs of the variants were captured on the NTA sensor at 10 µg/mL. After a baseline measurement for 200 seconds, the sensors were immersed in 3-fold serial dilutions of the monoclonal antibodies for 300 seconds. This was followed by immersion in buffer alone for 300 seconds. After each association and dissociation cycle, the sensors were regenerated using 10 mM glycine-HCI (pH 1.5). The buffer well served as a negative control, and nonspecific binding was normalized by subtracting the signal from the dataset. The binding affinity of the monoclonal antibodies was calculated using a 1:1 binding model with the FortéBio Data Analysis 8.1 software.

120 ACE2 competition binding assay by BLI

The recombinant human angiotensin-converting enzyme 2 (hACE2) protein 121 used in this study comprised residues Met1 to Ser740 fused to the Fc portion 122 of human IgG1 at the C-terminus. For the ACE2 competition assay, hACE2-Fc 123 was loaded onto an anti-human Fc (AHC) biosensor for 300 seconds at 20 124 µg/mL. After a baseline measurement for 200 seconds, the biosensors were 125 exposed to 50 µg/mL of an IgG1 isotype control antibody to block any 126 unoccupied sites on the sensors for 600 seconds. The biosensors were then 127 128 added to wells containing a pre-mixture of 100 nM RBD protein and 600 nM monoclonal antibodies for 300 seconds. The binding response was recorded at 129 each step. An irrelevant antibody was used as a negative control, and hACE2-130 Fc alone was used as a positive control competitor. 131

132 Antibody-dependent enhancement of SARS-CoV-2 variants infection

133 To assess antibody-dependent enhancement (ADE) of SARS-CoV-2 variant infection, we utilized a pseudotyped virus assay as previously described.⁷ 134 Pseudotyped viruses expressing the spike proteins of SARS-CoV-2 variants 135 were incubated with serial 5-fold dilutions of antibody for 1 hour at 37°C. The 136 antibody-pseudovirus mixtures containing approximately 100,000 relative light 137 units (RLU) were then added to Raji B cells adhered to poly-L-lysine-coated 96-138 well plates. Following 24 hours of incubation at 37°C, the supernatant was 139 replaced with fresh medium. After an additional 48 hours, luciferase substrate 140 was added to lyse the cells and quantify RLUs using a microplate reader per 141

the manufacturer's protocol (Promega).

143 Animal experiments

The prophylactic and therapeutic efficacy of the monoclonal antibody 6i18 was 144 evaluated in vivo using 6- to 8-week-old BALB/c mice. As previously described⁸, 145 mice received either 200 µg of 6i18 (10 mg/kg) intraperitoneally (i.p.) or 20 µg 146 of 6i18 (1 mg/kg) intranasally (i.n.), either 24 hours before or after challenge 147 with 1×10^5 focus-forming units (FFU) of the SARS-CoV-2 XBB.1 variant. Mice 148 treated with phosphate-buffered saline (PBS) and challenged with an 149 equivalent dose of the XBB.1 variant served as negative controls. The 150 pulmonary viral burden was assessed by collecting lung samples 48 hours post-151 infection and quantifying infectious virus using a focus formation assay (FFA). 152

153 Formation of XBB S-6i18 complex

The purified XBB S trimer was mixed with 6i18 at a 1:1.5 molar ratio, incubated at 4°C for 1h, and further purified by gel filtration. The peak fraction of the gel filtration was further analyzed by negative stain and cryo-EM.

157 Cryo-EM data collection and image processing

158 Cryo-EM data of XBB.1 S with 6i18 antibody was collected using TITAN Krios 159 G4 transmission electron microscope (Thermo Fisher) operating at 300kV 160 equipped with Falcon 4i and Selectries X Imaging filter with a slit width of 20eV. 161 EER Movie stacks in AFIS mode were automatically collected using EPU 162 software in super resolution mode at a nominal magnification 130,000x, 163 physical pixel size of 0.932Å, a defocus range of -1.0 μ m to -3.0 μ m, dose 164 fractioned to 1080 frames with a total dose of ~50e⁻/Å².

All micrographs were binned 2x2, dose weighted and motion corrected in Relion v3.1⁹, then the contrast transfer function (CTF) was estimated with Gctf¹⁰. All motion corrected micrographs were imported to cryoSPARC v4.0.3 for further

patched CTF-estimation and Manually Curate Exposures¹¹. Bad exposures 168 were discarded based upon ice condition, astigmatism and estimated resolution, 169 and a total of 2,915 micrographs were selected for further blob picking, template 170 picking and 2D classification. Good particles were selected for ab-initio, yeilding 171 a map of XBB.1 monomer's NTD, RBD, complexed with one Fab, while density 172 other domains is absent. The resulting volume were used for Create Templates 173 and a new round of template picking, then particles from three rounds of picking 174 were merged and de-duplicated and a total particle stack of 662,816 particles 175 were imported to Relion through pyem package¹². One round of 3D 176 classification of global search yielded 518,597 good particles, and exported 177 back to cryoSPARC for Local Refine to a final resolution of 3.34 Å, the map was 178 postprocessed with deepEMhancer¹³. 3DFSC Program Suite Version 3.0¹⁴ was 179 used to estimate the resolution. Maps are evaluated in UCSF Chimera¹⁵. The 180 above data processing procedures are summarized in Supplementary 181 information Figure 2. 182

