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Reviewer #1 (Remarks to the Author): 

The authors proposed a unified framework for the prediction of enzyme kinetic parameters, UniKP, 

and expanded its application to include temperature and pH information. UniKP showed good 

performance in predicting kcat, Km, and kcat/Km, assisting in finding the most efficient tyrosine 

ammonia lyase. The results indicate that UniKP is a valuable tool for deciphering the mechanisms 

of enzyme kinetics and enables novel insights into enzyme engineering and their industrial 

applications. It deserved to be published after considering the following concerns: 

Major: 

1. The authors introduced that the current approaches have treated kcat and Km prediction as two 

separated questions (Line 60), and this seems to be a potential problem. In my opinion kcat and 

Km are different parameters so they are certainly separate questions. And I don’t understand the 

necessity of constructing a model that predicts kcat/Km, especially the authors already have kcat 

and Km prediction models. How about the results of kcat/Km calculated by the models constructed 

in this work? If the result is not satisfactory, does it mean that the performance of kcat and Km 

prediction model are also insufficient? 

2. The authors collected different dataset to train UniKP to predict different parameters, especially 

for Km and kcat/Km prediction, the framework is exactly the same. While DLKcat is a kcat 

prediction model, it uses the information of protein sequence and molecule structure as input, 

which is the same as UniKP, so DLKcat model can also be used to predict Km and kcat/Km if 

trained by different datasets. The “unified framework” for UniKP seems not a primary advantage, 

instead the EF-UniKP model that considers environmental factors is worth more discussion, for 

example, its experimental validation and potential application. 

Minor: 

3. UniKP outperformed deep learning-based DLKcat for kcat prediction, is it the pretrained 

representation or the Extra Tree model that plays the major role? How about pretrained 

representation + deep learning? It is recommended to do some ablation experiments to verify the 

superiority of the method. 

4. The pretrained model and Extra Tree should be discussed in greater depth rather than merely 

listed as references in the Introduction section, since they are at the heart of UniKP. 

5. The metrics R2 and PCC are intertwined in the manuscript, although the equations are given, it 

is not clear when we should use R2 or PCC. Are both required? Can we only use one of them? 

6. Line301: how to screen and obtain the single-point RgTAL mutations? 

7. Line 302: what does “each group” mean, top 5 hits were identified while 10 mutants were listed 

in figure 6b? more description should be given in the figure. 

8. Line 303-306: this sentence is difficult to understand. 

9. There are two reference sections in the manuscript, it would be better to integrate them. 

10. It is strongly recommended that this manuscript be thoroughly proofread and edited, including 

some tense errors and confused expression. 

Reviewer #2 (Remarks to the Author): 

This study presents a unified framework, UniKP, for predicting enzyme kinetic parameters, 

specifically kcat and Km. The authors employ deep learning models for data mining and 

demonstrate the discovery of active TAL enzymes as a noteworthy application. However, while the 

use of pretrained protein language models and the SMILES Transformer is common in protein-

ligand interaction modeling, the novelty of UniKP remains insufficient. Furthermore, concerns 

regarding data leakage and several other inquiries and doubts need to be addressed for a more 

comprehensive understanding of the research. Whether considering publication in this journal or 

elsewhere, it is recommended that the authors incorporate new data and discussions to address 

the following points: 

1. The novelty of UniKP's kcat prediction appears limited. The authors acknowledge the small size 

of the enzyme kinetic data and justify their use of pretrained protein language models (ProtT5-XL-

UniRef50) and the SMILES Transformer for generating meaningful representations. However, it is 



crucial to differentiate this work from existing models or methods, given that other studies, such 

as Kroll et al. (Nat Commun 14, 2787, 2023), have also utilized pretrained protein language 

models for similar purposes. Unique contributions of UniKP should be clearly elucidated. 

2. The manuscript should provide more details about the UniKP model, including the 

hyperparameters employed during training (such as batch size, learning rate, optimizer, and 

parameter freezing) and specific information about the model setup (such as the size of the Extra 

Tree model). 

3. Line 548 mentions "substrate structure" in relation to SMILES representation. SMILES 

representation does not provide a complete structural view, and consideration of 3D conformers 

could offer a more holistic representation. 

4. The partitioning of the training and test datasets based on sequence similarity is not explicitly 

described. To address potential data leakage issues and ensure accurate model evaluation, the 

authors should conduct model training and testing on datasets separated by sequence identities. 

Given the limited innovation in deep learning models presented in this research, a careful 

evaluation of data leakage would be a valuable contribution to the field. Additionally, important 

metrics such as RMSE (Root Mean Square Error) should be listed in a well-formatted table rather 

than presented solely in bar plots. 

5. The presence of RgTAL mutations in the training data should be clarified to avoid any potential 

data leakage concerns. 

6. The generalization of the model trained on kcat prediction to the prediction of Km and kcat/Km 

requires thorough discussion. In enzymology, Kcat is traditionally considered independent of Km. 

Thus, an explanation is needed to address the unexpected finding and prevent any 

misinterpretation that may lead to misconceptions about enzyme catalysis. 

7. A discrepancy is observed between line 831 and Figure 5e regarding the representation of 

Kcat/Km. The authors should rectify this inconsistency to ensure clarity. 

8. In Figure 5, a scatter plot depicting the predicted kcat against the experimental Km would 

provide a clearer visualization. Moreover, it is important to note that RMSE and R2 (coefficient of 

determination) should not share the same Y-axis due to their different dimensions. RMSE 

measures the difference between model predictions and actual values and is expressed in the 

same units as the predicted and actual values. As UniKP predicts kcat in s-1 and Km is typically 

measured in mM, RMSE lacks practical significance. On the other hand, R2 represents the 

proportion of variance in the dependent variable that can be predicted from the independent 

variable, and it is a dimensionless value between 0 and 1. Since R2 describes linear correlation, it 

may be more suitable to include Spearman correlation for assessing the model's performance. 

9. In Figure 6a, AsTAL exhibits a higher kcat than RgTAL, while another TAL enzyme, TALclu, 

demonstrates a kcat/Km four times higher than that of RgTAL (ChemBioChem 2022, 23, 

e2022000). This raises the question of why RgTAL was chosen, as it does not exhibit optimal 

enzymatic activity. It is important to clarify whether UniKP is limited to redesigning enzymes with 

mid-range kcat values, while unable to further improve enzymes that already possess the highest 

catalytic activity. 

