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Supplementary Note 1: SEACells algorithm 

Supplementary Note 1.1: Why kernel archetype analysis best is suited for metacells 
Traditionally, archetypal optimization has been applied to reconstruct the original data matrix, 𝑋, in order to study 
the geometry of cell distribution and to characterize biology at the boundaries of the cellular phenotypic space1-
3. In such settings, the phenotypic space is described using a linear convex hull approximation technique that 
does not necessarily consider any non-linear structure within the phenotypic space. As such, the “internal” 
regions of the cell phenotype space are completely ignored (Extended Fig. 1B, highlighted region). 

Archetype analysis in this kernel space is well suited to identify metacells. Kernel space is a Cartesian space, 
where the “phenotype” of a cell is defined by its similarity—quantified in the kernel matrix (M)—to every other 
cell. By definition, similarity scores are between 0 and 1; thus, all cells are in the positive quadrant, encapsulated 
by a hypersphere of radius strictly less than sqrt(N), where N is the number of cells. Intuitively, the kernel trick is 
casting highly similar cells into tiny clusters along a cone emanating from the origin. Within each small group of 
highly similar cells, the most representative cell of the group has to be most similar to every other cell in that 
group. In other words, the best representative of the unique cellular state of the highly similar cell group is the 
one that is most connected to every other cell in the group. We claim that such a best candidate is likely to exist 
at the extreme (corner) in the kernel space.  

Consider the blue cells in the toy example in Extended Fig. 1C. The cell (i) that is furthest from the origin (i.e., 
the extreme) will have the highest L2-norm defined as ∑ 𝑀(𝑖, 𝑗)!"

#$% . This suggests that for a set of highly similar 
cells in this kernel space, which by construction lie close to each other, the most connected cell is also the most 
extreme cell. The most connected cell is also the best candidate for a metacell. Therefore, to identify metacells 
in this kernel space, we need to look for cells at the extreme, which led us to using archetype analysis. 
 
Furthermore, the construction of the kernel utilizes the k-nearest neighbor graph to “unfold” any non-linear 
structure in the phenotypic space, making the interior regions of the manifold accessible for characterization 
(Extended Fig. 1D). As a result, the number of archetypes used in SEACells is substantially greater than what 
is used in typical archetypal analysis. The greater number of archetypes in addition to the strict definition of cell-
cell similarity using adaptive Gaussian kernels creates a large number of pockets of highly similar cells, each 
representing a unique biological state (Extended Fig. 1E), making kernel archetypal analysis ideally suited to 
identify metacells representing biological states.  

Supplementary Note 1.2: Optimization convergence 
Archetypal analysis is an iterative procedure, whose termination depends on a pre-defined convergence criteria 
on the reconstruction error. The reconstruction error, 𝑅, is defined as the norm of the difference between the true 
kernel matrix, 𝑀, and the reconstructed kernel matrix, 𝑀* = 𝑀𝐵𝐴. Formally, for iteration 𝑖, the reconstruction error 
is   

𝑅(') 	= 	 ||	𝑀	 − 	𝑀𝐵(')𝐴(')||!	,	

where 𝐴(') and 𝐵(') are the cell assignment and archetype weight matrices on the 𝑖*+ iteration respectively. 

A user-specified convergence percentage, typically on the order of 1e-5, is supplied to the algorithm, and used 
to calculate the convergence threshold, 𝑡, as the product between the user-specified convergence percentage 
and the initial reconstruction error, 𝑅(,). SEACell converges when the difference between the reconstruction 
error on successive iterations falls below the computed convergence threshold. Formally, SEACells converges 
when  

||𝑅(') − 𝑅('-%)|| 	< 	𝑡	. 
 