183 Model building and refinement

XBB.1 S monomer model was fitted with cryoEM model of Omicron S (PDB ID: 184 7WOW), and 6i18 antibody model was generated with Protein Folding function 185 using Hermite® Platform (https://hermite.dp.tech,DP Technology) and then 186 fitted into the density with UCSF Chimera. Further manual adjustments were 187 performed in COOT and after which, real space refinement was carried out in 188 PHENIX^{16,17}. Model validation was performed using MolProbity. Figures were 189 prepared using UCSF Chimera and UCSF ChimeraX. The statistics of model 190 refinement and data collection are listed in Supplementary information Table 191 S2. 192

193 **References**

- Huang, J. *et al.* Isolation of human monoclonal antibodies from peripheral blood B cells.
 Nature protocols 8, 1907-1915, doi:10.1038/nprot.2013.117 (2013).
- 196 2 Huang, J. et al. Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-

- 197 Pan Neutralization Breadth. *Immunity* 45, 1108-1121, doi:10.1016/j.immuni.2016.10.027
 198 (2016).
- Huang, J. *et al.* Broad and potent HIV-1 neutralization by a human antibody that binds
 the gp41-gp120 interface. *Nature* 515, 138-142, doi:10.1038/nature13601 (2014).
- 4 Huang, J. *et al.* Broad and potent neutralization of HIV-1 by a gp41-specific human
 antibody. *Nature* 491, 406-412, doi:10.1038/nature11544 (2012).
- 2035Wang, Y. et al. Combating the SARS-CoV-2 Omicron (BA.1) and BA.2 with potent204bispecific antibodies engineered from non-Omicron neutralizing antibodies. Cell205discovery 8, 104, doi:10.1038/s41421-022-00463-6 (2022).
- 2066Wang, Y. *et al.* Novel sarbecovirus bispecific neutralizing antibodies with exceptional207breadth and potency against currently circulating SARS-CoV-2 variants and208sarbecoviruses. *Cell discovery* 8, 36, doi:10.1038/s41421-022-00401-6 (2022).
- Wu, F. *et al.* Antibody-dependent enhancement (ADE) of SARS-CoV-2 infection in recovered COVID-19 patients: studies based on cellular and structural biology analysis. *medRxiv*, 2020.2010.2008.20209114, doi:10.1101/2020.10.08.20209114 (2020).
- Wang, Y. *et al.* Biparatopic antibody BA7208/7125 effectively neutralizes SARS-CoV-2
 variants including Omicron BA.1-BA.5. *Cell discovery* 9, 3, doi:10.1038/s41421-02200509-9 (2023).
- 2159Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure216determination in RELION-3. eLife 7, doi:10.7554/eLife.42166 (2018).
- 217 10 Zhang, K. Gctf: Real-time CTF determination and correction. *Journal of structural biology*218 **193**, 1-12, doi:10.1016/j.jsb.2015.11.003 (2016).
- Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid
 unsupervised cryo-EM structure determination. *Nature methods* 14, 290-296,
 doi:10.1038/nmeth.4169 (2017).
- 222 12 Υ. UCSF v0.5. Asarnow, D., Palovcak, E., Cheng, Zenodo pyem 223 https://doi.org/10.5281/zenodo.3576630 (2019). 224 doi:https://doi.org/10.5281/zenodo.3576630
- 22513Sanchez-Garcia, R. *et al.* DeepEMhancer: a deep learning solution for cryo-EM volume226post-processing. *Communications biology* **4**, 874, doi:10.1038/s42003-021-02399-1227(2021).
- 22814Tan, Y. Z. *et al.* Addressing preferred specimen orientation in single-particle cryo-EM229through tilting. *Nature Methods* 14, 793-796, doi:10.1038/nmeth.4347 (2017).
- 23015Pettersen, E. F. *et al.* UCSF Chimera--a visualization system for exploratory research and231analysis. J Comput Chem 25, 1605-1612, doi:10.1002/jcc.20084 (2004).
- 23216Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot.233Acta Crystallogr D Biol Crystallogr 66, 486-501, doi:10.1107/s0907444910007493 (2010).
- Afonine, P. V. *et al.* Real-space refinement in PHENIX for cryo-EM and crystallography.
 Acta Crystallogr D Struct Biol 74, 531-544, doi:10.1107/s2059798318006551 (2018).
- 236

Table S1. Neutralization of 6i18 and S309 against a panel of 47 SARS-CoV238 2 circulating single mutants.