10. Lastly, the current description of Kcat determination lacks specificity. Including figures 

depicting the kinetic data of Kcat would enhance the credibility of the study. 

I hope incorporating the suggested revisions and addressing the concerns and inquiries mentioned 

above will significantly improve the manuscript. 

Reviewer #3 (Remarks to the Author): 



In the manuscript presented by Yu, et al., a computational framework for prediction of kinetic 

parameters of enzymes, namely, turnover numbers (kcat), Michaelis constants (Km) and enzyme 

efficiency (kcat/Km), UniKP, is presented. This framework is based on pre-trained language 

models that use protein sequence and substrate structures as input features. Additionally, a two-

layer machine learning approach is used for accounting for pH and temperature variations in 

predicted parameters, and different approaches for improving prediction of high kcat values are 

tested. The authors ran extensive comparison on predictive performance of their model vs. the 

state-of-the-art tools for prediction of kcat (Li et al. 2022) and Km (Kroll et al. 2023) parameters, 

showing improvements in correlation coefficients and error metrics. However, the prediction errors 

displayed by UniKP are still above an order of magnitude in kinetic parameters, on average, which 

limits large-scale applicability for accurate modeling of cellular function, leaving room for further 

improvements. 

Notably, the authors show how this tool can be used for mining sequences and selecting the 

optimal enzyme for a specific metabolic reaction (tyrosine ammonia liase, TAL), and predict single-

point mutations that increase enzymatic performance significantly, achieving the highest reported 

enzyme efficiency for a TAL mutant. 

The subject addressed by this study is of current high relevance in the fields of synthetic and 

systems biology, machine learning and metabolic engineering, therefore, the results presented 

here are of high relevance for a wide public. The use of pre-trained language models for prediction 

of enzyme parameters offers a new perspective on the use of machine learning methods for 

biological purposes, the use of this method for enzyme discovery and directed improvement is a 

major novel contribution to the aforementioned fields, opening possibilities for many applications. 

I recommend the authors to address the following major and minor points in order to improve the 

quality of this manuscript and support their findings even further. 

Major points: 

1.- Most of the model performance evaluations in this manuscript focus on the comparison of 

correlation, determination coefficients and error metrics with the previously published DLKcat. 

Recently, a preprint highlighting the flaws in the selection and partitioning of the DLKcat dataset 

(https://doi.org/10.1101/2023.02.06.526991) has been published in bioRxiv. This study 

demonstrates that DLKcat predictions are accurate just for enzymes that are highly similar to 

those used in the training dataset. They show that a simple approach of approximating Kcats, by 

computing geometric means of kcats across the 3 top-similar enzymes (sequence similarity) in the 

training dataset is capable of yielding significantly better determination coefficients for predictions 

of the test dataset. I recommend the authors to also run a comparison of this type, as the 

predictions of DLKcat have already been found to be biased. 

2.- Additionally, as major part of the results and discussion focus on comparison with DLKcat, the 

large error metrics displayed by uniKP are not discussed in detail. This is common in AI-ML 

literature, where performance is usually evaluated in terms of correlation or model fitness. In this 

case, the AI framework proofed to be useful for directed enzyme improvement. Nonetheless, 

readily available kinetic parameters in a large-scale has been one of the most important 

bottlenecks for advancing on mechanistic understanding of cell behavior through modeling 

attempts. For this whole field of biological sciences, it is crucial to provide accurate parameters 

that enable appropriate quantification of cellular states and dynamics. AI-ML methods offer a great 

opportunity for addressing this long-standing issue, but more development is still needed. This 

manuscript would benefit from a broader and deeper discussion on the limitations of accurate 

quantitative prediction of kinetic parameters and their implications for bottom-up biological 

studies. 

3.- The use of a machine learning model for Kcat prediction is justified in the first results 

subsection by showing that the concatenated vectors (combined representation of sequence and 

substrate) cannot differentiate between Kcat values of different orders of magnitude, by projecting 

such vectors using t-SNE analysis. In the methods section it is mentioned that such analysis was 

ran using just the default parameters. It is not mentioned which was the specific software 



implementation used for this, and default parameters may differ from one to another. Moreover, t-

SNE is a stochastic method that relies on two main parameters (perplexity and number of 

iterations). The choice of these parameters is crucial, as they may have drastic effects on the 

projection results. In order to strengthen this section, I recommend the authors to run a 

parametric analysis of the t-SNE projections to show the effect of the parameters in the grouping 

of the concatenated enzyme vectors. If Kcat values do not seem to group despite the chosen 

perplexity and number of iterations, then the implementation of uniKP will be better justified. 

Minor points: 

4.- Lines 47-48: The applications and implications of this study focus a lot on the use of this 

method for enhancing enzyme engineering, however, large-scale and accurate prediction of kinetic 

parameters could also majorly benefit systems biology, providing better parameters for 

quantitative modeling studies aiming to understand biological networks, specially metabolism. The 

manuscript could benefit from adding this point here. 

5.- Lines 52-54: It is mentioned that, in comparison to the availability of millions of sequences, 

uniprot just offers around 2,000 kcat values. On the other hand, tenths of thousands of kinetic 

parameters are available in BRENDA and SABIO-RK bases, and in their latest versions these 

databases have integrated uniprot identifiers to their entries, facilitating a larger connection 

between measured parameters and protein sequences. Please mention this, or even add the 

corresponding numbers if possible, in order to clarify this better for the readers. 

6.- Lines 69-70: “…often deviate from the ground truth”. What is such truth regarding enzyme 

parameters, in vitro measurements? in vivo values? (probably impossible to characterize), 

predictions from basic principles using quantum chemistry? Even more, modern models of science 

and its methods of discovery do not aim to unveil “truths” from nature, but to create falsifiable 

hypotheses that can be empirically tested, and proof to offer coherent and viable explanations that 

expand our understanding of nature and our ways to modify it/interact with it. Please avoid the 

use of these categorical terms. 

7.- Overall in the introduction and abstract sections prediction of kinetic parameters is mentioned 

repeatedly, but it is never said that this refers to prediction of in vitro measured parameters, 

please clarify this where at least once in these sections. 

8.- Line 140: “further demonstrating the superiority of UniKP”. The top used synonyms of the word 

superiority are dominance, excellence and perfection, which I doubt that is what the authors 

wanted to express. UniKP shows improved performance in comparison to other frameworks, major 

in some aspects, but as any approximation it is also limited in its prediction power, I recommend 

to avoid the use of this charged term here and in other parts of the text. Science is not a 

competition, but rather a cumulative enterprise of humanity for understanding nature. 

