Supplementary Table S1. Details of publications demonstrating growth phase and other environmental stressor's effect on mutagenic mechanisms.

Mutagenic feature:	Growth phase when	Demonstrated	Ref:	NGSR stimulus:	Demonstrated in:	Ref:
	most active:	in:				
Replication infidelity	Log (replication	P. fluorescens	[1]	Increased dNTP pools	V. fischeri and V.	[2]
over genomic position	predominantly occurs	(ATCC948), V.	[2]	associated with wave-	cholerae, E. coli;	[4]
	during log phase)	fischeri, V.	[3]	like mutation rates via	also demonstrated	[5]
		cholerae, E.		genomic modifications.	in yeast.	
		coli		However, ultra-violet		
				irradiation has been		
				shown to increase		
				dNTP pools and		
				mutagenesis.		
Absence of mismatch	Log (MMR primarily	E. coli	[6]	Antibiotic (norfloxacin)	E. coli (K-12) –	[7]
repair genes	active during DNA				increases mutation	
	replication and				rate in MMR-	
	recombination)				strains, and	
					increases	
					transversion bias	
					in MMR+ strains	
Nucleoid-associated	Log (Suggested by:	B. subtilis,	[8]			
DNA topology	argued to interfere with	Escherichia	[9]			
	DNA repair proteins	(various				
	active in log phase; and	species),				
	inference that DNA	Shigella				
	replication becomes	(various				
	inaccurate in regions of	species)				
	high superhelical density)					
Cytosine deamination	Log and stationary (the		[10]	High temperature	Ex vivo	[13]
	periods of high replication		[11]			
	and transcription)		[12]			
Dcm methylation	Stationary (suggested by:	E. coli (strains	[14]	Temperature	E. coli (high temp:	[14]
	M9 minimal media + 96-	SC419 and	[15]		strain SC419, low	
	hour samples having more	SC452, also	[16]		temp: strain	
	methylation; also, strong	various from	[17]		SC452)	
	expression control of	ECOR)				
	genes by methylation in					
	stationary phase over log					
	phase observed).					
8-oxoguanine	Stationary onward	E. coli	[18]	Hydrogen peroxide	E. coli, S, enterica	[20]
formation	(Reactive oxygen species		[19]	(this engages the		[18]
	accumulate during			general stress response		[21]
	growth, resulting in			but can also change the		[22]
	increased amounts of 8-			expression of other		[23]
	oxo-guanine that			stress response		
	continues to cause			pathways, e.g. OxyR		
	mispairing in non-dividing			and heat shock		
	cells persisting with			proteins).		

	transcription later in the					
	growth cycle.)					
Transposition events	Stationary and death	P. putida	[24]	Iron/oxygen deficiency	E. coli (IS150)	[25]
		(Tn4652)				[26]

References:

- 1. Long H, Sung W, Miller SF, Ackerman MS, Doak TG, *et al.* Mutation rate, spectrum, topology, and context-dependency in the DNA mismatch repair-deficient Pseudomonas fluorescens ATCC948. *Genome Biol Evol* 2014;7:262–271.
- 2. Dillon MM, Sung W, Lynch M. Periodic Variation of Mutation Rates in Bacterial Genomes. *mBio* 2018;9:1–15.
- 3. Zhang X, Zhang X, Zhang X, Liao Y, Song L, *et al.* Spatial Vulnerabilities of the Escherichia coli Genome. *Genetics* 2018;210:547–558.
- 4. Watt DL, Buckland RJ, Lujan SA, Kunkel TA, Chabes A. Genome-wide analysis of the specificity and mechanisms of replication infidelity driven by imbalanced dNTP pools. *Nucleic Acids Res* 2015;44:1669–1680.
- 5. Gon S, Napolitano R, Rocha W, Coulon S, Fuchs RP. Increase in dNTP pool size during the DNA damage response plays a key role in spontaneous and induced-mutagenesis in Escherichia coli. *Proc Natl Acad Sci U S A* 2011;108:19311–19316.
- 6. Li G-M. Mechanisms and functions of DNA mismatch repair. Cell Res 2008;18:85–98.
- Long H, Miller SF, Strauss C, Zhao C, Cheng L, *et al.* Antibiotic treatment enhances the genome-wide mutation rate of target cells. *Proc Natl Acad Sci* 2016;113:E2498– E2505.
- 8. Warnecke T, Supek F, Lehner B. Nucleoid-Associated Proteins Affect Mutation Dynamics in E. coli in a Growth Phase-Specific Manner. *PLoS Comput Biol*;8. Epub ahead of print 2012. DOI: 10.1371/journal.pcbi.1002846.
- 9. Niccum BA, Lee H, Mohammedismail W, Tang H. The Symmetrical Wave Pattern of Base-Pair Substitution Rates across the Escherichia coli Chromosome Has Multiple Causes. *mBio*;10.
- 10. Bhagwat AS, Hao W, Townes JP, Lee H, Tang H, *et al.* Strand-biased cytosine deamination at the replication fork causes cytosine to thymine mutations in Escherichia coli. *Proc Natl Acad Sci U S A* 2016;113:2176–2181.
- 11. Francino MP, Ochman H. Deamination as the Basis of Strand-Asymmetric Evolution in Transcribed Escherichia coli Sequences. *Mol Biol Evol* 2001;18:1147–1150.
- 12. Beletskii A, Bhagwat AS. Transcription-induced mutations: Increase in C to T mutations in the nontranscribed strand during transcription in Escherichia coli. *Proc Natl Acad Sci* USA 1996;93:13919–13924.

