
RedRibbon: a rank-rank hypergeometric overlap library

Anthony Piron, Theodora Papadopoulou

2023-11-01

Abstract
High throughput omics technologies have generated a wealth of large protein, gene and transcript

datasets that have exacerbated the need for new methods to analyse and compare big datasets. Rank-rank
hypergeometric overlap is an important threshold-free method to combine and visualize two ranked lists
of P-values or fold-changes, usually from differential gene expression analyses. Here, we introduce a new
rank-rank hypergeometric overlap-based method aimed at gene, transcript, exon and protein level capable
of taking into account alternative splicing phenomena. It offers the possibility to compare these levels to
each other, hitherto unreachable as transcript and protein numbers are an order of magnitude larger than
gene numbers.

RedRibbon is a comparative analysis tool of omics differential analyses. It allows to determine the features
overlapping between two differential studies. It features high performance, accuracy and simplicity in use.
RedRibbon has been optimized to be efficient regardless of the length of the lists given as input. The input
data for RedRibbon are two labelled ranked lists of real numbers under comparison. These two lists could
contain proteins, gene or transcript ranked by a statistic such as log fold change or direction signed P-value.
Optionally, the minimal P-value can be adjusted considering expression level correlation between genes or
transcripts.

If you have issues with the RedRibbon package, please submit it on the RedRibbon github issue reporting
system and we will do our best to solve your problems.

To demonstrate RedRibbon’s basic workflow, we will first generate and use a synthetic data set. Next, the
tool will be applied on real data sets. We recommend that you read first this simple experimental section
to familiarize yourself with the tool before applying it to your real data. Each of the functions or methods
described in this R vignette is fully documented. This documentation can be accessed the usual way in R
with the question mark prefixing the function name (e.g., ?RedRibbon.data.frame).

Synthetic data set
The synthetic data set is composed of two labeled lists of numbers. A data.frame, called df, will contain
these lists. This data.frame is composed of columns a and b, the two lists of numbers and id, a list of labels.
Those columns are mandatory to run RedRibbon rank-rank hyper-geometric overlap. The synthetic lists
have one quarter perfectly overlapping at the bottom of the list, one quarter at the top of the list, and the
remaining elements are random.

The code to generate those lists in the data.frame df is
set.seed(42)
n <- 1000
n2 <- n %/% 2
n4 <- n %/% 4
a <- (1:n) - n2
b <- a
a[n4:(n4+n2-1)] <- rnorm(n2, sd=100)
b[n4:(n4+n2-1)] <- rnorm(n2, sd=100)

1

https://github.com/antpiron/RedRibbon/issues
https://github.com/antpiron/RedRibbon/issues

df <- data.frame(
id = paste0("gene", 1:n),
a = a,
b = b)

The first lines of the data.frame (as given by head(df)) are

id a b
gene1 -499 -499
gene2 -498 -498
gene3 -497 -497
gene4 -496 -496
gene5 -495 -495
gene6 -494 -494

Overlapping
We will now compute an overlap with RedRibbon for this synthetic data set. First, the library is loaded with
library(RedRibbon)
#> Loading required package: scales
#> Loading required package: ggrepel
#> Loading required package: ggplot2
#> Loading required package: data.table

Then, we create an S3 RedRibbon object with the RedRibbon function,
rr <- RedRibbon(df, enrichment_mode="hyper-two-tailed")

We set the parameter enrichment_mode to use two-tailed test. This way, we will simultaneously detect
enrichment in correlated (up/up and down/down) and anti-correlated (up/down and down/up) genes.

Next, we localize the minimal P-value in the four quadrants with the quadrants method on the RedRibbon
object,
quad <- quadrants(rr, algorithm="ea", permutation=TRUE, whole=FALSE)

We use the evolutionary algorithm (algorithm="ea") to locate the minimal P-value coordinates with the
highest accuracy). We also ask the computation of adjusted P-value with the permutation option to TRUE.
whole=FALSE splits the overlap map into four quadrants (i.e., down-down, up-up, down-up, up-down).

Plotting the level map
Results can be plotted with the helper function ggRedRibbon. The overlap map of the two lists goes
respectively in the same direction (both downregulated or both upregulated in the 2 lists). The maximal log
P-values and the permutation adjusted P-values are shown for each quadrant. The horizontal and vertical
dotted lines split the downregulation and upregulation where the log fold change is zero. The code to produce
the map is straightforward,
gg <- ggRedRibbon(rr, quadrants=quad,

repel.force = 250) +
coord_fixed(ratio = 1, clip = "off")

gg

2

523.3 (padj = 506.6)

525.9 (padj = 510.5)
do

w
n

up

down up
a

b

−522.1904

 0.0000

 522.1904
−log p.val

In the overlap map, the hypergeometric P-value are signed negatively for depletion (anti-correlation) and
positive for enrichment (correlation).