9.- Line 154: “Theoretically, the former should exhibit higher values”. This has been explored by 

many studies before. Please add references. 

10.- Line 154: “Our results revealed”, as mentioned above, many studies have explored this issue 

before, using different approaches, therefore, this manuscript is not revealing this but confirming 

or showing that results agree with what has been previously reported. Please modify accordingly. 

11.- Lines 171-176: Could the authors add any error metrics here? (RMSE, or median absolute 

errors). Enzyme parameters are crucial for quantitative studies, hence, provide a measure of the 

associated errors in predictions will inform the community better. 

12.- Line 182-183: Could the authors elaborate on why the selected enzyme-substrate pair is a 

crucial one and what is its relevance for the field? 

13.- Line 236: “predicting high kcat values was essential”, these predictions are still gonna be 

essential for the field, even after publication of this manuscript. These predictions are very 



challenging and more accurate frameworks for prediction are likely to appear in the upcoming 

years, with further understanding and expansion oof machine learning methods. Please change the 

word “was” to has been or something similar. 

14.- Line 316: “prediction framework, UniKP, which can accurately predict three essential enzyme 

kinetic parameters”. UniKP offers improvements in comparison with previous methods. 

Nevertheless, its predictions may differ from in vitro measurements even by an order of 

magnitude, which questions the use of the term “accurately predict” in absolute terms. It would be 

more fair to mention that it improves accuracy of predictions. 

15.- Line 337: “As the learnable dataset expands”. Here the authors acknowledge that the 

available measurements will expand, which I agree. It is even likely that future techniques will 

enable high-throughput characterization of enzymes. Nonetheless, in most of the text, the tone 

gives the idea that high-throughput prediction is the only active direction in this topic. Adding 

some nuances here and probably citing latest research on experimental methods and research 

directions would benefit the discussion. 



Response to Reviewer’s Comments: 
We express our sincere gratitude to all reviewers for their thorough and insightful feedback, and for 
giving us an opportunity to revise our manuscript. In light of their comments, we have meticulously 
revised the manuscript and included additional data where necessary. Below, we address each of the 
comments in detail. 

Reviewer comments 

Reviewer #1 (Remarks to the Author): 

The authors proposed a unified framework for the prediction of enzyme kinetic parameters, UniKP, 
and expanded its application to include temperature and pH information. UniKP showed good 
performance in predicting kcat, Km, and kcat/Km, assisting in finding the most efficient tyrosine 
ammonia lyase. The results indicate that UniKP is a valuable tool for deciphering the mechanisms of 
enzyme kinetics and enables novel insights into enzyme engineering and their industrial applications. 
It deserved to be published after considering the following concerns: 
Response: 
We appreciate the reviewer’s thoughtful evaluation of our manuscript and the constructive comments 
about our work which helped us improve the quality of our manuscript. We have carefully revised the 
manuscript according to the comments. 

Major: 
1. The authors introduced that the current approaches have treated kcat and Km prediction as two 
separated questions (Line 60), and this seems to be a potential problem. In my opinion kcat and Km 
are different parameters so they are certainly separate questions.  
Response: 
Firstly, thanks for your valuable comment. The kcat and Km are indeed distinct parameters in 
enzymology with different biological relevance. However, their corresponding prediction tasks in the 
view of an algorithm have some similarity, both representing the prediction of a specific value with the 
corresponding protein sequence and substrate structure. These tasks have the potential to be 
predicted within a unified framework. This unified framework, once refined, contributes to improving 
performance across various tasks, as reported in similar reference [1]. We revised it in the introduction 
of our revised manuscript for better understanding, as shown below. 

“Researchers have attempted to utilize computational methods to accelerate the process of enzyme 
kinetic parameters prediction, but current approaches have exclusively concentrated on addressing 
one of these issues, overlooking the similarity of both tasks in reflecting the relationship of protein 
sequences towards substrate structures.”

And I don’t understand the necessity of constructing a model that predicts kcat/Km, especially the
authors already have kcat and Km prediction models. How about the results of kcat/Km calculated by 
the models constructed in this work? If the result is not satisfactory, does it mean that the performance 
of kcat and Km prediction model are also insufficient?

Moreover, regarding your question about the necessity of constructing a kcat / Km prediction model 
alongside existing kcat and Km models, we believe that the prediction of kcat / Km can offer additional 
insights. The reason is that machine learning models offer powerful tools for enzyme kinetic 
parameters prediction, but they are heavily reliant on the data they are trained on. In the case of kcat

and Km prediction models, their corresponding training data came from different sources with different 
curation standards, which may result in inconsistency, posing challenges in achieving great 
performance when the predicted values were used for further calculation (PCC = -0.01 between 
experimentally measured kcat / Km values and kcat / Km values calculated using kcat and Km prediction 
models on kcat / Km dataset).  



However, if the same set of data was used to train both models, the calculation should work. To 
demonstrate this, we retrieved 658 samples containing kcat / Km values from the BRENDA database, 
all of which were presented in the kcat dataset. The corresponding Km value can be calculated. 
Subsequently, we performed 5-fold cross-validation to independently predict the values of kcat and Km

for all samples, and then calculated the corresponding kcat / Km values for each sample. We observed 
a higher correlation coefficient of 0.64 between the calculated kcat / Km values and experimentally 
measured kcat / Km. This further confirms that our proposed UniKP framework can indeed ensure 
consistent predictions when the data is consistent. Although the calculation has some accuracy, the 
PCC is still lower than prediction with kcat / Km dataset owing to its relatively limited sample size. 
Therefore, we have presented different prediction models for each enzyme kinetic parameters to 
provide more insights for various downstream tasks.  

We hope this clarifies the description and rationale behind our construction and demonstrates its 
potential value in the field. 

2. The authors collected different dataset to train UniKP to predict different parameters, especially for 
Km and kcat/Km prediction, the framework is exactly the same. While DLKcat is a kcat prediction 
model, it uses the information of protein sequence and molecule structure as input, which is the same 
as UniKP, so DLKcat model can also be used to predict Km and kcat/Km if trained by different datasets. 
The “unified framework” for UniKP seems not a primary advantage, instead the EF-UniKP model that 
considers environmental factors is worth more discussion, for example, its experimental validation and 
potential application. 
Response: 
Firstly, thank you for pointing out that the DLKcat model exhibits resemblances to UniKP in terms of 
the input features. Our intention was to emphasize that these kinetic parameter prediction issues could 
be predicted within a unified framework with a robust and strong performance. Therefore, we have 
slightly modified some of our expressions to make the manuscript clearer.  