Supplementary Note 2: Data Processing  

CD34+ bone marrow multiome data - RNA modality             
Count matrices for the two samples were generated using CellRanger ARC4. A total of 13946 barcodes were 
identified as cell containing barcodes by CellRanger ARC. Starting with the filtered barcode matrices from 
CellRanger ARC, barcodes from the bottom and top 2.5th percentile in molecule counts were excluded. Further 
cells with less than 0.4 fraction of reads in peaks in ATAC modality (3% of total) and greater than 25% of reads 
from mitochondria from the RNA modality were excluded from downstream analysis (2.7% total). The specified 
cutoffs were also chosen based on the respective empirical distributions to remove outliers. 

Data was generated in two lanes. For each sample, scrublet5 with default parameters was used to compute 
doublet scores, and a cluster of cells with high doublet scores was removed from downstream analysis (5% total; 
note that CD34+ has a continuous nature that can lead to false doublet calls). Following the filtering steps, the 
two samples were concatenated and normalized for molecule counts by dividing raw counts by the total counts 
per cell. The normalized data was multiplied by the median of total counts across cells to avoid numerical issues 
and log-transformed with a pseudocount of 0.1. Feature selection was then performed to select the top 2500 
most highly variable genes (using scanpy.pp.highly_variable_genes), which was used as input for 
principal component analysis with 50 components. The parameters were chosen based on prior analysis of a 
CD34+ scRNA-seq dataset6.  

The PCs were used as input for generating UMAPs and clustering with PhenoGraph7. The preprocessing and 
analysis were undertaken using scanpy8 Diffusion components were generated using the adaptive kernel 
following the functions in the Palantir package6 and imputation of gene expression was performed using MAGIC9. 
Each cluster was annotated with specific cell types using the markers defined in ref.6, and mature B cells were 
excluded from the analysis (35% of total). Highly variable gene selection, PCA, clustering, visualizations, 
diffusion maps and imputation were repeated following B-cell exclusion. A total of 6881 cells were retained after 
all the filtering steps. Note that imputation was only used to compute single-cell gene expression trends in 
Supplementary Fig. 4; it was not used for metacell computation or other downstream analyses.  

CD34+ bone marrow multiome data - ATAC modality 
To analyze the ATAC modality, we used the ArchR pipeline10 on the cell subset that remained after filtering in 
the RNA modality, employing 100k instead of the default 25k features. In ArchR, data was normalized using 
IterativeLSI and SVD to determine a lower-dimensional representation of the sparse data. The first SVD 
component showed greater than 0.97 correlation with log library size and was excluded from downstream 
analysis. SVD was used as input to cluster the data with PhenoGraph and visualized using UMAPs. The modified 
ArchR pipeline (described in Methods, “Peak calling”) was used for peak calling. 

T-cell depleted multiome data 
The preprocessing and analysis of RNA and ATAC modalities was performed following the steps outlined for the 
CD34+ bone marrow data. NK cells, mature monocytes and B cells were excluded from the analysis in 
Supplementary Fig. 7. A total of 7439 cells were retained after all the filtering steps. 

PBMC multiome data  
Counts for the PBMC multiome data were downloaded from 10x Genomics. The preprocessing and analysis of 
RNA and ATAC modalities was performed following the steps outlined for the CD34+ bone marrow data. Cell-
type annotation was performed using the marker genes in ref.11 and no cell types were excluded from the 
analysis. A total of 11543 cells were retained after all the filtering steps. 



Lung adenocarcinoma 
Fully annotated count matrices for single-cell profiling of lung adenocarcinoma in patient samples were 
downloaded from ref12. All non-immune cells contained in the data were used in the analyses, comprising a total 
of 4770 cells. Each patient sample was individually processed by performing normalization on raw counts, 
followed by log transformation. Following the procedure outlined in the manuscript, the 1500 most highly variable 
genes were identified, and principal components were computed from the expression of these genes.   

Bone marrow mononuclear cells scATAC-seq dataset 
Fragment files for single-cell ATAC-seq data of bone marrow mononuclear cells and CD34+ cells (total of 5 
samples) and the respective cell type annotations were downloaded from GEO26. All the cells described in the 
manuscript13 were used except for T cells, since they do not differentiate in the bone marrow. The preprocessing 
and peak calling followed the same procedure outlined for the ATAC modality of the CD34+ bone marrow 
multiome dataset. A total of 19438 cells were retained after all the filtering steps (Supplementary Fig. 7). 