The gg variable contains a standard ggplot2 object,
class(gg)
#> [1] "gg" "ggplot"

Hence, this object can be manipulated as any ggplot object. For example, in this vignette we used +
coord_fixed(ratio = 1) to obtain a fixed scale of coordinates (see ?ggplot2::coord_fixed).

Enrichment statistics
The lists of overlapping genes are returned by the quadrants method. The list of genes enriched in the
down-down direction is given by df[quad$downdown$positions,]

id a b
gene1 -499 -499
gene2 -498 -498
gene3 -497 -497
gene4 -496 -496
gene5 -495 -495
gene6 -494 -494

quad$downdown$positions is a vector of indices in the df data.frame. The other quadrants indices are
given in quad$upup$positions, quad$downup$positions, and quad$updown$positions.

You may also easily access all the statistics generated by the analysis:

3

names(quad$downdown)
#> [1] "pvalue" "log_pvalue" "direction" "count" "positions"
#> [6] "i" "j" "padj" "log_padj"

quad$downdown[c("i", "j", "pvalue", "log_pvalue", "count", "direction")]
#> $i
#> [1] 252
#>
#> $j
#> [1] 253
#>
#> $pvalue
#> [1] 5.386098e-228
#>
#> $log_pvalue
#> [1] 523.3056
#>
#> $count
#> [1] 249
#>
#> $direction
#> [1] 1

(i , j) is the minimal P-value coordinate on the enrichment map, pvalue and log_pvalue are the minimal
P-value, direction is the direction of the enrichment. count is the number of genes overlapping.

Compatibility mode
This mode only exists for compatibility with RRHO. Please use the new interface shown above when possible.
compat <- RRHO(df[,c("id", "a")], df[,c("id", "b")], plots=TRUE, stepsize=n %/% 10)
#> Warning in RRHO(df[, c("id", "a")], df[, c("id", "b")], plots = TRUE, stepsize
#> = n%/%10): This function only exists for compatibility. Please use instead the
#> RedRibbon() call. See Vignette("RedRibbon") for details.
compat$gg

4

https://www.bioconductor.org/packages/release/bioc/html/RRHO.html

523.3 (padj = 506.5)

525.9 (padj = 518.7)
do

w
n

up

down up
a

b

−522.1904

 0.0000

 522.1904
−log p.val

compat$hypermat

6.21 1.60 0.91 0.51 0.22 0.00 0.00 0.00 0.00 0.00
1.60 323.41 186.97 134.38 100.17 74.72 54.42 37.53 23.08 10.43
0.91 186.97 475.05 302.06 216.51 157.72 112.69 81.00 49.81 22.84
0.51 134.38 295.53 301.82 220.29 172.50 133.25 102.82 75.94 37.03
0.22 100.17 210.82 206.99 161.51 130.69 135.74 132.97 112.12 53.61
0.00 74.72 157.72 157.20 139.90 115.81 128.18 168.74 156.78 73.54
0.00 54.42 118.00 139.64 143.47 137.29 179.23 240.46 215.13 98.55
0.00 37.53 81.00 121.90 142.67 171.89 229.69 330.92 293.58 132.19
0.00 23.08 49.81 80.73 117.42 162.59 221.52 307.34 462.53 183.96
0.00 10.43 22.84 37.03 53.61 73.54 98.55 132.19 183.96 319.02

For the description of these field and parameters, we refer the reader to the RRHO package documentation.