1.We have deleted “the lack of a unified framework and” from the abstract.
2.We have changed “This discrepancy highlights the absence of a unified method for calculating or 
predicting kcat / Km, which is a crucial parameter reflecting catalytic efficiency.” to “This discrepancy 
highlights the importance of a demonstration of a unified method for calculating or predicting kcat / Km, 
which is a crucial parameter reflecting catalytic efficiency.”

Secondly, we fully agree with your point regarding the exploration and validation of EF-UniKP. To 
illustrate this, we conducted additional experimental validations, taking pH as an example. Specifically, 
we selected the Tyrosine ammonia lyase (TAL) enzyme, TALclu [2], which exhibited optimal catalytic 
pH of 9.5, and tried to identify mutants with higher performance at pH 9.5 with EF-UniKP. We 
performed a Blast search against the TALclu and then selected the top 1000 sequences with the 
highest similarity for prediction using EF-UniKP, with a pH setting of 9.5. From the predictions, we 
selected the top 5 sequences with the highest predicted kcat values for wet-lab experimental validation. 
Remarkably, we observed that the kcat and kcat / Km values for all five selected sequences exceeded 
those of TALclu, with two of the sequences achieving kcat / Km values 2.5-2.6 times higher than that of 
TALclu (Fig. R1). This result demonstrates that EF-UniKP, when considering environmental factors, 
consistently identifies highly active TAL enzymes with remarkable precision. It offers the opportunity 
to screen highly active enzymes across various environments, including extreme conditions, thereby 
facilitating industrial applications. 





Fig. R2 Performance Comparison of Different Models. a, b, c, d) Comparison of Root Mean Square 
Error (RMSE), Pearson Correlation Coefficient (PCC), Mean Absolute Error (MAE), and R2 (Coefficient 
of Determination) values between experimentally measured kcat values and predicted kcat values of 16 
diverse machine learning models and 2 deep learning models. The kcat values of all samples were 
predicted independently using 5-fold cross-validation. Each bar in the graph represents the models' 
performance with respect to this metric. The "Extra Trees" model is highlighted in yellow, while other 
models are depicted in blue. The corresponding numerical values for each bar are provided on the 
right side. 

Firstly, for the model training process, it's important to consider that the datasets are relatively small 
(~10k) and the features are high-dimensional (2048d). In this case, ensemble models generally prove 
to be more suitable and exhibit better prediction performance [3]. Simpler linear models exhibit lower 
fitting capability, while more complex neural networks require a large number of labeled data, 
potentially making them unsuitable for this problem.  

Secondly, deep learning models, while capable of capturing complex patterns, are highly reliant on 
effective parameter tuning. Their inherent flexibility to adapt to training data can sometimes lead to 
overfitting, underscoring the importance of meticulous tuning to strike the delicate balance between 
model complexity and generalization. 

Furthermore, the high dimensionality of the embedded vectors, resulting from the concatenation of 
pretrained language model outputs, might cause challenges for neutral network. The curse of 
dimensionality, where the data points become sparse in a high-dimensional space, can hinder the 
learning process. Tree models, with their inherent ability to partition the high-dimensional space into 
manageable regions, excel in addressing such situations and can effectively mitigate this issue, 
facilitating more efficient learning [4]. 

We also added the test of different models in our manuscript, as shown below. 
“For the machine learning module, in order to explore the performance of different models, we 
conducted a comprehensive comparison of 16 diverse machine learning models, including basic linear 
regression to complex ensemble models, as well as 2 representative deep learning models, the 



Convolutional Neural Network (CNN) and the Recurrent Neural Network (RNN) (Fig. 2). Overall, the 
results showed that simpler models like linear regression displayed relatively poor prediction 
performance (Linear Regression R2 = 0.38). In contrast, ensemble models demonstrated better 
performance. Notably, random forests and extra trees significantly outperformed other models, with 
extra trees exhibiting the highest performance (Extra Trees R2 = 0.65). However, both categories of 
deep learning models, due to their demanding requirements for intricate network design and fine-
tuning, did not perform as effectively in comparison (CNN R2 = 0.10, RNN R2 = 0.19). The results 
confirmed the significant advantage of ensemble models, with the extra trees model standing out as 
the best model. It's worth noting that the datasets are relatively small (~10k) and the features are high-
dimensional (2048d), making ensemble models more suitable. Simpler linear models exhibit lower 
fitting capability, while more complex neural networks require a large amount of labeled data, 
potentially making them unsuitable for this problem. Therefore, the concatenated representation 
vectors of both the protein and substrate are subsequently input into the interpretable extra trees 
model for the prediction of three distinct enzyme kinetic parameters (Fig. 1c).”

We have also expanded our discussion session as shown in next point. 

4. The pretrained model and Extra Tree should be discussed in greater depth rather than merely listed 
as references in the Introduction section, since they are at the heart of UniKP. 
Response: 
We have added a detailed study of pretrained model with different models in the Results section as 
shown in the previous points, and a more detailed discussion in the section, as follows. 

“Here, we conducted a comprehensive comparison of 16 diverse machine learning models and 2 deep 
learning models on the machine learning module of UniKP, with extra trees emerging as the best 
model. We speculated that tree-based ensemble models are better suited for this issue, with relatively 
small datasets (~10k) and high-dimensional features (2048d). They utilized decision trees to efficiently 
break down high-dimensional data into smaller subsets, enabling more efficient feature selection and 
data segmentation. And the combination of multiple decision trees reduced model variance, thereby 
balancing the instability of individual trees and decreasing the model's sensitivity to training data, 
contributing to improving the model's generalization abilities. The simpler models may be limited by 
insufficient fitting capabilities, while deep learning models rely on a large number of labelled samples, 
complicated network designs, and tedious parameter tuning.”

