596	SUPPORTING INFORMATION
597	
598	Photochemical Model Assessment of Single Source NO_2 and O_3 Plumes Using
599	Field Study Data
600	
601 602 603 604 605 606 607 608 609 610	Kirk R. Baker, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA Lukas Valin, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA Jim Szykman, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA Laura Judd, NASA Langley Research Center, Hampton, Virginia, USA Qian Shu, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA Bill Hutzell, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA Sergey Napelenok, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA Ben Murphy, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA Vickie Connors, Virginia Commonwealth University, Richmond, VA, USA
611	

- Table S-1. Models and source attribution options used for each case study. The grid resolution is also
- 613 noted for each combination of model and source attribution approach.

Case Study	Brute-Force Sensitivity	Source Apportionment	DDM
Hopewell	CMAQ 12, 4, 2, and 1 km	CMAQ ISAM option 1, 2, 3, 4, and 5 at 2 km	CMAQ 2 km
	CAMx 2 km	CAMx OSAT and APCA at 2 km	
TVA	CMAQ 2 km	CMAQ ISAM option 1, 2, 3, 4, and 5 at 2 km	CMAQ 2 km
	CAMx 2 km	CAMx OSAT and APCA at 2 km	
Edgewater	CMAQ 4, 2, and 1 km		

- Table S-2. A description of the various ISAM options available in the CMAQ model. Option 5 was a
- 620 combination of option 2 for NO₂ limited conditions and option 4 for VOC limited conditions. This table
- also includes species used to influence source attribution for each option.

INTEGER :: ISAM_SPC_BIAS = 2	<pre>! which chemistry are biased in apportioning reaction yields ! to source reactant ! 1 for none so divided equally between sources' reactant ! 2 for all products apportioned to sources with NO, NO2, NO3, HONO, ANO3 ! equally if reactants are neither or both ! 3 for all products apportioned to sources with Case 2 plus HCHO, CH3CHO, ! Acetone, Lumped Ketones, Isoprene peroxy radical, acetyl peroxy radical and peroxy ! radical operators (XO2 and XO2H) ! equally if reactants are neither or both ! 4 for all products apportioned to sources with HCHO, CH3CHO, ! Acetone, Lumped Ketones, Isoprene peroxy radical, acetyl peroxy radicals and peroxy ! radical operators (XO2 and XO2H) ! equally if reactants are neither or both ! 4 for all products apportioned to sources with HCHO, CH3CHO, ! Acetone, Lumped Ketones, Isoprene peroxy radical, acetyl peroxy radicals and peroxy ! radical operators (XO2 and XO2H) ! equally if reactants are neither or both ! 5 to switch between Cases 2 and 3 based on whether ! production H2O2 over production HNO3 less than VOC_NOX_TRANS that ! has default value of 0.35</pre>							
REAL :: VOC_NOX_TRANS = 0.35	1 H202 to	o HNO3 mark	ing transit	ion from	NOx 1	to VOC limiting O3 production		
NO, NO2, NO3,	Option 1, NO, NO, NO,	Option 2, YES, YES, YES,	Option 3, YES, YES, YES,	Option NO, NO, NO,	4, IF(IF(IF(Option 5 PH202/PHN03 > VOC_NOX_TRANS)(YES)else(YES) PH202/PHN03 > VOC_NOX_TRANS)(YES)else(YES) PH202/PHN03 > VOC_NOX_TRANS)(YES)else(YES)		
HONO, ANO3[i,j], HCHO,	NO, NO, NO,	YES, YES, NO,	VES, VES, VES,	NO, NO, YES,	IF(IF(IF(PH202/PHN03 > VOC_NOX_TRANS)(YES)else(YES) PH202/PHN03 > VOC_NOX_TRANS)(YES)else(YES) PH202/PHN03 > VOC_NOX_TRANS)(NO)else(YES)		
CH3CH0, Acetone,	NO, NO,	NO, NO,	YES, YES,	YES, YES,	IF(IF(PH202/PHH03 > VOC_NOX_TRANS){ NO}else(YE5) PH202/PHH03 > VOC_NOX_TRANS){ NO}else(YE5)		
Isoprene peroxy radical, Acetyl peroxy radicals.	NO, NO,	NO, NO,	YES, YES, YES,	YES, YES,	IF(IF(PH202/PH003 > VCC_NCX_TRANS)(NO)else(YES) PH202/PHN03 > VCC_NCX_TRANS)(NO)else(YES) PH202/PH003 > VCC_NCX_TRANS)(NO)else(YES)		
peroxy operators (XO2 and XO2H),	NO,	NO,	YES,	YES,	IF(PH202/PHN03 > VOC_NOX_TRANS)(NO}else(YES)		