Mouse gastrulation atlas  
Mouse gastrulation data was downloaded as scanpy anndata objects from ref.14 and was already normalized, 
batch corrected and included principal components across all cells. This dataset contains approximately 116,000 
single cells across a range of cell, including endothelial cells among the cell types with fewest counts (Extended 
Fig. 2A). The pre-computed principal components were used as input for SEACells. 

PBMC CITE-seq data 
10x PBMC CITE-seq dataset was downloaded from refs.15,16. This data contained manually curated coarse and 
fine-grained cell type annotations based on ADT data and was used to verify whether SEACells metacells 
identified using the RNA modality are consistent with the cell types based on ADT data. The dataset contains 
8201 cells. SEACells was applied using the heuristic of one metacell for every 75 cells, for a total of 109 
metacells, to recover metacells using the RNA modality (Extended Fig. 18B,C). 
 
  



Supplementary Note 3: Metacells methods comparison	

An ideal metacell is compact (it exhibits low variance amongst constituent cells), well-separated (it remains 
distant from cells of a neighboring metacell) and homogenous (it has high cell-type purity). Below, we develop 
metrics to measure these properties, introduce currently available algorithms for metacell specification, and 
benchmark methods on CD34+ bone marrow and PMBC data from both RNA and ATAC modalities. We also 
compare SEACells with imputation for the purposes of finding gene-accessibility peak correlations. 

 
Supplementary Note 3.1:  Metrics for meta-cell benchmarking and comparison  
We used diffusion components (DCs)6,17 to quantify the compactness and separation of metacells. Each DC 
represents a key axis of biological variance in both continuous trajectories and discrete states and thus provides 
an ideal platform to quantify metacell qualities. We first compute DCs using single-cell data. For scRNA-seq, 
DCs are computed based on principal components, and for scATAC-seq, based on the singular value 
decomposition following preprocessing of single-cell data (described in Supplementary Note 2). The number of 
components can be chosen by the eigengap statistic. We noted that across datasets and modalities, the number 
of DCs ranged from 6–8. For consistency and simplicity, we fixed the number of DCs as 10 for all evaluations.  

Compactness 
Compactness provides a measure of how cell homogeneity within a metacell. 

For each metacell, the variance in each DC dimension is computed across the cells that constitute that metacell. 
The average variance across components is reported as the compactness. Since DCs are orthonormal, we can 
compute the variance of each component separately. The average variance ensures that the homogeneity of 
cells that constitute the metacell are measured across all axes of biological variance.  

For a metacell, 𝑠, the compactness, 𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠(𝑠) is formally defined as follows.  

𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠(𝑆) 	= 	
1
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where 𝐷𝐶 ∈ 𝑅5×4 where is the matrix of diffusion components computed using single-cell data. 

A high quality metacell should have a low compactness score indicating low variability or equivalently high 
homogeneity amongst the cells that constitute the metacell.  

Separation 
To assess whether metacells are distinct from each other, we evaluated the separation between neighboring 
metacells using diffusion components.  For each metacell, diffusion embedding is determined as the average of 
the cells that constitute the metacell. Euclidean distance in the diffusion embedding between the metacell and 
its nearest neighbor is reported as the separation of the metacell.  A greater distance between metacells 
determined in diffusion space indicates a better separation between them.  

Cell-type purity 
Cell-type purity is a measure of the consistency of cell types amongst cells that constitute a metacell, and was 
introduced to assess the quality of SuperCell18. Cell-type purity is computed as the proportion of cells which 
belong to the modal cell type in a metacell. Note that purity metric is applicable and valid when the biological 
system under consideration comprises distinct cell types with distinct functions, such as PBMCs. Cell-type purity 
is not a reliable metric for continuous trajectories since the different compartments are merely a partitioning of 
the trajectory and do not necessarily represent well-separated cell types.  