5. The metrics R2 and PCC are intertwined in the manuscript, although the equations are given, it is 
not clear when we should use R2 or PCC. Are both required? Can we only use one of them?
Response: 
We apologize for any confusion caused by the intertwined use of the R2 and PCC metrics in the 
manuscript. They convey distinct meanings: R2 measures the proportion of the variance in the 
dependent variable that can be explained by the independent variable, indicating the goodness of fit 
of a regression model. PCC quantifies the linear relationship between two continuous variables. In our 
manuscript, we have included both the R2 and PCC metrics for all the data we generated. However, 
during the comparison with existing models, we only wrote the corresponding metric as we can find in 
the original literatures, which may be seemed like the intertwined use of these two different parameters.  

6. Line301: how to screen and obtain the single-point RgTAL mutations? 
Response: 
We apologize for this unclear description. We have added a detailed explanation in manuscript, as 
shown below. 

“To showcase UniKP's ability to assist directed evolution, we generated all variants with single-point 
RgTAL mutation, where each variant involved mutating an amino acid at a specific position to one of 



the other 19 canonical amino acids. This resulted in a total number of variants equal to the product of 
19 and the length of the sequence (19*693=13,167).”

7. Line 302: what does “each group” mean, top 5 hits were identified while 10 mutants were listed in
figure 6b? more description should be given in the figure. 
Response: 
We apologize for any confusion caused in line 302. We have revised our manuscript, as follows. 

“A total of 10 sequences, with the top 5 hits with highest predicted kcat and 5 with highest predicted kcat

/ Km, were chosen for experimental validation (Fig. 6b).”

We also added a more detailed description in Figure 6b, as follows. 

“b) The kinetic characteristics of RgTAL and mutants generated by UniKP. All variants of single-point 
mutations were generated for RgTAL, where each variant involved mutating an amino acid at a specific 
position to one of the other 19 canonical amino acids, which resulted in a total number of variants 
equal to the product of 19 and the length of the sequence (19*693=13,167). Through an in-silico
screening of all 13,167 single-point mutations of RgTAL using UniKP, the top 5 mutants ranked by 
their predicted kcat or kcat / Km values were chosen from each screening (kcat or kcat / Km) for 
experimental validation. NA denotes the enzyme that was not soluble and showed no catalytic activity. 
And MT denotes the mutated form of RgTAL.”

8. Line 303-306: this sentence is difficult to understand. 
Response: 
We are sorry for this unclear description and have revised this sentence, as shown below. 

“Among the mutants with highest predicted kcat, one exhibited a slightly higher kcat / Km of 493.6 mM-

1s-1, indicating increased efficiency compared to the wild-type enzyme. In contrast, among the mutants 
with highest predicted kcat / Km, two mutants, RgTAL-10Y and RgTAL-489T, displayed significant 
higher kcat / Km of 1079 mM-1s-1 and 1150 mM-1s-1, respectively.”

9. There are two reference sections in the manuscript, it would be better to integrate them. 
Response: 
We apologize for any confusion. We have now merged the two reference sections into one. 

10. It is strongly recommended that this manuscript be thoroughly proofread and edited, including 
some tense errors and confused expression. 
Response: 
We appreciate your suggestion and have certainly taken steps to thoroughly proofread and edit the 
manuscript. 
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Reviewer #2 (Remarks to the Author): 

This study presents a unified framework, UniKP, for predicting enzyme kinetic parameters, specifically 
kcat and Km. The authors employ deep learning models for data mining and demonstrate the 
discovery of active TAL enzymes as a noteworthy application. However, while the use of pretrained 
protein language models and the SMILES Transformer is common in protein-ligand interaction 
modeling, the novelty of UniKP remains insufficient. Furthermore, concerns regarding data leakage 
and several other inquiries and doubts need to be addressed for a more comprehensive understanding 
of the research. Whether considering publication in this journal or elsewhere, it is recommended that 
the authors incorporate new data and discussions to address the following points: 
Response: 
We appreciate the reviewer for the constructive comments about our work which helped us improve 
the quality of our manuscript. We have added new data, analysis and discussions and carefully revised 
the manuscript according to the comments. 

1. The novelty of UniKP's kcat prediction appears limited. The authors acknowledge the small size of 
the enzyme kinetic data and justify their use of pretrained protein language models (ProtT5-XL-
UniRef50) and the SMILES Transformer for generating meaningful representations. However, it is 
crucial to differentiate this work from existing models or methods, given that other studies, such as 
Kroll et al. (Nat Commun 14, 2787, 2023), have also utilized pretrained protein language models for 
similar purposes. Unique contributions of UniKP should be clearly elucidated.
Response: 
We genuinely appreciate your thoughtful insights and concerns. We would like to elucidate the major 
contributions of our work in the following aspects. 

1. For the construction of UniKP, our work proposes a new framework called UniKP based on 
pretrained language models for the prediction of three categories of enzyme kinetic parameters, 
including kcat, Km, kcat / Km predictions. 

2. We proposed a two layer framework called EF-UniKP to consider environmental factors and confirm 
its effectiveness in kcat predictions under different pH and temperature using two new datasets 
specifically collected for this study. 

3. We analyzed the kcat value distribution of the dataset used and found that it was highly imbalanced, 
which poses a challenge for a machine learning model to extract the critical information. Therefore, 
we systematically explored four representative re-weighting methods to successfully reduce the 
prediction error in high kcat values prediction tasks. 

4. We performed comprehensive wet-lab experimental validation based on Tyrosine ammonia lyase 
(TAL), a key rate-limiting enzyme in flavonoid biosynthesis. Our findings illustrate that UniKP has the 
capability to mine new enzymes as well as evolve enzymes to achieve higher activity for a specific 
substrate, reducing time and cost for both enzyme mining and directed evolution. 

Beyond this, we agreed with your suggestion and the suggestions from other reviewers, we have 
added the following two experiments to further demonstrate the contribution and advantage of our 
methods:  

First, we have conducted a comprehensive comparison of 16 diverse machine learning models and 2 
deep learning models and added a detailed analysis of these models to provide deeper insights into 
the learning process. We have also added a more detailed discussion on the choice of features versus 
models in the Discussion section, as follows. 