- 13. Lewis CA, Crayle J, Zhou S, Swanstrom R, Wolfenden R. Cytosine deamination and the precipitous decline of spontaneous mutation during Earth's history. *Proc Natl Acad Sci* 2016;113:8194–8199.
- 14. **Breckell GL, Silander OK**. Growth condition-dependent differences in methylation imply transiently differentiated DNA methylation states in Escherichia coli. *G3 GenesGenomesGenetics* 2023;13:jkac310.
- 15. Cherry JL. Methylation-Induced Hypermutation in Natural Populations of Bacteria. J Bacteriol 2018;200:e00371-18.
- Militello KT, Simon RD, Qureshi M, Maines R, Van Horne ML, et al. Conservation of Dcm-mediated Cytosine DNA Methylation in Escherichia coli. *FEMS Microbiol Lett* 2012;328:78–85.
- 17. Kahramanoglou C, Prieto AI, Khedkar S, Haase B, Gupta A, *et al.* Genomics of DNA cytosine methylation in Escherichia coli reveals its role in stationary phase transcription. *Nat Commun* 2012;3:886.
- 18. Alhama J, Ruiz-Laguna J, Rodriguez-Ariza A, Toribio F, López-Barea J, *et al.* Formation of 8-oxoguanine in cellular DNA of Escherichia coli strains defective in different antioxidant defences. *Mutagenesis* 1998;13:589–594.
- 19. Sekowska A, Wendel S, Fischer EC, Nørholm MHH. Generation of mutation hotspots in ageing bacterial colonies. *Sci Rep* 2016;6:4–10.
- 20. Battesti A, Majdalani N, Gottesman S. The RpoS-Mediated General Stress Response in Escherichia coli. *Annu Rev Microbiol* 2011;65:189.
- 21. Storz G, Spiro S. Sensing and Responding to Reactive Oxygen and Nitrogen Species. In: *Bacterial Stress Responses*. John Wiley & Sons, Ltd. pp. 157–173.
- 22. Fulda S, Gorman AM, Hori O, Samali A. Cellular Stress Responses: Cell Survival and Cell Death. *Int J Cell Biol* 2010;2010:214074.
- Fasnacht M, Polacek N. Oxidative Stress in Bacteria and the Central Dogma of Molecular Biology. *Front Mol Biosci*;8. https://www.frontiersin.org/articles/10.3389/fmolb.2021.671037 (2021, accessed 22 March 2023).
- 24. **Ilves H, Hõrak R, Kivisaar M**. Involvement of ςS in Starvation-Induced Transposition of Pseudomonas putidaTransposon Tn4652. *J Bacteriol* 2001;183:5445–5448.
- 25. **Maharjan RP, Ferenci T**. A shifting mutational landscape in 6 nutritional states: Stressinduced mutagenesis as a series of distinct stress input–mutation output relationships. *PLoS Biol*;15. Epub ahead of print June 2017. DOI: 10.1371/journal.pbio.2001477.
- 26. Shewaramani S, Finn TJ, Leahy SC, Kassen R, Rainey PB, *et al.* Anaerobically Grown Escherichia coli Has an Enhanced Mutation Rate and Distinct Mutational Spectra. *PLOS Genet* 2017;13:e1006570.