Using and computing correlation between genes
To demonstrate how we use the correlation of expression between genes, we will generate an artificial
expression matrix of n.genes x n.samples associated to a fold change between the 2 conditions (e.g.,
treated vs non-treated samples). The first five genes are perfectly correlated.
gen.expression.matrix <- function (n.genes, n.samples, fc=NULL, r = NULL)
{

n.treated <- n.samples %/% 2
n.non.treated <- n.samples - n.treated

5

mat.non.treated <- matrix(rnorm(n.genes * n.non.treated, sd=10), nrow = n.genes)
mat.fc <- if (is.null(fc)) 0 else mat.non.treated * fc
mat.treated <- matrix(mat.fc + rnorm(n.genes * n.non.treated, sd=10) , nrow = n.genes)
mat <- cbind(

mat.non.treated,
mat.treated)

if (! is.null(r))
{

for (i in 2:(length(r)+1))
{

mat[i,] <- mat[1,] * r[i-1] + (1-abs(r[i-1])) * mat[i,]
}

}
mat

}

n <- 50
n.frac <- 5
fc_a <- c(rep(-2, n.frac), runif(n-n.frac, -2, 2))
fc_b <- c(rep(-2, n.frac), runif(n-n.frac, -2, 2))
df <- data.frame(a=fc_a, b=fc_b)

mat_b <- gen.expression.matrix(n, 6, fc=fc_b, r=c(1, 1, 1, 1))

head(mat_b)
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 3.987343 26.024689 -4.134666 -3.566446 -51.725370 15.19353
#> [2,] 3.987343 26.024689 -4.134666 -3.566446 -51.725370 15.19353
#> [3,] 3.987343 26.024689 -4.134666 -3.566446 -51.725370 15.19353
#> [4,] 3.987343 26.024689 -4.134666 -3.566446 -51.725370 15.19353
#> [5,] 3.987343 26.024689 -4.134666 -3.566446 -51.725370 15.19353
#> [6,] 4.311339 6.004302 26.337096 13.933081 -4.466707 30.20824

We can then compute the correlation,
correlation <- rrho_expression_prediction(mat_b)
c.obj <- newFC(correlation$index, correlation$beta[,2])
c.obj
#> $deps
#> [1] 3 3 -1 3 3 -1
#> [26] -1
#>
#> $beta
#> [1] 1 1 0 1 1 0
#> [39] 0 0 0 0 0 0 0 0 0 0 0 0
#>
#> attr(,"class")
#> [1] "fc"

And input the computed correlation in RedRibbon

rr <- RedRibbon(df, enrichment_mode="hyper-two-tailed", correlation=c.obj)
quad <- quadrants(rr, algorithm="ea", permutation=TRUE, whole=FALSE)
gg <- ggRedRibbon(rr, quadrants=quad,

repel.force = 250) +

6

coord_fixed(ratio = 1, clip = "off")
gg

do
w

n
up

down up
a

b

−13.94219

 0.00000

 13.94219
−log p.val

Considering gene correlations, the adjusted P-value of the overlap is not significant. Hence, no minimal
coordinate is shown on the map.

Analysis with real data sets
To demonstrate the versality and potential of RedRibbon, we will apply it to diverse omic data sets. The
method is agnostic to the underlying technology. Here, this robustness will be illustrated with RNA-Seq
transcriptome (quantified at gene and transcript level), micro-array, and proteome.

Overlap of transcriptomic analyses
To demonstrate the capabilities of RedRibbon, we will use data from GSE159984 GEO submission. This
data set has been analyzed in depth in the RedRibbon main manuscript. The data contains the output from
two DESeq2 differential expression analyses. In this case, columns a and b contain log2FoldChange values
corresponding to type 2 diabetes islet signatures (T2DvsCTL) and human islets treated with palmitate and
glucose signatures (D8PGsCTL).

First, we load the data set and appropriately name the mandatory columns (id, a and b),
data("T2D-D8PG", package = "RedRibbon")

df.real <- merge(T2DvsCTL[, c("ensembl_id", "log2FoldChange")],
D8PGvsCTL[, c("ensembl_id", "log2FoldChange")],

by = "ensembl_id")

7

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159984

colnames(df.real) <- c("id", "a", "b")
head(df.real) %>%

kbl() %>%
kable_styling(latex_options = "HOLD_position")

id a b
ENSG00000000003 -0.0782417 -0.5622385
ENSG00000000419 -0.0272121 -0.0749227
ENSG00000000457 0.0250109 -0.1753647
ENSG00000000460 -0.0015721 0.0168077
ENSG00000000938 0.5226592 -0.4279560
ENSG00000000971 -0.2215815 -1.1212551

Then, we run RedRibbon,
rr <- RedRibbon(df.real, enrichment_mode="hyper-two-tailed")
quad <- quadrants(rr, algorithm="ea", permutation=TRUE, whole=FALSE)

RedRibbon function constructs the object which will be used by quadrants to compute the overlap in the four
regulation quadrants. All the steps performed by RedRibbon and quadrants are described in the RedRibbon
manuscript.