“For the machine learning module, in order to explore the performance of different models, we 
conducted a comprehensive comparison of 16 diverse machine learning models, including basic linear 
regression to complex ensemble models, as well as 2 representative deep learning models, the 
Convolutional Neural Network (CNN) and the Recurrent Neural Network (RNN) (Fig. 2). Overall, the 
results showed that simpler models like linear regression displayed relatively poor prediction 
performance (Linear Regression R2 = 0.38). In contrast, ensemble models demonstrated superior 
performance. Notably, random forests and extra trees significantly outperformed other models, with 
extra trees exhibiting the highest performance (Extra Trees R2 = 0.65). However, both categories of 
deep learning models, due to their demanding requirements for intricate network design and fine-
tuning, did not perform as effectively in comparison (CNN R2 = 0.10, RNN R2 = 0.19). The results 
confirmed the significant advantage of ensemble models, with the extra trees model standing out as 
the best model. It's worth noting that the datasets are relatively small (~10k) and the features are high-
dimensional (2048d), making ensemble models more suitable. Simpler linear models exhibit lower 
fitting capability, while more complex neural networks require a large amount of labelled data, 
potentially making them unsuitable for this problem. Therefore, the concatenated representation 
vectors of both the protein and substrate are subsequently input into the interpretable extra trees 
model for the prediction of three distinct enzyme kinetic parameters (Fig. 1c).”

“Here, we conducted a comprehensive comparison of 16 diverse machine learning models and 2 deep 
learning models on the machine learning module of UniKP, with extra trees emerging as the best 
model. We speculated that tree-based ensemble models are better suited for this issue, with relatively 
small datasets (~10k) and high-dimensional features (2048d). They utilized decision trees to efficiently 
break down high-dimensional data into smaller subsets, enabling more efficient feature selection and 
data segmentation. And the combination of multiple decision trees reduced model variance, thereby 
balancing the instability of individual trees and decreasing the model's sensitivity to training data, 
contributing to improving the model's generalization abilities. The simpler models may be limited by 
insufficient fitting capabilities, while deep learning models rely on a large number of labelled samples, 
complicated network designs, and tedious parameter tuning.”

Second, we have further explored and validated the usefulness of EF-UniKP with additional wet-lab 
experiments. We have added a detailed description in our manuscript, as shown below. 

“Furthermore, in order to illustrate the effectiveness of EF-UniKP, we also conducted wet-lab 
experimental validations, using pH as an example. Specifically, we selected the Tyrosine ammonia 
lyase (TAL) enzyme, TALclu [38], which exhibited optimal catalytic pH of 9.5. We employed a similar 
enzyme mining approach as before against TALclu and selected the top 5 sequences with the highest 
predicted kcat values by EF-UniKP for experimental validation. Remarkably, we found that the kcat and 
kcat / Km values of all 5 sequences exceeded those of TALclu. The kcat value of HiTAL from 
Heterobasidion irregulare TC 32-1 was the highest at 76.00 s-1, which is 4.6 times greater than that of 
TALclu. Additionally, the kcat / Km value of TrTAL from Tephrocybe rancida was the highest at 863.50 
mM-1s-1, representing a 2.6-fold increase compared to TALclu (Fig. 6c). This result further 
demonstrates that EF-UniKP, when considering environmental factors, consistently identifies highly 
active Tyrosine ammonia lyase (TAL) enzymes with remarkable precision.”

We believed that these additional experiments demonstrated novel insight for the choice of suitable 
feature representations and machine learning models for relevant studies in the future, as well as 
provided guidance to the protein evolution processes. Therefore, UniKP has its unique contribution 
and potential values in related field. 

2. The manuscript should provide more details about the UniKP model, including the hyperparameters 
employed during training (such as batch size, learning rate, optimizer, and parameter freezing) and 
specific information about the model setup (such as the size of the Extra Trees model). 
Response: 



We apologize for any confusion about the model implementation. Since we added the content for the 
model comparison, we have included specific details in Methods, as shown below. 

“Model setting. The 16 machine learning models includes Linear Regression, Ridge Regression, 
Lasso Regression, Bayesian Ridge Regression, Elastic Net Regression, Decision Tree, Support 
Vector Regression, K Neighbors Regressor, Random Forest, Gradient Boosting, Extra Trees, 
AdaBoost, Bagging, XGBoost (XGB), LightGBM (LGBM), MultiLayer Perceptron (MLP) Regressor. 
Here, the MLP Regressor was regarded as a traditional machine learning due to its shallow network 
design. We implemented all machine models using sklearn v. 1.1.1, utilizing default parameters, 
without additional optimization. The Convolutional Neural Network (CNN) architecture employed in 
this study comprises a 1D convolutional layer (conv1) with 16 output channels and a kernel size of 3 
for feature extraction, followed by a max-pooling layer (pool) with a kernel size of 2 for downsampling. 
Then the model further includes two fully connected layers (fc1 and fc2), with fc1 having 16 * 1023 
input features and 64 output features, and fc2 having 64 input features and 1 output feature. The 
architecture of Recurrent Neural Network (RNN) utilized in this study involves an RNN layer (rnn) with 
2048 input features, 128 hidden units, and 1 layer. Following the RNN layer, there are two fully 
connected layers (fc1 and fc2). The first layer (fc1) has 128 input features and 64 output features, 
while the second layer (fc2) has 64 input features and 1 output feature. During the training process, 
deep learning models were optimized using an Adam optimizer with a learning rate of 0.0001, 
employing Mean Square Error as the loss function. The batch size was configured to be 8,192. All 
deep learning models were implemented using Python 3.6.9 with pytorch 1.10.1+cu113.”

3. Line 548 mentions "substrate structure" in relation to SMILES representation. SMILES 
representation does not provide a complete structural view, and consideration of 3D conformers could 
offer a more holistic representation. 
Response: 
We apologize for any confusion caused by unclear description. Our intention was to introduce that we 
can obtain the corresponding SMILES representation from the substrate's structure and then input it 
into the subsequent model. In fact, beside the 3D conformation, there are also additional features of a 
molecule which can be incorporated in the representation processes, such as the surface charge 
distribution, van der waals surface area, etc. As demonstrated in the literature by our group [1] and 
others, this additional information sometimes provide additional accuracy for some specific questions, 
while they showed no effect in other applications. We believed this discrepancy emerged from the 
intrinsic differences in different biological applications. For example, whereas ionic interaction is 
important in enzyme-ligand interaction, the major contributor in protein folding is van der waals 
interaction (hydrophobic interaction). Therefore, it is important to test for the best representation for 
each application. 

