#### **Supplementary Information**

#### SIRT6 promotes metastasis and relapse in HER2-positive breast cancer.

Cristina Andreani<sup>1,2,#,\*</sup>, Caterina Bartolacci<sup>1,2,#</sup>, Giuseppe Persico<sup>3</sup>, Francesca Casciaro<sup>4</sup>, Stefano Amatori<sup>5</sup>, Mirco Fanelli<sup>5</sup>, Marco Giorgio<sup>3,4</sup>, Mirco Galié<sup>6</sup>, Daniele Tomassoni<sup>1</sup>, Junbiao Wang<sup>1</sup>, Xiaoting Zhang<sup>7</sup>, Gregory Bick<sup>7</sup>, Roberto Coppari<sup>8,9</sup>, Cristina Marchini<sup>1,10\*</sup> and Augusto Amici<sup>1,10</sup>

<sup>1</sup> Department of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy

<sup>2</sup> present address: Department of Internal Medicine, University of Cincinnati, 45219, Cincinnati, Ohio, USA

<sup>3</sup> Department of Experimental Oncology, IRCCS—European Institute of Oncology, Via Adamello 16, 20139 Milano, Italy

<sup>4</sup> Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, 35131 Padova, Italy

<sup>5</sup> Molecular Pathology Laboratory "PaoLa", Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61032, Fano, Italy

<sup>6</sup> Department of Neuroscience, Biomedicine and Movement, Section of Anatomy and Histology, University of Verona, 37134, Verona, Italy

<sup>7</sup> Department of Cancer Biology, University of Cincinnati College of Medicine, Ohio, USA

<sup>8</sup> Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland

<sup>9</sup> Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland

<sup>#</sup>These authors contributed equally

<sup>10</sup> co-last authors

\* corresponding authors: Cristina.Andreani@unicam.it; Cristina.Marchini@unicam.it

Content

Supplementary Figures (S1-S13)

Supplementary Figure Legends

Uncropped gels and blots



**Figure S1. Related to Figure 1. Triple transgenic Delta16HER2/SIRT6-OE/Sirt6**<sup>-/-</sup> **mice show no phenotypic differences compared to Delta16HER2 controls. (A)** Breeding scheme used to obtain Delta16HER2/SIRT6-OE/Sirt6<sup>-/-</sup> female mice and a representative genotyping PCR. In these mice SIRT6 is encoded from SIRT6-BAC sequences as they are homozygous for the Sirt6 null allele. **(B)** Kaplan-Meier curves comparing the percentage of tumor-free mice between Delta16HER2 (n=6) and Delta16HER2/SIRT6-OE/Sirt6<sup>-/-</sup> mice (n=4). Representative *post mortem* pictures of both cohorts are shown in **(C)**.

(**D** and **E**) Tumor multiplicity and tumor growth curves of Delta16HER2 (n=6) and Delta16HER2/SIRT6-OE mice/Sirt6<sup>-/-</sup> (n=4).

In **(B)** p=0.2424, not significant (Log-rank test); in **(D** and **E)** p=0.3478 and p=0.1337, not significant (twoway ANOVA followed by Sidak's multiple comparisons test). Error bars represent SD.



Supplementary Figure S2. Related to Figure 3. SIRT6-OE protects Delta16HER2 cancer cells from oxidative DNA damage. (A) Representative images of IHC staining for 8-oxo-2'-deoxyguanosine (8-oxo-dG) of tumors from 30-week-old Delta16HER2 and Delta16HER2/SIRT6-OE mice. Scale bar, 25 mm. (B) Quantification of median 8-oxo-dG staining using ImageJ. Each spot represents a cell: Delta16HER2 (n=1176) versus Delt16HER2/SIRT6-OE (n=1107), \*\*\*\*p<0.0001 (two-tailed unpaired t test). Error bars represent SD.