Ζ	3	8
2	Q	a

240 mutants 6118 $S309$ 241 WT 1.0 1.0 242 E309D $\$977$ $$2252$ 243 V3411 6.4 4.3 244 $\$371F$ 6.2252 $\$777$ $$2252$ 243 V367F 1.6 4.4 244 $\$371F$ 5.2 $$$22522$ 245 S373P 0.2 0.2 246 $\$377F$ 6.6 4.4 248 S375A 0.3 5.5 249 S383A 1.4 3.1 250 T386A 0.0 4.1 251 K417N 2.6 1.1 252 D427A 9.0 2.5 253 A435S 1.5 4.7 254 N439K 0.3 3.0 255 N450G 0.5 2.6 256 L452R 1.0 5.1 257 K458N 0.1 1.8 258 A475V 0.2 <td< th=""><th>239</th><th>SARS2</th><th colspan="2">Fold change*</th></td<>	239	SARS2	Fold change*	
241 WT 1.0 1.0 242 E309D 977 52282 243 V3411 6.4 4.3 244 V367F 1.6 4.4 245 S371F 5.2 52282 246 S373P 0.2 0.2 247 F374A 0.4 15.4 248 S375A 0.3 5.5 249 S383A 1.4 3.1 250 T376A 0.2 3.2 249 S383A 1.4 3.1 250 T376A 0.2 3.2 253 D427A 9.0 2.5 253 D428A 0.1 2.4 254 N439K 0.3 3.0 255 G446V 20.7 1.9 256 L452R 1.0 5.1 257 K458N 0.1 1.8 258 A475V 0.2 4.0 259 G476S 0.5 3.7 260 T474A 4.4 4.4	240	mutants	6i18	S309
242T307E0.129.2243V3411 6.4 4.3 244F342L 977 52252 245S371F 5.2 52252 246A372T 3882 $s2252$ 247F374A0.4 15.4 248S375A0.3 5.5 249S383A1.43.1250T36A0.04.1251K417N2.61.1252D428A0.12.4253A435S1.54.7254N439K0.33.0255G446V20.71.9256L452R1.05.1257K458N0.11.1258A775V0.24.0259G476S0.52.6263G465A0.53.7260T478K0.84.0261V483A3.83.7262E484Q0.63.2263G485A0.50.5264F486A0.20.9265F486L1.72.7266P491A 977 52252 270A570S0.26.0271A570S0.73.1270A570S0.13.1271A570S0.73.1272D614G14.72.1273P681H0.80.8274T71610.27.0275A831V3.92.3	241	WT	1.0	1.0
242E 309D 9977 52282 243 $V3411$ 6.4 4.3 244 $F342L$ 8977 52282 245 $S377F$ 1.6 4.4 245 $S373P$ 0.2 92282 246 $A372T$ 3852 -92282 247 $F374A$ 0.4 15.4 248 $S375A$ 0.3 5.5 249 $S383A$ 1.4 3.1 250 $T385A$ 0.0 4.1 251 $K417N$ 2.6 1.1 252 $D427A$ 9.0 2.5 253 $A45S$ 1.5 4.7 254 $N439K$ 0.3 3.0 255 $G446V$ 20.7 1.9 256 $L452R$ 1.0 5.1 257 $K458N$ 0.1 1.8 258 $A475V$ 0.2 4.0 259 $G476S$ 0.5 3.7 260 $T478K$ 0.8 4.0 261 $V483A$ 3.8 3.7 262 $E484Q$ 0.6 3.2 263 $G485R$ 0.4 2.8 264 $F486A$ 0.2 0.9 265 $F486L$ 1.7 2.7 266 $F490L$ 0.6 3.4 270 $A570S$ 0.2 6.0 271 $A57SS$ 0.7 3.1 272 $D614G$ 14.7 2.1 273 $P681R$ 4.2 13.7 274 7.76 1.1 7.7 <td< td=""><td>242</td><td>T307E</td><td>0.1</td><td>29.2</td></td<>	242	T307E	0.1	29.2
243 $V3411$ 6.4 4.3 244 $F342L$ 877 52222 245 $S371F$ 5.2 52252 246 $A372T$ 5882 52252 247 $F374A$ 0.4 15.4 248 $S375A$ 0.3 5.5 249 $S383A$ 1.4 3.1 250 $T376A$ 0.2 3.2 253 $D427A$ 9.0 2.5 253 $D427A$ 9.0 2.5 253 $D428A$ 0.1 2.4 254 $N4306$ 0.5 2.6 255 $G446V$ 20.7 1.9 256 $L452R$ 1.0 5.1 257 $K417N$ 2.6 1.1 258 $A475V$ 0.2 4.0 259 $G476S$ 0.5 2.6 250 $S477A$ 4.4 4.4 260 $T478K$ 0.8 4.0 261 $V48A$ 3.8 3.7 262 $E48AQ$ 0.6 3.2 263 $G476S$ 0.4 2.8 264 $F486A$ 0.2 0.9 265 $F486L$ 1.7 2.7 266 $F490L$ 0.6 3.4 270 $A570S$ 0.2 6.0 271 $A57SS$ 0.7 3.1 272 $D614G$ 14.7 2.1 273 $P681H$ 0.2 7.0 274 7.161 0.2 7.0 275 $A83V$ 9.2 3.0 277 <td>242</td> <td>E309D</td> <td>>977</td> <td>>2252</td>	242	E309D	>977	>2252