4. The partitioning of the training and test datasets based on sequence similarity is not explicitly 
described. To address potential data leakage issues and ensure accurate model evaluation, the 
authors should conduct model training and testing on datasets separated by sequence identities. 
Given the limited innovation in deep learning models presented in this research, a careful evaluation 
of data leakage would be a valuable contribution to the field. Additionally, important metrics such as 
RMSE (Root Mean Square Error) should be listed in a well-formatted table rather than presented solely 
in bar plots. 
Response: 
We appreciate your valuable suggestion. In order to evaluate the potential data leakage, we used a 
method as reported in a recent bioRxiv manuscript [2], where the R2 of geometric mean of the kcat

values of the three most similar enzymes for each enzyme in the training dataset (represent the 
potential leaking information) was compared with corresponding UniKP predicted values. The result 
demonstrated a clear advantage (higher correlation) of UniKP over the geometric means, as well as 
over DLKcat. Similarly, UniKP also exhibited a lower RMSE compared to the potential data leakage 
(if any), as shown in Fig R1. 





We conducted a direct comparison using bar plots, and all numerical values are available in the source 
data for reference. 

5. The presence of RgTAL mutations in the training data should be clarified to avoid any potential data 
leakage concerns. 
Response: 
We appreciate your careful consideration of data leakage concern. The variant with the highest kcat / 
Km value is RgTAL-489T, which is 3.5 times higher than RgTAL, as predicted by the kcat / Km predictor. 
Through BLAST analysis, the result showed that the most similar sequence in the whole dataset for 
kcat / Km predictor shares only a 35.42% identity. This demonstrates that UniKP indeed captures deep-
level information, enabling effective screening of enzyme-substrate combinations that have not been 
presented in training set. 

We have also added the following sentences in the Results section of the revised manuscript: 

“Moreover, through BLASTp analysis, the result showed that the most similar sequence in the whole 
dataset for kcat / Km predictor shares only a 35.42% identity. This demonstrates that UniKP indeed 
captures deep-level information, enabling effective screening of enzyme-substrate combinations that 
have not been presented in training set.”

6. The generalization of the model trained on kcat prediction to the prediction of Km and kcat/Km 
requires thorough discussion. In enzymology, Kcat is traditionally considered independent of Km. Thus, 
an explanation is needed to address the unexpected finding and prevent any misinterpretation that 
may lead to misconceptions about enzyme catalysis. 
Response: 
We apologize for any misunderstanding caused by my unclear explanation. Here, we were utilizing 
the same framework to train three distinct models based on three separate datasets. These models 
are entirely independent of each other. We have revised it in our manuscript for better understanding, 
as shown below. 

1. We added the following sentences in the sub-section “Unified framework for Km and kcat / Km

predictions”: Although kcat is traditionally considered as independent of Km, in light of the principle that 
the primary sequence of a specific protein determined its three-dimensional structure, and therefore 
its function, we believed that hidden information in the primary sequence could also be used to predict 
its Km and kcat / Km values. 

2. We revised the following sentences in the introduction “Researchers have attempted to utilize
computational methods to accelerate the process of enzyme kinetic parameters prediction, but current 
approaches have exclusively concentrated on addressing one of these issues, overlooking the 
similarity of both tasks in reflecting the relationship of protein sequences towards substrate structures.”

7. A discrepancy is observed between line 831 and Figure 5e regarding the representation of Kcat/Km. 
The authors should rectify this inconsistency to ensure clarity. 
Response: 
We appreciate you for pointing out this error. In Figure 5, the correct notation should be kcat / Km. We 
have made the necessary corrections and thoroughly reviewed the content to address the 
inconsistency, as shown in Fig. R2. 



Fig. R2 Scatter plot illustrating the Pearson coefficient correlation (PCC) between experimentally 
measured kcat / Km values and predicted kcat / Km values of UniKP for kcat / Km dataset (N=910). The 
color gradient represents the density of data points, ranging from blue (0.02) to red (0.28). 

8. In Figure 5, a scatter plot depicting the predicted kcat against the experimental Km would provide a 
clearer visualization. Moreover, it is important to note that RMSE and R2 (coefficient of determination) 
should not share the same Y-axis due to their different dimensions. RMSE measures the difference 
between model predictions and actual values and is expressed in the same units as the predicted and 
actual values. As UniKP predicts kcat in s-1 and Km is typically measured in mM, RMSE lacks practical 
significance. On the other hand, R2 represents the proportion of variance in the dependent variable 
that can be predicted from the independent variable, and it is a dimensionless value between 0 and 1. 
Since R2 describes linear correlation, it may be more suitable to include Spearman correlation for 
assessing the model's performance. 
Response: 
We sincerely apologize for the confusion in our previous presentation. The axes in Figure 5 should 
represent the experimental kcat / Km values on the x-axis and the predicted kcat / Km values on the y-
axis. We have revised it as the Response 7. 

Additionally, we have reorganized the graphical representation of RMSE and R2 results for better 
understanding, as shown below. 

Fig. R3 | RMSE, coefficient of determination (R2) between experimentally measured Km values and 
predicted Km values on Km test set. 

We apologize for any misunderstanding on this section. The comparisons were only between the 
experimental and predicted kcat values, or experimental and predicted Km values, and not between kcat
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Reviewer #3 (Remarks to the Author): 

In the manuscript presented by Yu, et al., a computational framework for prediction of kinetic 
parameters of enzymes, namely, turnover numbers (kcat), Michaelis constants (Km) and enzyme 
efficiency (kcat/Km), UniKP, is presented. This framework is based on pre-trained language models 
that use protein sequence and substrate structures as input features. Additionally, a two-layer machine 
learning approach is used for accounting for pH and temperature variations in predicted parameters, 
and different approaches for improving prediction of high kcat values are tested. The authors ran 
extensive comparison on predictive performance of their model vs. the state-of-the-art tools for 
prediction of kcat (Li et al. 2022) and Km (Kroll et al. 2023) parameters, showing improvements in 
correlation coefficients and error metrics. However, the prediction errors displayed by UniKP are still 
above an order of magnitude in kinetic parameters, on average, which limits large-scale applicability 
for accurate modeling of cellular function, leaving room for further improvements. 

Notably, the authors show how this tool can be used for mining sequences and selecting the optimal 
enzyme for a specific metabolic reaction (tyrosine ammonia liase, TAL), and predict single-point 
mutations that increase enzymatic performance significantly, achieving the highest reported enzyme 
efficiency for a TAL mutant. 

The subject addressed by this study is of current high relevance in the fields of synthetic and systems 
biology, machine learning and metabolic engineering, therefore, the results presented here are of high 
relevance for a wide public. The use of pre-trained language models for prediction of enzyme 
parameters offers a new perspective on the use of machine learning methods for biological purposes, 
the use of this method for enzyme discovery and directed improvement is a major novel contribution 
to the aforementioned fields, opening possibilities for many applications. 