Supplementary Note 3.2:  Alternative methods and their application 

MetaCell (Baran et al.) 
The MetaCell19 approach uses a non-parametric graph algorithm to partition scRNA-seq data into distinct 
metacells. This algorithm constructs a balanced kNN graph, which is subsampled multiple times into dense 
subgraphs in order to determine metacell partitions. Outlier cells are identified, and the final output is the 
assignment of cells to metacells. MetaCell was run using the default processing steps outlined in 
https://tanaylab.github.io/metacell/articles/a-basic_pbmc8k.html with raw count data. 

We ran MetaCell with default parameters on three scRNA-seq datasets—CD34+ bone marrow, PBMC and lung 
adenocarcinoma, to evaluate performance in the contexts of continuous differentiation, discrete cell states and 
cancer, respectively. For each dataset, MetaCell automatically infers the number of metacells and discards a 
subset of the data as outliers. To compare faithfully across methods, we used the same number of partitions as 
input to SEACells and SuperCell on the same subset of data. 

To apply MetaCell to scATAC-seq data, the peak count matrices were modified by mapping peaks to the nearest 
gene and aggregating all peaks within each gene to create a pseudo cell-by-gene count matrix as input. 
Following this representation, we ran MetaCell on the CD34+ bone marrow and PBMC scATAC-seq datasets 
with default parameters.  

SuperCell (Bilous et al.) 
SuperCell18 uses the walktrap algorithm, a community detection approach to partition nodes in a single-cell graph 
into a predefined number of metacells using random walks. The walktrap algorithm constructs a single-cell graph, 
placing edges between cells with similar transcriptomic profiles, and merges nodes which are highly connected. 
In essence, SuperCell is thus a community detection algorithm with higher resolution, and performs better than 
typically used algorithms such as louvain for metacell identification. 

The number of metacells is a parameter of the SuperCell algorithm, similar to SEACells. SuperCell was run using 
the default parameters specified in https://github.com/GfellerLab/SuperCell, with the graining level chosen to 
obtain the same number of partitions as those obtained by Baran et al. MetaCell, in order to compare methods 
across similar levels of granularity. We ran SuperCell on the CD34+ bone marrow and PBMC scRNA-seq 
datasets using default parameters.  

Since SuperCell requires a gene expression matrix as input, we applied it to CD34+ bone marrow and PBMC 
scATAC-seq data using the same aggregation approach we used for running MetaCell.  

Metacell-2 (Ben-kiki et al.) 
Metacell-2 is an update of the MetaCell algorithm, that uses a recursive divide-and-conquer approach to scale 
the identification of metacells to atlas-scale data20. We ran the Metacell-2 algorithm with the default parameters 
specified at https://github.com/tanaylab/metacells. 

Supplementary Note 3.3:  Benchmarking and comparison 
The number of metacells in MetaCell and Metacell-2 are automatically determined and cannot be controlled by 
a user-defined parameter. In our core benchmarking dataset, we observed that Metacell-2 led to a substantially 
higher number of metacells in each dataset.  



Dataset No. metacells – MetaCell (Baran et al.) No. metacells – Metacell-2 (Ben-kiki et al.) 

PBMC ATAC 98 408 

PBMC RNA 98 424 

CD34 ATAC 86 285 

CD34 RNA 65 297 
 
Therefore, to ensure a fair comparison of methods, we ran separate benchmarks using the number of metacells 
identified by each of these two methods. In both bone marrow and peripheral blood ATAC datasets, we found 
that SEACells metacells are substantially more compact and better separated than MetaCell and SuperCell 
metacells (Fig. 4C, Extended Fig. 7A,B), especially in low cell-density regions. SuperCell does show marginally 
better separation in high density regions, since it creates a few very large partitions containing hundreds of cells 
in these regions (Supplementary Fig. 11C). 