244 $(347)^{-342}_{-367}$ $(324)^{-326}_{-44}$ 245 $3371^{-1}_{-5.2}$ $(325)^{-2252}_{-2252}$ 246 $3372^{-1}_{-5.2}$ $(325)^{-2252}_{-2252}$ 247 $F374A$ 0.4 15.4 248 $3375A$ 0.3 5.5 249 $3383A$ 1.4 3.1 250 $T386A$ 0.0 4.1 251 $K417N$ 2.6 1.1 252 $D427A$ 9.0 2.5 253 $D428A$ 0.1 2.4 254 $D427A$ 9.0 2.5 255 $C446V$ 20.7 1.9 256 $L452R$ 1.0 5.1 257 $K417N$ 2.6 1.1 258 $A475V$ 0.2 4.0 259 $G476S$ 0.5 3.7 260 $T478K$ 0.8 4.0 261 $V483A$ 3.8 3.7 262 $E484A$ 0.2 0.9 263 $G485R$ 0.4 2.8 264 $F486A$ 0.2 0.9 265 $F486L$ 1.7 2.7 266 $F490L$ 0.6 3.4 267 $S434P$ 0.6 3.5 268 $N501Y$ 0.2 1.6 269 $A570D$ 0.1 3.1 270 $A575S$ 0.7 3.1 271 $A575S$ 0.7 3.1 272 $D614G$ 14.7 2.1 273 $P681H$ 0.2 0.9 274 $7716I$ $0.$	243	V341I	6.4	4.3
245 $3371F$ 5.2 52252 246 $A372T$ 8882 52252 247 $F374A$ 0.4 15.4 248 $S375A$ 0.3 5.5 249 $S383A$ 0.4 3.1 250 $T376A$ 0.2 3.2 252 $D427A$ 9.0 2.5 253 $D427A$ 9.0 2.5 253 $D427A$ 9.0 2.5 254 $M439K$ 0.3 3.0 255 $G446V$ 20.7 1.9 256 $L452R$ 1.0 5.1 257 $K458N$ 0.1 1.8 258 $A475V$ 0.2 4.0 259 $G476S$ 0.5 3.7 260 $S477A$ 4.4 4.4 261 $V483A$ 3.8 3.7 262 $E484A$ 0.2 0.9 263 $G485R$ 0.4 2.8 264 $F486A$ 0.2 0.9 265 $F486A$ 0.2 0.9 266 $F486A$ 0.2 0.9 267 $S494P$ 0.6 3.4 270 $A570D$ 0.1 3.1 271 $A570S$ 0.2 6.0 272 $D614G$ 14.7 2.1 273 $P681R$ 4.2 13.7 274 $T716$ 0.2 7.3 275 $A831V$ 3.9 2.3 276 $590N$ 0.5 5.9 277 $592XA$ 4.8 0.1 <td>244</td> <td>V367E</td> <td>2977</td> <td>>2252</td>	244	V367E	2977	>2252
246 $A372T$ 388.2 22852 247 $F374A$ 0.4 15.4 248 $S375A$ 0.2 3.2 249 $S383A$ 1.4 3.1 250 $T385A$ 0.0 4.1 251 $R408I$ 2.3 3.5 252 $D427A$ 9.0 2.5 253 $D427A$ 9.0 2.5 254 $M439K$ 0.3 0.0 255 $G446V$ 20.7 1.9 256 $L452R$ 1.0 5.1 257 $K485N$ 0.1 1.8 258 $A475V$ 0.2 4.0 259 $G476S$ 0.5 3.7 260 $T478K$ 0.8 4.0 261 $V483A$ 3.8 3.7 262 $E484Q$ 0.6 3.2 263 $G476S$ 0.5 3.7 264 $S477A$ 4.4 4.4 265 $F486A$ 0.2 0.9 265 $F486A$ 0.2 0.9 266 $F486A$ 0.2 0.9 267 $S494P$ 0.6 3.5 268 $N501Y$ 0.2 1.6 270 $A570S$ 0.7 3.1 271 $A570S$ 0.7 3.1 272 $D614G$ 14.7 2.1 273 $P681R$ 4.2 13.7 274 7716 1.1 1.7 275 $A831V$ 3.9 2.3 276 $S962A$ 4.8 0.6 <td>245</td> <td>S371F</td> <td>5.2</td> <td>>2252</td>	245	S371F	5.2	>2252
247S373P 0.2 0.2 247F374A 0.4 15.4 248S375A 0.3 5.5 249S383A 1.4 3.1 250T376A 0.2 3.2 251R408I 2.3 3.5 K417N 2.6 1.1 252D427A 9.0 2.5 253D428A 0.1 2.4 A435S 1.5 4.7 254D428A 0.3 3.0 255G446V 20.7 1.9 256L452R 1.0 5.1 257K458N 0.1 1.8 258A475V 0.2 4.0 259G476S 0.5 3.7 260T478K 0.8 4.0 261V483A 3.8 3.7 262E484Q 0.6 3.2 263G485A 0.5 0.5 264G485R 0.4 2.8 265F486L 1.7 2.7 266F490L 0.6 3.5 268N501Y 0.2 1.6 270A570S 0.2 6.0 271A575S 0.7 3.1 272D614G 14.7 2.1 273P681H 0.8 0.4 274T716 0.2 7.7 275 $A831V$ 3.9 2.3 276 2950 5.5 5.9 277 275 275 275	246	A372T	388.2	>2252
247 F374A 0.4 15.4 248 S375A 0.3 5.5 249 S383A 1.4 3.1 250 T385A 0.0 4.1 251 R408 2.3 3.5 252 D427A 9.0 2.5 253 D428A 0.1 2.4 254 N439K 0.3 3.0 255 G446V 20.7 1.9 256 L452R 1.0 5.1 257 K458N 0.1 1.8 256 L452R 1.0 5.1 257 K458N 0.1 1.8 258 A475V 0.2 4.0 259 G476S 0.5 3.7 260 T478K 0.8 4.0 261 V483A 3.8 3.7 262 E484Q 0.6 3.2 263 G485A 0.5 0.5 264 F486A 0.2 0.9 265 F486A 0.2 0.9 </td <td>240</td> <td>S373P</td> <td>0.2</td> <td>0.2</td>	240	S373P	0.2	0.2