Supplementary Figure S4. SIRT6 molds AKT, ERK1/2 and MAPK-p38 pathways redirecting Delta16HER2 cancer cells toward tumor dormancy. Western blot analysis and relative quantification of AKT, ERK1/2 and MAPK-p38 pathways in tumor protein lysates of Delta16HER2 and Delta16HER2/SIRT6-OE mice at 20 (A and B) and 30 weeks of age (C and D). Phosphorylated proteins are normalized over total protein levels. (E) pP38/pERK ratio in the indicated tumor lysates (same samples analyzed in A-D). In (B and D) p>0.05, not significant (ns); \*p<0.05; \*\*p<0.01; \*\*\*\*p<0.0001 (two-tailed unpaired t test). In (E) p>0.05, not significant (ns); \*\*p=0.0014; \*\*\*\*p=0.0004 (2-way ANOVA and Sidak's multiple comparisons). Error bars represent SD.



**Supplementary Figure S5. SIRT6-OE does not induce changes in the PI3K-mTOR pathway.** Western blot analysis and relative quantification of PI3K p85, PI3K p110, Raptor and p4E-BP1 levels in tumor protein lysates of Delta16HER2 and Delta16HER2/SIRT6-OE mice at 20 (**A** and **B**) and 30 weeks of age (**C** and **D**). Protein levels are normalized to ß-Actin.

In (**B** and **D**) p>0.05, not significant (two-tailed unpaired t test). Error bars represent SD.



#### Supplementary Figure S6. SIRT6-OE does not induce changes in the HER2-SRC-STAT3 pathway.

Western blot analysis and relative quantification of HER2, SRC and STAT3 activation in tumor protein lysates of Delta16HER2 and Delta16HER2/SIRT6-OE mice at 20 (A and B) and 30 weeks of age (C and D). Phosphorylated proteins are normalized over total protein levels.

In **(B** and **D**) p>0.05, not significant (two-tailed unpaired t test). Error bars represent SD of 4 independent experiments.



Supplementary Figure S7. Related to Figure 5. SIRT6 effect does not depend on ER and PR status. (A and B) Kaplan-Meier plots from GOBO database using overall survival (OS, A) relapse-free survival (RFS, B) in the indicated subsets of HER2-enriched tumors. (C) Kaplan-Meier plots from GOBO database using RFS and distant metastasis free survival (DMFS) as outcome in luminal A breast cancer patients. Data were stratified into the two quantiles based on SIRT6 gene expression level (SIRT6\_low, grey line and SIRT6\_high, red line) using 10-year censoring as endpoint.

P values indicate Log-rank test.



## Supplementary Figure S8. Related to Figure 5. SIRT6 correlates with good prognosis in basal-like breast cancer

(A) Snapshot from cBioPortal summarizing the type and frequency of alteration of *PIK3CA* and *SIRT6* genes in the indicated publicly available breast cancer studies. A total of 4860 and 4379 breast cancer patients were profiled for *PIK3CA* and *SIRT6* alterations, respectively. (B) Co-occurrence/Mutual exclusivity analysis from cBioPortal indicating the number of patient samples that have amplification/activating mutation of *PIK3CA* and deletion of *SIRT6* alone, both alterations or neither of them. Odd ratio = neither\*both / SIRT6 not ERBB2\*ERBB2 not SIRT6. Log2 Odd Ratio > 1 indicates co-occurrence of SIRT6 deletion and *PIK3CA* amplifications/mutation (p=0.046, Pearson correlation). (C and D) Kaplan-Meier plots from GOBO database using relapse-free survival (RFS) (C) and distant metastasis free survival (DMFS) (D) as outcome in basal-like breast cancer in basal-like breast cancer. Data have been stratified into the two quantiles based on SIRT6 gene expression level (SIRT6\_low, grey line and SIRT6\_high, red line) using 10-year censoring as endpoint.

In (C and D) \*p=0.04656 and p=0.53321 (Log-rank test).