While the different approaches are qualitatively similar using the RNA modality (Supplementary Fig. 12B,C), 
SEACells metacells are significantly more compact than SuperCell and Metacell-2 (P < 1e-5, Wilcoxon rank-sum 
test) and marginally more compact than MetaCell (Extended Fig. 7C). Conversely, SEACells RNA metacells 
are significantly better separated than MetaCell and Metacell-2 metacells (P < 1e-2, Wilcoxon rank-sum test), 
whereas the separation of SuperCell is artificially boosted by the large partition size in high density regions 
(Extended Fig. 7D). Similar to ATAC, SEACells metacells have greater cell-type purity in the PBMC RNA data, 
which comprises distinct cell types (Extended Fig. 6A). 

Comparison to imputation 
scVI21 and peakVI22 were used for imputation of RNA and ATAC-seq data, respectively, to determine their ability 
to identify strong gene-peak correlations in the CD34+ bone marrow dataset. By default, peakVI requires a peak 
to be accessible in at least 5% of cells, which led to the filtering of 85% of peaks in the data (~35k peaks out 
~240k were retained). We determined gene-peak associations using the same procedure we employed for 
SEACells. Specifically, peaks within +/-100kb of the gene were identified, and the correlations between peak 
accessibility and gene expression were computed using imputed single-cell data. Since a measure of 
significance of correlation is unavailable, peaks with correlation > 0.1 were nominated as candidate regulatory 
regions. ~20k out of the ~35k peaks were identified as candidate regulatory regions. By comparison, SEACells 
analysis identified ~75k peaks of the ~240k peaks as significantly correlated. Imputed accessibility of correlated 
peaks was aggregated to derive gene scores and compared with imputed gene expression (Extended Fig. 3D).



Supplementary Note 4: Characterization of hematopoietic dynamics 
Accessibility distributions for metacells in Fig. 5D were computed separately for each metacell using the fraction 
of open peaks in highly variable genes. For the single-cell pseudotime bins in Fig. 5D, cells were categorized 
into one of forty bins based on their Palantir pseudotime order, which ranged from 0.0–0.82 for the erythroid 
lineage. We then created 40 equal sized bins with a bin size of 0.02 and assigned each cell to the respective 
bin. Fragments that belong to all cells in a bin were pooled and open peaks identified using the Poisson 
procedure.  

Accessibility trends 
Gene accessibility trends were determined using generalized additive models (GAMs)23. A GAM was fit for gene 
accessibility trend as a function of the Palantir pseudotime for each gene. Gene accessibility of 𝑔 in cell 𝑖, 𝑦7' is 
fit as  

𝑦7'	 = 𝛽8 + 𝑓(𝜏') , 

where 𝑖 is a cell along the relevant lineage, 𝜏' is the Palantir pseudo-temporal ordering of cell 𝑖. Cubic splines 
were used as the smoothing functions, since they are effective at capturing non-linear relationships. The 
pseudotime was then divided into 150 equally sized bins, and the smooth trend was derived by using the fit from 
the GAM to predict the accessibility of the gene at each bin. 

Gene ontology analysis 
Gene ontology analysis (Fig. 5E) was performed to identify enriched ontologies in genes with increasing or 
decreasing accessibility, measuring enrichment using the hypergeometric test. The “c7: immunologic signature” 
gene sets from Molecular Signature Database (MSigDB) were used 
(http://software.broadinstitute.org/gsea/msigdb/index.jsp). 

Motif enrichments in genes with changing accessibility  
Predicted TF binding sites in each peak were determined using FIMO24 using default parameters and the cisBP 
v2 motif database25. Hypergeometric tests were used to identify the most enriched motifs in peaks with increasing 
or decreasing accessibility using all the peaks as the background. 
  



Supplementary Figures 
 

 
 

Supplementary Fig. 1: GATA2 locus accessibility. 
A. GATA2 locus accessibility profiles of a random sample of single MEP cells, highlighting the noise and sparsity 

of single-cell ATAC-seq data. Top row represents an aggregate of 384 MEP cells; each other row represents 
an individual cell. 