248 S375A 0.3 5.3 249 T376A 0.2 3.2 249 S383A 1.4 3.1 250 T385A 0.0 4.1 251 R408I 2.3 3.5 252 D427A 9.0 2.5 253 D428A 0.1 2.4 254 N435S 1.5 4.7 254 N439K 0.3 3.0 255 G446V 20.7 1.9 256 L452R 1.0 5.1 257 K458N 0.1 1.8 258 A475V 0.2 4.0 259 G476S 0.5 3.7 260 T478K 0.8 4.0 261 V483A 3.8 3.7 262 E484A 0.2 0.9 263 G4465R 0.4 2.8 264 F486A 0.2 0.9 265 F486A 0.2 0.9 266 F490L 0.6 3.5 <	247	F374A	0.4	15.4
249 0.2 0.2 3.2 250T385A 0.0 4.1 251R408l 2.3 3.5 252D427A 9.0 2.5 253D428A 0.1 2.4 254N439K 0.3 3.0 255G446V 20.7 1.9 256L452R 1.0 5.1 257K458N 0.1 1.8 258A475V 0.2 4.0 259G476S 0.5 3.7 260T478K 0.8 4.0 261V483A 3.8 3.7 262E484A 0.2 0.9 263G485R 0.4 2.8 264F486A 0.5 0.5 265F486L 1.7 2.7 266F486A 0.2 0.9 265F486L 1.7 2.7 266P491A -977 $*2262$ 277S494P 0.6 3.4 269A570D 0.1 3.1 270A570S 0.2 6.0 271T575 0.7 3.1 272D614G 14.7 2.1 273P681H 0.8 0.8 274T716 0.2 7.0 275A831V 3.9 2.3 D560N 0.5 5.9 276 $292A$ 4.8	248	S375A	0.3	5.5
250T385A0.04.1251R408I2.33.5252D427A9.02.5253D428A0.12.4A435S1.54.7254N439K0.33.0255G446V20.71.9256L452R1.05.1257K458N0.11.8258A475V0.24.0259G476S0.53.7260S477A4.44.4261V483A3.83.7262E484Q0.63.2263G485R0.42.8264G485R0.42.8265F486L1.72.7266P491A-977>2252277S494P0.63.5268N50TY0.13.1270A570S0.26.0271A575S0.73.1272D614G14.72.1273P681H0.80.8274T716I0.27.0275A831V3.92.3276276282A4.82772761.8	249	S383A	14	3.1
R408l 2.3 3.5 251 K417N 2.6 1.1 252 D427A 9.0 2.5 253 D428A 0.1 2.4 253 A435S 1.5 4.7 254 N439K 0.3 3.0 255 G446V 20.7 1.9 256 L452R 1.0 5.1 257 K458N 0.1 1.8 258 A475V 0.2 4.0 259 G476S 0.5 3.7 260 T478K 0.8 4.0 261 V483A 3.8 3.7 262 E484A 0.2 0.9 263 G485R 0.4 2.8 264 G485R 0.4 2.8 265 F486L 1.7 2.7 266 F490L 0.6 3.4 267 S494P 0.6 3.5 268 N501Y 0.2 1.6 270 A570D 0.1 3.1	250	T385A	0.0	4.1
231K417N2.61.1252D427A9.02.5253D428A0.12.4A435S1.54.7254N439K0.33.0255G446V20.71.9256L452R1.05.1257K458N0.11.8258A475V0.24.0259G476S0.53.7260T478K0.84.0261V483A3.83.7262E484Q0.63.2263G485A0.50.5264G485R0.42.8265F486L1.72.7266F490L0.63.4270A570S0.26.0271A570S0.26.0273P681H0.80.8P681R4.213.7274T716I0.27.0275A831V3.92.3276S982A4.80.4	250	R408I	2.3	3.5
252 $D427A$ 9.0 2.5 253 $D428A$ 0.1 2.4 254 $N439K$ 0.3 3.0 255 $G446V$ 20.7 1.9 256 $L452R$ 1.0 5.1 257 $K488N$ 0.1 1.8 257 $K458N$ 0.1 1.8 257 $K458N$ 0.1 1.8 257 $K458N$ 0.1 1.8 257 $K458N$ 0.1 1.8 259 $G476S$ 0.5 3.7 260 $5477A$ 4.4 4.4 261 $V483A$ 3.8 3.7 262 $E484A$ 0.2 0.9 263 $G485A$ 0.5 0.5 264 $G485R$ 0.4 2.8 264 $F486A$ 0.2 0.9 265 $F486L$ 1.7 2.7 266 $F490L$ 0.6 3.4 $P491A$ 9977 >2252 267 $S494P$ 0.6 3.5 268 $N501Y$ 0.2 1.6 270 $A570S$ 0.2 6.0 271 $752F$ 0.1 1.7 272 $2614G$ 14.7 2.1 273 $P681H$ 0.8 0.8 $P681H$ 0.8 0.8 0.5 275 $2950N$ 0.5 5.9 276 $292A$ 4.8 0.4	231	K417N	2.6	1.1
253 $D428A$ 0.1 2.4 254 $A435S$ 1.5 4.7 254 $N439K$ 0.3 3.0 255 $G446V$ 20.7 1.9 256 $L452R$ 1.0 5.1 257 $K458N$ 0.1 1.8 258 $A475V$ 0.2 4.0 259 $G476S$ 0.5 3.7 260 $5477A$ 4.4 4.4 261 $V483A$ 3.8 3.7 262 $E484A$ 0.2 0.9 263 $G485R$ 0.4 2.8 264 $F486A$ 0.2 0.9 265 $F486L$ 1.7 2.7 266 $F490L$ 0.6 3.4 270 $8494P$ 0.6 3.5 268 $N501Y$ 0.2 1.6 271 275 0.1 1.7 272 $2614G$ 14.7 2.1 273 $P681H$ 0.8 0.8 $P681H$ 0.8 0.8 0.5 276 $292A$ 4.8 0.4	252	D427A	9.0	2.5