623

- 627 Table S-3. Aggregated model performance metrics for chemically speciated PM_{2.5} components made as
- 628 part of the Chemical Speciation Network (CSN).

3	Network	N	Mean Bias	Mean Error	Normalized Mean Bias (%)	Mean Error	r ²
Sculfate ion		0	-0.30	0.36	-26.08	21.66	0.86
	CON	9	-0.30	0.30	-20.08	31.00	0.80
o nitrate ion	CSN	9	-0.14	0.14	-88.61	88.61	0.67
5 elemental carbon	CSN	9	-0.11	0.13	-29.16	33.07	0.26
5 organic carbon	CSN	9	0.41	0.52	15.72	19.95	0.87
5 ammonium ion	CSN	9	-0.02	0.09	-9.63	35.69	0.83
	s sulfate ion nitrate ion s elemental carbon s organic carbon s ammonium ion	NetworkSulfate ionCSNSulfate ionCSNSulfate ionCSNSulfate ionCSNSulfate ionCSNSulfate ionCSNSulfate ionCSNSulfate ionCSNSulfate ionCSNSulfate ionCSN	NetworkNSulfate ionCSNSulfate ionSN	NetworkN(μg/m³)Solfate ionCSN9-0.30Solfate ionCSN9-0.14Solfate ionCSN9-0.14Solfate ionCSN9-0.11Solfate carbonCSN90.41Solfate carbonCSN9-0.02	Mean BiasMean ErrorNetworkN(μg/m³)5 sulfate ionCSN9-0.306 sulfate ionCSN9-0.146 sulfate ionCSN9-0.146 sulfate ionCSN9-0.116 sulfate ionCSN9-0.116 sulfate ionCSN9-0.116 sulfate ionCSN90.416 sulfate ionCSN90.026 sulfate ionCSN9-0.02	Mean BiasMean ErrorNormalizedNetworkN(µg/m³)(µg/m³)Mean Bias (%)Sulfate ionCSN9-0.300.36-26.08So intrate ionCSN9-0.140.14-88.61So elemental carbonCSN9-0.110.13-29.16So organic carbonCSN90.410.5215.72So ammonium ionCSN9-0.020.09-9.63	Mean Bias Mean Error Normalized Mean Error Normalized Network N (μg/m³) (μg/m³) Mean Bias (%) Mean Error Soulfate ion CSN 9 -0.30 0.36 -26.08 31.66 Soulfate ion CSN 9 -0.14 0.14 -88.61 88.61 Soulfate ion CSN 9 -0.11 0.13 -29.16 33.07 Souganic carbon CSN 9 0.41 0.52 15.72 19.95 Sourganic monium ion CSN 9 -0.02 0.09 -9.63 35.69

- Table S-4. Aggregated model performance metrics for MDA8 O₃ for all model-observed pairs, a subset
- 634 where modeled values exceed 60 ppb, and a subset where observed values exceed 60 ppb.

							Normalized	
				Mean Bias	Mean Error	Normalized	Mean Error	
	Specie	Network	Ν	(ppb)	(ppb)	Mean Bias (%)	(%)	r ²
	MDA8O3	AIRS - ALL	385	7.12	7.68	15.58	16.80	0.65
	MDA8O3	AIRS - Model > 60 ppb	68	7.81	8.71	13.81	15.40	0.15
635	MDA8O3	AIRS - Obs. > 60 ppb	23	-0.63	4.05	-0.96	6.22	0.21

- _ _ _

- 640 Figure S1. Map of area around Hopewell, Virginia, USA. Orange sources were included in the Hopewell
- 641 complex. The VCU pandora location is also shown.