B. Accessibility landscape of the GATA2 locus, across all hematopoietic cell types. 
Highlighted peaks correlate significantly with GATA2 expression (Two-sided nominal P < 0.1, Empirical null 
distribution). 
  



 
 

Supplementary Fig. 2: SEACells workflow for scRNA-seq and scATAC-seq data. 
scRNA-seq and scATAC-seq count matrices are preprocessed differently, using procedures appropriate for the 
noise and biases of each data type. Principal component analysis (PCA) and singular value decomposition (SVD) 
are then used to generate a lower-dimensional representation for RNA and ATAC data, respectively. Next, a 
density adaptive kernel is constructed using the reduced dimensional representations, and input to the SEACells 
algorithm for metacell construction. 
  



 

 
 

Supplementary Fig. 3: Metacells are consistent across data modalities and enable cell type identification 
in PBMC data. 
A,B. UMAPs based on combined ATAC and RNA metacells derived from the PBMC multiome dataset. ATAC 

metacells were projected on RNA metacells (A) or RNA metacells were projected on ATAC metacells (B) 
(Methods). 

C. Expression of key PBMC cell type markers per RNA metacell.  
D. Gene scores of key PBMC cell type markers per ATAC metacell   



 

Supplementary Fig. 4: Gene expression and accessibility trends during human hematopoiesis. 
A. Single-cell RNA UMAP of a CD34+ bone marrow multiome dataset. Cells colored by pseudotime and 

differentiation potential values, computed by Palantir on single cells using RNA data. 
B. Metacell RNA UMAP of dataset in (A). Cells colored by pseudotime and differentiation potential values, 

computed by Palantir on RNA data corresponding to ATAC-derived metacells. 
C. Gene expression trends at single-cell (left) and metacell (right) resolutions. MAGIC-imputed data was used 

for plotting single-cell trends. 
D. Same as (C), for gene accessibility. CD34 accessibility trends from single-cell data do not monotonically 

decrease across all lineages due to noise in single-cell ATAC measurements. 
  



 
 
Supplementary Fig. 5: Metacell identification from archetypal analysis  
 
A. UMAPs of the four core benchmarking datasets colored by the maximal assignment weight for each cell. The 

weights are determined using the matrix A in kernel archetypal analysis (Fig. 1G).  
B. Stacked bar plots to visualize the proportion of cells with the respective assignment weights. 
 
  



 
 
 
 
 
 



Supplementary Fig. 6: Robustness analysis of SEACells metacells 
 
A. Heatmaps showing the normalized mutual information (NMI)  score for different initializations of the SEACells 

algorithm for the four core benchmarking datasets. NMI is a qualitative measure to compare the consistency 
of clustering algorithms  

B. Heatmaps showing NMI scores for different number of metacells for the core benchmarking datasets. 
C. Left: Illustration of kernel archetypal analysis partitioning the cells into three archetypes. The most 

representative cell for each archetype is highlighted in red. The convex hull spanned by the archetypes is 
shown as in dotted red lines. Right: Archetypal analysis with greater number of archetypes as the parameter 
on the same dataset leads to tighter approximation of the convex hull but will also lead to cells being assigned 
non-trivially to multiple archetypes based on proximity.  

D. Left: Histograms showing the distribution of the number of non-trivial SEACell assignments per cell for the 
CD34+ bone marrow RNA dataset. Right: Heatmap showing the top 5 assignments for each cell. Results are 
shown for CD34+ bone marrow RNA dataset.  

E. Stacked bar plots showing the number of non-trivial assignments per cell with an increasing number of 
metacells. Results are shown for CD34+ bone marrow RNA dataset. 

F. Comparison of diffusion distance between primary and 2nd, 3rd non-trivial SEACell assignments. Null is 
derived as the 2.5th percentile of distance SEACell distances. All illustrations were generated using the 
CD34+ bone marrow RNA dataset. Box plots display median, 25th(Q1) and 75th (Q3) percentiles; whiskers 
extend to the furthest datapoint within the range 1.5 *(Q3-Q1); points beyond that are denoted as outliers.  
Number of SEACells = 500. 