254N439K0.33.0255 $G446V$ 20.71.9256 $L452R$ 1.05.1257 $K458N$ 0.11.8258 $A475V$ 0.24.0259 $G476S$ 0.53.7260 $S477A$ 4.44.4261 $V483A$ 3.83.7262 $E484A$ 0.20.9263 $G485R$ 0.42.8264 $F486A$ 0.50.5265 $F486L$ 1.72.7266 $F490L$ 0.63.4267 $S494P$ 0.63.5268 $Y508H$ 3.31.8269 $A570D$ 0.13.1270 $A575S$ 0.73.1271 $A575S$ 0.73.1272 $D614G$ 14.7 2.1273 $P681R$ 4.2 13.7 274 $T716I$ 0.27.0275 $A831V$ 3.92.3 $D950N$ 0.55.9 $S982A$ 4.8277 275 $S494$ 0.55.9	253	D428A	0.1	2.4
255 $G446V$ 20.7 1.9 255 $N450G$ 0.5 2.6 256 $L452R$ 1.0 5.1 257 $K458N$ 0.1 1.8 258 $A75V$ 0.2 4.0 259 $G476S$ 0.5 3.7 260 $T478K$ 0.8 4.0 261 $V483A$ 3.8 3.7 262 $E484Q$ 0.6 3.2 263 $G485A$ 0.5 0.5 264 $G485R$ 0.4 2.8 265 $F486L$ 1.7 2.7 266 $P491A$ $\rightarrow 977$ $\Rightarrow 2252$ 267 $S494P$ 0.6 3.5 268 $N501Y$ 0.2 1.6 270 $A570S$ 0.2 6.0 271 $A575S$ 0.7 3.1 272 $D614G$ 14.7 2.1 273 $P681H$ 0.8 0.8 $P681R$ 4.2 13.7 274 $T716i$ 0.2 7.0 275 $A831V$ 3.9 2.3 $D950N$ 0.5 5.9 5.9 $S982A$ 4.8 0.4	254	N439K	0.3	3.0
233N450G 0.5 2.6 256 $L452R$ 1.0 5.1 257 K458N 0.1 1.8 258 $A472V$ 7.6 1.1 259 $G476S$ 0.5 3.7 259 $G476S$ 0.5 3.7 260 $T478K$ 0.8 4.0 261 $V483A$ 3.8 3.7 262 $E484A$ 0.2 0.9 263 $G485R$ 0.4 2.8 264 $G485R$ 0.4 2.8 264 $F486A$ 0.2 0.9 265 $F486L$ 1.7 2.7 266 $F490L$ 0.6 3.4 247 $S977$ $$2252$ 268 $N501Y$ 0.2 1.6 270 $A570S$ 0.2 6.0 271 $A570S$ 0.2 6.0 271 $B61HH$ 0.8 0.8 273 $P681H$ 0.8 0.8 274 $T716I$ 0.2 7.0 275 $A831V$ 3.9 2.3 276 $S982A$ 4.8 0.4	255	G446V	20.7	1.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200	N450G	0.5	2.6
257K458N 0.1 1.8 258 $472V$ 7.6 1.1 259 $G476S$ 0.5 3.7 260 $T478K$ 0.8 4.0 261 $V483A$ 3.8 3.7 262 $E484A$ 0.2 0.9 263 $G485A$ 0.5 0.5 264 $G485R$ 0.4 2.8 265 $F486L$ 1.7 2.7 266 $F490L$ 0.6 3.4 267 $S494P$ 0.6 3.5 268 $N501Y$ 0.2 1.6 269 $A570S$ 0.2 6.0 270 $A570S$ 0.2 6.0 271 $A575S$ 0.7 3.1 272 $D614G$ 14.7 2.1 273 $P681H$ 0.8 0.8 $P681R$ 4.2 13.7 274 $T716i$ 0.2 7.0 275 $282A$ 4.8 0.4	256	L452R	1.0	5.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	257	K458N	0.1	1.8
259 $G476S$ 0.2 4.0 260 $T478K$ 0.8 4.0 261 $V483A$ 3.8 3.7 262 $E484Q$ 0.6 3.2 263 $G485A$ 0.5 0.5 264 $G485R$ 0.4 2.8 265 $F486L$ 1.7 2.7 266 $F490L$ 0.6 3.4 267 $2494P$ 0.6 3.5 268 $N501Y$ 0.2 1.6 270 $A570S$ 0.2 6.0 271 $A575S$ 0.7 3.1 272 $D614G$ 14.7 2.1 273 $P681H$ 0.8 0.8 P681R 4.2 13.7 274 $T716I$ 0.2 7.0 275 $A831V$ 3.9 2.3 276 $S982A$ 4.8 0.4	258	1472V Δ475\/	7.0 0.2	1.1
233S477A 4.4 4.4 260T478K0.8 4.0 261V483A3.83.7262E484Q0.63.2263G485A0.50.5264G485R0.42.8F486A0.20.9265F486L1.72.7266F486A0.20.9267S494P0.63.4P491A>977>2252268N501Y0.21.6269A570D0.13.1270A570S0.26.0271A575S0.73.1272D614G14.72.1P681R4.213.7274T716I0.27.0275A831V3.92.3276S982A4.80.4	250	G476S	0.2	3.7
260T478K 0.8 4.0 261 V483A 3.8 3.7 262 E484Q 0.6 3.2 263 G485A 0.5 0.5 264 G485R 0.4 2.8 265 F486L 1.7 2.7 266 S494P 0.6 3.5 268 N501Y 0.2 1.6 269 A570D 0.1 3.1 270 A570S 0.2 6.0 271 A575S 0.7 3.1 272 D614G14.7 2.1 P681H 0.8 0.8 P681R 4.2 13.7 274 T716I 0.2 7.0 275 $2950N$ 0.5 5.9 276 S982A 4.8 0.4	235	S477A	4.4	4.4