Supplementary Figure S9. Related to Figure 6. SIRT6-OE does not affect total levels of H3K9ac. (A) Ponceau red staining and immunoblot for H3K9ac and total H3 in the indicated tumor samples (20 weeks) and their quantification (B). ns p=0.8034 two-tailed unpaired t test. Data are reported as mean  $\pm$  SD.

#### EnrichR DEGs UP Α





MSigDB Hallmarks 2020

Kinase perturbation from GEO down

2.0

#### Β EnrichR DEGs DOWN



Proteomics Drug Atlas 2023

Supplementary Figure S10. Related to Figure 6A-C. EnrichR analysis for genes upregulated and downregulated in Delta16HER2/SIRT6-OE tumors.

Heatmaps showing the pathways and hallmarks for the differentially expressed genes that are upregulated (A) and downregulated (B) upon SIRT6-OE in mouse tumors (20 weeks).



## Supplementary Figure S11. Related to Figure 6. High *TBX3* predicts poor prognosis in basal-like tumors.

(**A**) Bee swarm plot computed in bc-GenExMiner showing the expression levels of *TBX3* in basal-like and Triple negative breast cancer (TNBC, n=642) versus non-basal-like/non-TNBC (n=6034). (**B** and **C**) Kaplan-Meier plots from bc-GenExMiner using distant metastasis free survival (DMFS) and disease-free survival (DFS) as outcomes in basal-like breast cancer. Data have been stratified into the two quantiles based on *TBX3* gene expression level (TBX3\_low, purple line and TBX3\_high, blue line).

In (**B** and **C**) \*\*p=0.0043 and \*p=0.0488 (Log-rank test). HR (hazard ratio) and 95% CI (confidence interval) are reported in the figure.



Supplementary Figure S12. Related to Figure 7. SIRT6-OE induces loss of TBX3 and aggressiveness in a patient-derived models of HER2+/ER+ breast cancer (BCM-4888). (A) Representative pictures of the patient-derived cell line BCM-4888 transfected with either pHIV-dTomato or pHIV-SIRT6-dTomato. (B) Real-time PCR for *SIRT6* and *TBX3* expression in sorted BCM-4888 transfected as indicated. Not transfected HEK293 were used as control sample and *TBP* as housekeeping gene. (C) Representative pictures and (D) quantification of the Transwell migration assay of BCM-4888 cells transfected with either pHIV-dTomato or pHIV-SIRT6-dTomato. (E) Representative pictures and (F) number and area quantification of pHIV-dTomato and pHIV-SIRT6-dTomato BCM-4888 mammospheres. MFU%= % of mammary forming units over total number of seeded cells. A.U.= arbitrary unit. Bars indicate mean  $\pm$  SD. In (B); (D) \*\*\*p=0.0007; (F) \*p=0.0230 and ns, p=0.0970 indicates unpaired two-tailed t test.



Supplementary Figure S13. Related to Figure 8. Loss of *TBX3* mimics *SIRT6*-OE in a patient derived model of HER2+/ER+ breast cancer (BCM-4888). (A) Immunoblot and quantification of TBX3 and GAPDH in lysates of BCM-4888 cells transfected with the indicated siRNA (48 hours post transfection, n=2 independent replicates ). (B) Representative pictures and (C) quantification of the Transwell migration assay of the human BCM-4888 cells transfected as indicated (n=5). (D) Representative pictures and (E) number and area quantification of siRNA control and siRNA *TBX3* BCM-4888 mammospheres (n=3). MFU%= % of mammary forming units over total number of seeded cells. A.U.= arbitrary unit. Bars indicate mean  $\pm$  SD. In (C) \*p=0.0282, (E) \*\*p=0.0051 and ns, p=0.2106 indicates unpaired two-tailed t test. In (A) \*p=0.0260, (C) \*p=0.0247, (E) \*p=0.0294 and ns, p=0.0529 indicates unpaired two-tailed t test.