  



 

Supplementary Fig. 7: SEACells identify rare intermediate cell states in continuous trajectories 
A. Single-cell RNA UMAP of T-cell depleted bone marrow cells from a healthy human donor colored by cell 

types.  
B. UMAP colored by cell density.  
C. Cells in low-density regions (bottom percentile of density) are highlighted in red  
D. SEACells metacells are highlighted in some low-density regions in black. Dotted red lines represent the Leiden 

clusters that encompass all the underlying metacells.  
E. UMAP colored by Leiden clusters 
F–I. Same as (A–E), for ATAC modality of T-cell depleted bone marrow cells from a healthy human donor. 
  



 

Supplementary Fig. 8: scATAC-seq peak calling 
A. ATAC-seq fragments follow a characteristic distribution with well-defined modes. The first mode (<147 bp) 

represents nucleosome-free (NFR) fragments, and subsequent modes represent mono- and poly-
nucleosomes. 

B. Accessibility landscape of erythroid factor KLF1 by cell type, using all ATAC fragments (left) or NFR fragments 
<147 bp (right) to determine coverage. Using NFR fragments substantially improves the resolution of peaks 
and inferred regulatory elements (dotted boxes).  

C. Venn diagram of number of peaks called using NFR or all ATAC fragments in CD34+ multiome data. 



 
  



Supplementary Fig. 9: Comparison of peak-gene correlations using SEACells metacells and single cells 
A. Relationship between metacell-aggregated gene expression and accessibility of the most correlated peak for 

a selection of key hematopoietic genes, computed on the CD34+ multiome data. Meta-cells were derived 
using the ATAC data  modality. Spearman correlations appear next to the gene symbol. 

B. Same as in (A), but at the single-cell level. 
  



 
 
 
 

 
 
Supplementary Fig. 10: Inference of TF activities across hematopoietic lineages  
 
A. UMAPs highlighting the metacells along erythroid (top), B-cell (middle) and monocyte (bottom) lineages 

derived using the T-cell depleted bone marrow data. UMAPs on the right are colored by Palantir pseudo-
time.  

B. Left: Heatmaps showing the top TFs identified for the corresponding lineage using the lasso regression 
approach (Methods). Known regulators  are shown in green. Right: TF activities for the same TFs on the left 
derived using TF target matrix from cell-type specific peaks.  

  



 

 
 
Supplementary Fig. 11: Key characteristics of different metacell approaches 
A. UMAP of lung adenocarcinoma scRNA-seq data12. A large fraction of cells are pre-filtered by the MetaCell 

method2 in this perturbed setting. Cells colored by cell type as derived by 12. 
B. SEACells metacells on the same lung adenocarcinoma dataset. No cells were discarded in this analysis. 
C. Cumulative distribution plots showing the partition size or number of cells in each metacell. Super-cells 

produces metacells that are very large and span a large proportion of the high density regions. 
  



 
 
  



Supplementary Fig. 12: Performance of different metacell approaches 
A. ATAC modality UMAPs of PBMCs (as in Fig. 2B), colored by metacells identified by the specified method or 

colored by cell density. Dots, cells; circles, metacells. Highlighted regions indicate a lack of well-defined 
metacells. 

B. RNA modality UMAPs of CD34+ bone marrow (as in Fig. 2D), colored by metacells or cell density. 
C. RNA modality UMAPs of PBMCs (as in Fig. 2A), colored by metacells or cell density. 
 
 
 
 
  



 
Supplementary Fig. 13: Accessibility peaks and gene expression are not well correlated in MetaCell and 
SuperCell metacells 



 
A. Relationship between MetaCell19 aggregated-gene expression and accessibility of the most correlated peak 

for key hematopoietic genes.  
B. Same as (A), computed using SuperCell18.  
  



 
 

Supplementary Fig. 14: Performance of Metacell-2 in achieving metacell compactness and separation.  
 