261V483A 3.8 3.7 262 E484A 0.2 0.9 263 G485A 0.5 0.5 264 G485R 0.4 2.8 265 F486L 1.7 2.7 266 F490L 0.6 3.4 267 S494P 0.6 3.5 268 N501Y 0.2 1.6 269 A570D 0.1 3.1 270 A570S 0.2 6.0 271 A575S 0.7 3.1 272 D614G14.7 2.1 273 P681R 4.2 13.7 274 T716I 0.2 7.0 275 A831V 3.9 2.3 276 S982A 4.8 0.4	260	T478K	0.8	4.0
262 $E484A$ 0.2 0.9 263 $G485A$ 0.5 0.5 264 $G485R$ 0.4 2.8 265 $F486L$ 1.7 2.7 266 $F490L$ 0.6 3.4 267 $S494P$ 0.6 3.5 268 $N501Y$ 0.2 1.6 269 $A570D$ 0.1 3.1 270 $A570S$ 0.2 6.0 271 $A575S$ 0.7 3.1 272 $D614G$ 14.7 2.1 273 $P681H$ 0.8 0.8 $P681R$ 4.2 13.7 274 $T716I$ 0.2 7.0 275 276 $S982A$ 4.8 0.4	261	V483A	3.8	3.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	262	E484A	0.2	0.9
260 $6485R$ 0.4 2.8 264 $F486A$ 0.2 0.9 265 $F486L$ 1.7 2.7 266 $F490L$ 0.6 3.4 267 $S494P$ 0.6 3.5 268 $N501Y$ 0.2 1.6 269 $A570D$ 0.1 3.1 270 $A570S$ 0.2 6.0 271 $A570S$ 0.2 6.0 272 $D614G$ 14.7 2.1 273 $P681H$ 0.8 0.8 274 $T716I$ 0.2 7.0 275 $A831V$ 3.9 2.3 276 $S982A$ 4.8 0.4	263	G485A	0.0	0.5
204F486A0.20.9 265 F486L1.72.7 266 F490L0.63.4 267 S494P0.63.5 268 N501Y0.21.6 269 A570D0.13.1 270 A570S0.26.0 271 A575S0.73.1 272 D614G14.72.1 273 P681H0.80.8 275 A831V3.92.3 276 S982A4.80.4	264	G485R	0.4	2.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	204	F486A	0.2	0.9
266F490L 0.6 3.4 267 9977 >2252 268 $S494P$ 0.6 3.5 268 $N501Y$ 0.2 1.6 269 $A570D$ 0.1 3.1 270 $A570S$ 0.2 6.0 271 $A570S$ 0.2 6.0 271 $272F$ 0.1 1.7 272 $D614G$ 14.7 2.1 273 $P681H$ 0.8 0.8 $P681R$ 4.2 13.7 274 $T716I$ 0.2 7.0 275 $A831V$ 3.9 2.3 276 $S982A$ 4.8 0.4	265	F486L	1.7	2.7
267 S491A 207 2202 268 S494P 0.6 3.5 269 N501Y 0.2 1.6 269 A570D 0.1 3.1 270 A570S 0.2 6.0 271 A575S 0.7 3.1 272 D614G 14.7 2.1 273 P681H 0.8 0.8 274 T716I 0.2 7.0 275 A831V 3.9 2.3 276 S982A 4.8 0.4	266	F490L	0.6	3.4
268 N501Y 0.2 1.6 269 A570D 0.1 3.1 270 A570S 0.2 6.0 271 A570S 0.2 6.0 272 D614G 14.7 2.1 273 P681H 0.8 0.8 274 T716I 0.2 7.0 275 A831V 3.9 2.3 276 S982A 4.8 0.4	267	S491A	2977	35
269 Y508H 3.3 1.8 269 A570D 0.1 3.1 270 A570S 0.2 6.0 271 A575S 0.7 3.1 272 D614G 14.7 2.1 273 P681H 0.8 0.8 274 T716I 0.2 7.0 275 A831V 3.9 2.3 276 S982A 4.8 0.4	268	N501Y	0.2	1.6
269 A570D 0.1 3.1 270 A570S 0.2 6.0 271 T572F 0.1 1.7 272 D614G 14.7 2.1 273 P681H 0.8 0.8 274 T716I 0.2 7.0 275 A831V 3.9 2.3 276 S982A 4.8 0.4	200	Y508H	3.3	1.8
270 A570S 0.2 6.0 271 T572F 0.1 1.7 272 D614G 14.7 2.1 273 P681H 0.8 0.8 274 T716I 0.2 7.0 275 A831V 3.9 2.3 276 S982A 4.8 0.4	269	A570D	0.1	3.1
271 1572F 0.1 1.7 272 A575S 0.7 3.1 272 D614G 14.7 2.1 273 P681H 0.8 0.8 274 T716I 0.2 7.0 275 A831V 3.9 2.3 276 S982A 4.8 0.4	270	A570S	0.2	6.0
272 D614G 14.7 2.1 273 P681H 0.8 0.8 274 T716I 0.2 7.0 275 A831V 3.9 2.3 276 S982A 4.8 0.4	271	15/2F 45759	0.1	1.7 3.1
273 P681H 0.8 0.8 274 T716I 0.2 7.0 275 A831V 3.9 2.3 276 S982A 4.8 0.4	272	D614G	14.7	2.1
273 P681R 4.2 13.7 274 T716I 0.2 7.0 275 A831V 3.9 2.3 276 S982A 4.8 0.4	272	P681H	0.8	0.8
274 T716I 0.2 7.0 275 A831V 3.9 2.3 276 D950N 0.5 5.9 277 S982A 4.8 0.4	213	P681R	4.2	13.7
275 A831V 3.9 2.3 276 D950N 0.5 5.9 277 S982A 4.8 0.4	274	T716I	0.2	7.0
276 <u>D950N</u> 0.5 5.9 <u>S982A</u> 4.8 0.4	275	A831V	3.9	2.3
277	276	D95010 5982A	0.5 4.8	5.9 0.4
	277			U.T