Then, ggRedRibbon is used to plot the overlap map.
gg <- ggRedRibbon(rr, quadrants=quad,

labels = c("T2D vs CTL", "D8PG vs CTL"),
repel.force = 250) +

coord_fixed(ratio = 1, clip = "off")
gg

8

56.9 (padj = 50.5)

150.0 (padj = 141.7)

83.5 (padj = 77.3)

90.9 (padj = 79.9)
do

w
n

up

down up
T2D vs CTL

D
8P

G
 v

s
C

T
L

−147.5842

 0.0000

 147.5842
−log p.val

gg is a standard ggplot2 object. All the ggplot2 methods can be applied on it. Here, the coord_fixed
ggplot2 method is called to guarantee a fixed square ratio.

Long read analysis compared to short read analysis
RedRibbon is capable of handling both long and short read RNA-Seq differential analyses. To illustrate
this, we will compare the long (GSE167223) and short read (GSE137136) signatures of pancreatic beta cells
exposed to cytokines. This data set has also been analyzed in the RedRibbon main manuscript.

This dataset is included in the R package. The gene level analyses are loaded with
data("CYT-Short-Long", package = "RedRibbon")
df.genes <- merge(CYTvsCTL_short_genes[, c("ensg", "log2FoldChange")],

CYTvsCTL_long_genes[, c("ensg", "log2FoldChange")],
by = "ensg")

colnames(df.genes) <- c("id", "a", "b")

head(df.genes) %>%
kbl() %>%
kable_styling(latex_options = "HOLD_position")

id a b
ENSG00000000419 -0.0216161 -0.0964418
ENSG00000000457 0.7003209 0.9418924
ENSG00000000460 -1.1426132 -0.0032452
ENSG00000001036 0.0373025 0.2422237
ENSG00000001084 -0.5730671 -0.2861927
ENSG00000001167 -0.3753396 0.5775642

9

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE167223
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE137136

And then, we run RedRibbon analysis over the df.genes merged table,
sh_vs_l_genes <- RedRibbon(df.genes, enrichment_mode="hyper-two-tailed")
quad <- quadrants(sh_vs_l_genes, algorithm="ea", permutation=TRUE, whole=FALSE)
gg <- ggRedRibbon(sh_vs_l_genes, quadrants=quad,

labels = c("short-reads CYT vs CTL (gene level)", "long-reads CYT vs CTL (gene level)"),
repel.force = 250) +

coord_fixed(ratio = 1, clip = "off")
gg

738.6 (padj = 730.4)

971.5 (padj = 961.5)

do
w

n
up

down up
short−reads CYT vs CTL (gene level)

lo
ng

−r
ea

ds
 C

Y
T

 v
s

C
T

L
(g

en
e

le
ve

l)

−964.6814

 0.0000

 964.6814
−log p.val

At transcript level, we have
data("CYT-Short-Long-tx", package = "RedRibbon")
df.tx <- merge(CYTvsCTL_short_tx[, c("Row.names", "log2FoldChange")],

CYTvsCTL_long_tx[, c("Row.names", "log2FoldChange")],
by = "Row.names")

colnames(df.tx) <- c("id", "a", "b")

head(df.tx) %>%
kbl() %>%
kable_styling(latex_options = "HOLD_position")

10

id a b
ENST00000000233 -0.2739232 0.0203169
ENST00000000412 0.0908180 0.1113825
ENST00000000442 0.2294083 2.2626586
ENST00000001008 0.1581945 0.0847822
ENST00000002125 0.0041481 0.5701458
ENST00000002165 0.0332171 0.2407866

sh_vs_l_tx <- RedRibbon(df.tx, enrichment_mode="hyper-two-tailed")
quad <- quadrants(sh_vs_l_tx, algorithm="ea", permutation=TRUE, whole=FALSE)
gg <- ggRedRibbon(sh_vs_l_tx, quadrants=quad,

labels = c("short-reads CYT vs CTL (transcript level)",
"long-reads CYT vs CTL (transcript level)"),

repel.force = 250) +
coord_fixed(ratio = 1, clip = "off")

gg

335.8 (padj = 327.4)

514.1 (padj = 503.7)

do
w

n
up

down up
short−reads CYT vs CTL (transcript level)

lo
ng

−r
ea

ds
 C

Y
T

 v
s

C
T

L
(t

ra
ns

cr
ip

t l
ev

el
)

−510.6455

 0.0000

 510.6455
−log p.val

Remark: The hypergeometric P-values on this figure can be slightly different than the same figure in the
RedRibbon manuscript, the evolutionary algorithm being non-deterministic. In this specific case, it is caused
by diffuse signal around the minimal P-value coordinate. Hence, multiple coordinates have nearly identical
P-value. The coordinate being close, this non-determinism have nearly no consequence on the returned
overlap.