- Figure S2. Modeled and measured O₃ and NO₂ in a plume downwind of the TVA Cumberland power
- 644 plant during July 1999. Model predictions are shown for CAMx brute-force difference (zero-out) and

each option in the CAMx source apportionment approach (OSAT and APCA).

646

647

Figure S4. Daily prediction-observation pairs for speciated PM_{2.5} components and MDA8 O₃. Model
predictions were extracted from the CMAQ 2 km simulation.

- Figure S5. July 2017 episode average surface level 2 km modeled (CMAQ) primary and secondary
- 660 pollutant impacts from Hopewell.

- Figure S6. July 2017 episode average surface level 4 km modeled (CMAQ) primary and secondary
- 664 pollutant impacts from Hopewell.

Figure S7. July 2017 episode average surface level 12 km modeled (CMAQ) primary and secondarypollutant impacts from Hopewell.

- Figure S8. CMAQ 2 km (top panels) ISAM model OPTION 1 predicted surface level NO_x at the time of the
- July 8, 2017 afternoon aircraft measurements. Open circles show the location of routine surface monitor
- 673 sites in the area.

- Figure S9. CMAQ 2 km (top panels) ISAM model OPTION 2 predicted surface level NO_x at the time of the
- July 8, 2017 afternoon aircraft measurements. Open circles show the location of routine surface monitor
- sites in the area.

- 680
- 681
- 682

- Figure S10. CMAQ 2 km (top panels) ISAM model OPTION 3 predicted surface level NO_x at the time of
- the July 8, 2017 afternoon aircraft measurements. Open circles show the location of routine surface
- 685 monitor sites in the area.

- Figure S11. CMAQ 2 km (top panels) ISAM model OPTION 4 predicted surface level NO_x at the time of
- 691 the July 8, 2017 afternoon aircraft measurements. Open circles show the location of routine surface
- 692 monitor sites in the area.

- 693
- 694
- 695

- Figure S12. CMAQ 2 km (top panels) ISAM model OPTION 5 predicted surface level NO_x at the time of
- the July 8, 2017 afternoon aircraft measurements. Open circles show the location of routine surface
- 698 monitor sites in the area.

- 699
- 700
- 701

- Figure S13. CMAQ 2 km (top panels) DDM model predicted surface level NO_x at the time of the July 8,
- 2017 afternoon aircraft measurements. Open circles show the location of routine surface monitor sitesin the area.

- Figure S14. CMAQ 2 km (top panels) ISAM model OPTION 1 predicted surface level O₃ at the time of the
- July 8, 2017 afternoon aircraft measurements. Open circles show the location of routine surface monitorsites in the area.

/13

- Figure S15. CMAQ 2 km (top panels) ISAM model OPTION 2 predicted surface level O₃ at the time of the
- July 8, 2017 afternoon aircraft measurements. Open circles show the location of routine surface monitor
- sites in the area.

- Figure S16. CMAQ 2 km (top panels) ISAM model OPTION 3 predicted surface level O₃ at the time of the
- July 8, 2017 afternoon aircraft measurements. Open circles show the location of routine surface monitor
- sites in the area.

726

- Figure S17. CMAQ 2 km (top panels) ISAM model OPTION 4 predicted surface level O₃ at the time of the
- July 8, 2017 afternoon aircraft measurements. Open circles show the location of routine surface monitor
- 730 sites in the area.

- Figure S18. CMAQ 2 km (top panels) ISAM model OPTION 5 predicted surface level O₃ at the time of the
- July 8, 2017 afternoon aircraft measurements. Open circles show the location of routine surface monitor
- sites in the area.

- 738
- 739
- 740

- Figure S19. CMAQ 2 km (top panels) DDM model predicted surface level O₃ at the time of the July 8,
- 2017 afternoon aircraft measurements. Open circles show the location of routine surface monitor sites
- in the area. Sensitivities based on NO_x emissions only.

- Figure S20. CMAQ 2 km (top panels) DDM model predicted surface level O₃ at the time of the July 8,
- 748 2017 afternoon aircraft measurements. Open circles show the location of routine surface monitor sites
- in the area. Sensitivities based on NO_x and VOC emissions. Boundary inflow also includes influence from
- 750 O_3 in addition to NO_X and VOC species.