## Original images for gels and blots

### Figure 1A (genomic DNA PCR)



16

Figure 1H













|              | Delta16 Delta16/SIRT6 |
|--------------|-----------------------|
| Phospho      | 2                     |
| SIRT6 Ser388 |                       |



Additional Replicates for Figure 1H



## Figure 3B (short exposure/ Low contrast)

| Сус     | lin D1 (20 weeks)                   |                       |
|---------|-------------------------------------|-----------------------|
|         | D16                                 | D16/SIRT6             |
| 42 KDa- |                                     |                       |
| 26 KDa- | and the second of the second of the | and the second second |
|         |                                     |                       |

| Cyclin E (20 weeks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 70 KDa-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
| the set of |           |
| 42 KDa-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
| D16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D16/SIR16 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |

| Beta Actin (20 weeks) |           |
|-----------------------|-----------|
| D16                   | D16/SIRT6 |
|                       |           |

## Figure 3B





| Beta Actin (20 weeks) |           |
|-----------------------|-----------|
| D16                   | D16/SIRT6 |
|                       |           |

## Figure 3B







### Figure 3B (short exposure/ Low contrast)







#### Additional Replicates for Figure 3B



## Figure 7C

| HeLa lysate<br>(positive control)<br>D16 D16/SIRT6<br><sup>200 kDa-</sup><br><sup>100 kDa-</sup><br><sup>100 kDa-</sup><br><sup>100 kDa-</sup><br><sup>100 kDa-</sup><br><sup>100 kDa-</sup><br><sup>100 kDa-</sup><br><sup>100 kDa-</sup> |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Tbx3 (20 weeks)                                                                                                                                                                                                                            |  |
| HeLa lysate<br>(positive control) D16 D16/SIRT6                                                                                                                                                                                            |  |
| Beta Actin (20 weeks)                                                                                                                                                                                                                      |  |



# Supplementary figure S1A (genomic DNA PCR)



Supplementary Figure S4A



# Supplementary Figure S4A (short exposure, low contrast)

| pAKT (20 weeks)<br>72 KDa-<br>50 KDa- | D16 | SIRT6   |  |  |
|---------------------------------------|-----|---------|--|--|
| 72 KDa-                               | D16 | SIRT6   |  |  |
| 50 KDa-                               |     |         |  |  |
| Total AKT (20 weeks)                  |     |         |  |  |
| pERK (20 weeks)                       | D16 | SIRT6   |  |  |
| 50 KDa-                               |     |         |  |  |
| 38 NDa-                               |     |         |  |  |
| 50 KDa-                               | D16 | SIRT6   |  |  |
| 38 KDa-                               | === |         |  |  |
| Total ERK (20 weeks)                  |     |         |  |  |
| pMAPK-P38 (20 weeks)                  |     |         |  |  |
| 50 KDa-<br>38 KDa-                    | I I | 14-5-30 |  |  |
|                                       | D16 | SIRT6   |  |  |
| 50 KDa-                               | D16 | SIRT6   |  |  |
| 38 KDa-                               |     |         |  |  |
| Total MAPK-P38 (20 weeks)             |     |         |  |  |



Additional Replicates for supplementary Figure S4A



### Supplementary Figure S4C



## Supplementary Figure 4C (short exposure, low contrast)





Additional Replicates for supplementary Figure S4C





Supplementary FIGURE 5A



#### Additional Replicates for supplementary Figure S5A



Short exposure

Supplementary Figure S5C



Supplementary Figure S5C (short exposure/low contrast)





Additional Replicates for supplementary Figure S5C





Supplementary Figure S6A



Supplementary Figure S6A (short exposure/low contrast)



#### Additional Replicates for supplementary Figure S6A



## Supplementary Figure S6C



Supplementary Figure S6C (short exposure/low contrast)







#### Additional Replicates for supplementary Figure S6C

45





Supplementary Figure 13A