11

Proteomic analysis vs transcriptomic analysis
The method allows to compare diverse omic types. One of the interesting overlap comparisons is between
transcriptome and proteome for the same cells and treatments as it allows to see if changes in transcriptome
recapitulate in the proteome. To illustrate this point, we re-analyzed the data set from Lytrivi et al., 2020 for
INS-1E cells treated with palmitate.

The data set is loaded with
data("PAL_MAvsProt", package = "RedRibbon")
head(PAL_MAvsProt) %>%

kbl() %>%
kable_styling(latex_options = "HOLD_position")

id a b
A1BG -0.1731636 1.01
A1CF -0.1131687 -1.02
AAAS 0.1052605 -1.51
AACS -0.1109316 -1.51
AAK1 -0.0650720 -1.00
AAK1 -0.0650720 -1.01

The RedRibbon overlap is done the usual way,
rr <- RedRibbon(PAL_MAvsProt, enrichment_mode = "hyper-two-tailed")
quad <- quadrants(rr, algorithm="ea", permutation=TRUE, whole=FALSE)
gg <- ggRedRibbon(rr, quadrants=quad,

labels = c("Proteome Palmitate 24h", "Microarray Palmitate 14h"),
repel.force = 250) +

coord_fixed(ratio = 1, clip = "off")
gg

12

https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-020-07003-0

132.0 (padj = 126.5)

113.5 (padj = 105.8)

do
w

n
up

down up
Proteome Palmitate 24h

M
ic

ro
ar

ra
y

P
al

m
ita

te
 1

4h

−130.0708

 0.0000

 130.0708
−log p.val

A nice overlap is observed on the major diagonal showing that most changes observed at transcript level
recapitulate at protein level. Worth of note, in Lytrivi et al., 2020 with the original R RRHO package
(Plaisier et al., 2010), we were unable to pinpoint the minimal hyper-geometric P-value coordinate. Here, the
improved accuracy of RedRibbon allows the detection of up-up quadrant overlap.

sessionInfo()

sessionInfo()
#> R version 4.3.1 (2023-06-16)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Debian GNU/Linux trixie/sid
#>
#> Matrix products: default
#> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.24.so; LAPACK version 3.11.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: Europe/London
#> tzcode source: system (glibc)

13

https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-020-07003-0

#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] RedRibbon_0.4-1 data.table_1.14.6 ggrepel_0.9.3 ggplot2_3.4.1
#> [5] scales_1.2.1 kableExtra_1.3.4
#>
#> loaded via a namespace (and not attached):
#> [1] gtable_0.3.1 dplyr_1.0.10 compiler_4.3.1 Rcpp_1.0.10
#> [5] webshot_0.5.4 tidyselect_1.2.0 xml2_1.3.5 stringr_1.5.0
#> [9] assertthat_0.2.1 systemfonts_1.0.4 yaml_2.3.6 fastmap_1.1.1
#> [13] R6_2.5.1 generics_0.1.3 knitr_1.41 tibble_3.1.8
#> [17] munsell_0.5.0 DBI_1.1.3 svglite_2.1.1 pillar_1.8.1
#> [21] rlang_1.0.6 utf8_1.2.3 stringi_1.7.12 xfun_0.36
#> [25] viridisLite_0.4.1 cli_3.6.0 withr_2.5.0 magrittr_2.0.3
#> [29] digest_0.6.31 rvest_1.0.3 grid_4.3.1 rstudioapi_0.14
#> [33] lifecycle_1.0.3 vctrs_0.5.2 evaluate_0.19 glue_1.6.2
#> [37] farver_2.1.1 fansi_1.0.4 colorspace_2.1-0 rmarkdown_2.25
#> [41] httr_1.4.4 tools_4.3.1 pkgconfig_2.0.3 htmltools_0.5.4

14

	Synthetic data set
	Overlapping
	Plotting the level map
	Enrichment statistics
	Compatibility mode
	Using and computing correlation between genes

	Analysis with real data sets
	Overlap of transcriptomic analyses
	Long read analysis compared to short read analysis
	Proteomic analysis vs transcriptomic analysis

	sessionInfo()