*Fold change is calculated as the IC50 of the mutant/the IC50 of WT. Mutants that decreased
 the sensitivity of 6i18 with fold change values between 10-100 are highlighted in yellow, and

280 fold change values >100 are highlighted in red.

Table S2. Cryo-EM data collection and refinement statistics.

282

	XBB-S-6i18 complex				
Data collection					
and processing					
Magnification	81000				
Voltage (kV)	300				
Total dose (e–/Ų)	58				
Defocus range (µm)	-1.2 to -2.5				
Pixel size (Å)	0.82				
Symmetry imposed	C1				
Final particles (no.)	597,461				
Map resolution (Å)	3.3				
Refinement					
R.m.s. deviations					
Bond lengths (Å)	0.001				
Bond angles (°)	0.398				
Validation					
MolProbity score	2 45				
Clashscore	10 22				
Rotamer outlier (%)	3 78				
	0.10				
Ramachandran plot					
Favored (%)	92.04				
Allowed (%)	7.96				
Disallowed (%)	0.00				
EMDB	36322				
PDB	8JIO				

283

Supplementary Fig. S1. Binding affinity of 6i18. Binding affinities of 6i18 and S309 to the RBDs of (a) SARS-CoV-2 variants as well as (b) other sarbecoviruses as determined by BLI.

Supplementary Fig. S2. Three-dimensional representation of 47 SARS-CoV-2 circulating single mutants. Residues with 10-100 fold neutralization changes are highlighted in yellow, while residues with fold changes exceeding 100 are colored red. Unaffected residues are displayed in blue. Squares highlight mutants that specifically decreased 6i18 neutralization. Mutants conferring decreased sensitivity or resistance to S309 neutralization are underlined.

294

Supplementary Fig. S3. Negative staining EM image of SARS-CoV-2 XBB
S in complex with 6i18. (a) Gel-filtration purification and SDS-PAGE of SARSCoV-2 XBB S complexed with 6i18 complex. Negative staining EM images of
(b) SARS-CoV-2 XBB S trimer alone and (c) S-6i18 complex, showing that
binding of 6i18 disassembles SARS-CoV-2 XBB S trimer.

300

Supplementary Fig. S4. Cryo-EM data collection and processing of SARS CoV-2 XBB S in complex with 6i18. (a) Representative electron micrograph
 and 2D classification results of 6i18 bound SARS-CoV-2 S. (b) Local resolution

map for the reconstruction of NTD-RBD-6i18. (**c**) Histogram and FSC plot were generated using 3DFSC for the complex. The 0.143 cutoff is indicated by a horizontal dashed line. (**d**) Data processing flowchart of 6i18-bound SARS-CoV-2 XBB S.

308

Supplementary Fig. S5. 6i18 epitope on S RBD. (a) Sequence alignment of WT, Delta, BA.1, BA.5, CH.1.1, BQ.1.1, XBB, XBB.1.5 and XBB.1.16 RBD. Conserved amino acids are highlighted as red. Residues involved in 6i18 binding are marked with magenta triangles. **(b)** Conservation rates of the residues involved in 6i18 binding across SARS-CoV-2 variants ranging from Jan 2020 through present circulating strains. **(c)** Structural comparison of 6i18 complexed with XBB S RBD and H-RBD class antibodies N-612-056 (PDBID:
7S0B), FD20 (PDBID: 7CYV), COVOX-45 (PDBID: 7PRY), WRAIR-2057
(PDBID: 7N4I), S2H97 (PDBID: 7M7W), ION-300 (PDBID: 7BNV) modelled
onto XBB S RBD. (d) A comparison of neutralization activities of 6i18 and
antibodies from the H-RBD class against the XBB.1.16 variant.