A. Left: UMAPs of the CD34+ bone marrow RNA dataset colored by metacells identified SEACells. Metacell-2 

automatically determines the number of metacells. SEACells was run using the same number of metacells 
as Metacell-2 for a fair comparison. Right: Bar plots comparing the compactness, separation and cell-type 
purity of metacells determined using the two approaches.  Two-sided Wilcoxon rank-sum test; ns: P > 0.05, 
* 0.01 < P < 0.05, ** 0.001 < P < 0.01, *** 0.0001 < P < 0.0001, **** P < 0.0001. Number of metacells = 285. 

B. Same as (A), for CD34+ bone marrow ATAC data. Number of metacells = 408. 
C. Same as (A), for PBMC RNA data. Number of metacells = 295. 
D. Same as (A), for PBMC RNA data. Number of metacells = 424. 
Box plots display median, 25th(Q1) and 75th (Q3) percentiles; whiskers extend to the furthest datapoint within the 
range 1.5 *(Q3-Q1); points beyond that are denoted as outliers. 



 
 

Supplementary Fig. 15: Gene accessibility in CD34+ bone marrow 

A. Correlation between metacell-aggregated gene expression and gene accessibility scores for a selection of 
key hematopoietic genes. Spearman correlations computed using the CD34+ bone marrow multiome data are 
provided next to gene names. 

B. Dynamics of gene accessibility scores for GATA1 (left) and MPO (right). Each dot represents a metacell 
plotted along pseudotime (x-axis).  

 
  



 

Supplementary Fig. 16: Accessibility dynamics during hematopoietic differentiation  

A. Distribution of gene expression for all hematopoietic cell types, using CD34+ bone marrow multiome data. 
B. Distribution of gene accessibility for all hematopoietic cell types using CD34+ bone marrow multiome data. 
C. UMAP of an scATAC-seq dataset of CD34+-sorted and unsorted bone marrow mononuclear cells (BMMCs).  
D. Gene accessibility distributions for highly regulated genes in the BMMC dataset. Peak gene correlations were 

determined using the CD34+ bone marrow multiome data, since only ATAC modality is available for the BMMC 
dataset. 

  



 

 

Supplementary Fig. 17: SEACells metacells in a COVID-19 cohort 

UMAPs showing SEACells results for healthy donors (A) and COVID-19 patients (B). Each plot represents a 
single individual. 

  



 

Supplementary Fig. 18: Consistency of SEACells metacells among healthy and COVID-19 patients 

A. Metacell states are consistent and reproducible between pairs of healthy individuals. Mutually neighboring 
metacells between different pairs of healthy donors are connected by edges. 

B. Same as (A), for COVID-19 patients. 
C. Proportion of mutually neighboring edges that match to the same cell-type for healthy donors (left) and COVID-

19 patients (right). On average, 88% of edges between healthy donors and 87% of edges between COVID-
19 patients are consistent. 

  



 

 
Supplementary Fig. 19: Scalability of SEACells to atlas-scale single-cell datasets 
  
A. UMAPs showing metacells from ~120 samples spanning >600k cells demonstrating the scalability of 

SEACells to atlas-scale data. Top: UMAPs before batch correction. Bottom: UMAPs after batch corrections 
using Harmony26. 

B. Bar plots showing the cell-type purity of metacells in (A). Number of metacells = 8092. 
C. Bar plots comparing the entropy of cell-types in metacell neighborhoods following batch correction.  
Box plots display median, 25th(Q1) and 75th (Q3) percentiles; whiskers extend to the furthest datapoint within the 
range 1.5 *(Q3-Q1); points beyond that are denoted as outliers. 
 
 



 
 

Supplementary Fig. 20: SEACells runtime analysis 

A. Time to compute SEACells metacells, as a function of single-cell dataset size. The number of metacells was 
fixed as number of cells / 75. 

B. Runtime comparison of SEACells metacells and single cells for different single-cell tasks. Preprocessing 
involves normalization and batch correction. Pipeline refers to runtime for all tasks shown. 
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