I recommend the authors to address the following major and minor points in order to improve the 
quality of this manuscript and support their findings even further. 
Response: 
We are immensely grateful for the thorough evaluation of our manuscript and the constructive 
comments about our work which helped us improve the quality of our manuscript. We have carefully 
revised the manuscript according to the comments. 

Major points: 

1.- Most of the model performance evaluations in this manuscript focus on the comparison of 
correlation, determination coefficients and error metrics with the previously published DLKcat. 
Recently, a preprint highlighting the flaws in the selection and partitioning of the DLKcat dataset 
(https://doi.org/10.1101/2023.02.06.526991) has been published in bioRxiv. This study demonstrates 
that DLKcat predictions are accurate just for enzymes that are highly similar to those used in the 
training dataset. They show that a simple approach of approximating Kcats, by computing geometric 
means of kcats across the 3 top-similar enzymes (sequence similarity) in the training dataset is 
capable of yielding significantly better determination coefficients for predictions of the test dataset. I 
recommend the authors to also run a comparison of this type, as the predictions of DLKcat have 
already been found to be biased. 

Response: 
Thank you for your valuable suggestion. We appreciate your input and have taken your advice into 
consideration. We have conducted additional experiments as you suggested. Specifically, we made a 
comparison based on different sequence similarity, comparing it with predictions generated using the 
geometric means (gmean) of kcat values from the three most similar enzymes, as outlined in the 
reference (https://doi.org/10.1101/2023.02.06.526991). The results of our comparative analysis 
showed a significant advantage compared with gmean on different intervals, as shown in Fig. R1. 





proofed to be useful for directed enzyme improvement. Nonetheless, readily available kinetic 
parameters in a large-scale has been one of the most important bottlenecks for advancing on 
mechanistic understanding of cell behavior through modeling attempts. For this whole field of biological 
sciences, it is crucial to provide accurate parameters that enable appropriate quantification of cellular 
states and dynamics. AI-ML methods offer a great opportunity for addressing this long-standing issue, 
but more development is still needed. This manuscript would benefit from a broader and deeper 
discussion on the limitations of accurate quantitative prediction of kinetic parameters and their 
implications for bottom-up biological studies. 

Response: 
We greatly appreciate your insightful suggestions. We have taken your advice and expanded our 
discussion to encompass the limitations of quantitative prediction of kinetic parameters and the 
broader implications for bottom-up biological studies in our manuscript. We have added the following 
sentences in the last paragraph: 

“A central objective in synthetic biology is the development of a digital cell, poised to revolutionize our 
methods of studying biology. A critical prerequisite for this endeavour is the meticulous determination 
of enzymatic parameters for all enzymes within the pathway. Tools assisted by artificial intelligence 
illuminate this challenge, offering a high-throughput approach to predicting enzymatic kinetics. 
However, despite the reduced errors in UniKP predictors compared to earlier models, inaccuracies 
remain a significant hurdle in crafting a precise metabolic model. The inclusion of a growing number 
of experimentally determined kcat and Km values, sourced from cutting-edge high-throughput 
experimental techniques like those employed in modern biofoundries, can enhance model accuracy.”

3.- The use of a machine learning model for Kcat prediction is justified in the first results subsection 
by showing that the concatenated vectors (combined representation of sequence and substrate) 
cannot differentiate between Kcat values of different orders of magnitude, by projecting such vectors 
using t-SNE analysis. In the methods section it is mentioned that such analysis was ran using just the 
default parameters. It is not mentioned which was the specific software implementation used for this, 
and default parameters may differ from one to another. Moreover, t-SNE is a stochastic method that 
relies on two main parameters (perplexity and number of iterations). The choice of these parameters 
is crucial, as they may have drastic effects on the projection results. In order to strengthen this section, 
I recommend the authors to run a parametric analysis of the t-SNE projections to show the effect of 
the parameters in the grouping of the concatenated enzyme vectors. If Kcat values do not seem to 
group despite the chosen perplexity and number of iterations, then the implementation of uniKP will 
be better justified. 

Response: 
Thank you for your valuable suggestion. We have tested different perplexity and iterations and added 
them to the Supplementary information, as shown in Fig. R2. We have also revised the main text as 
followed: 
“The concatenated representation vector of both the protein and substrate are then fed into the 
following machine learning module. Here, the projections of t-distributed Stochastic Neighbour 
Embedding (t-SNE) with different perplexity and iterations demonstrated that a solely concatenated 
representation vector cannot discriminate well between high and low kcat values [26], further 
emphasizing the need for the machine learning model (Supplementary Fig. 1).”





quantitative modelling could help us to better understand the metabolic networks. However, after our 
discussion in person with authors of the DLKcat paper, who had applied the predicted parameters to 
construct models, we believe it is still premature for constructing an accurate model at the current 
status. As the response in point 2, despite the reduced errors in UniKP predictors compared to earlier 
models, inaccuracies remain a significant hurdle in crafting a precise metabolic model. We have added 
the relevant discussion in the last paragraph as in point 2. 

5.- Lines 52-54: It is mentioned that, in comparison to the availability of millions of sequences, uniprot 
just offers around 2,000 kcat values. On the other hand, tenths of thousands of kinetic parameters are 
available in BRENDA and SABIO-RK bases, and in their latest versions these databases have 
integrated uniprot identifiers to their entries, facilitating a larger connection between measured 
parameters and protein sequences. Please mention this, or even add the corresponding numbers if 
possible, in order to clarify this better for the readers. 

Response: We apologize for the unclear description. We have taken your feedback into consideration 
and have made revisions to the manuscript by including additional information about these database 
in our manuscript, as shown below. 

“For instance, the sequence database UniProt contains over 230 million enzyme sequences, while 
enzyme databases BRENDA and SABIO-RK contain tens of thousands of experimentally measured 
kcat values [6-8]. The integration of UniProt identifiers in these enzyme databases facilitated the 
connection between measured parameters and protein sequences. However, these connections are 
still far smaller in scale compared to the number of enzyme sequences, limiting the advancement of 
downstream applications such as directed evolution and metabolic engineering.”

6.- Lines 69-70: “…often deviate from the ground truth”. What is such truth regarding enzyme
parameters, in vitro measurements? in vivo values? (probably impossible to characterize), predictions 
from basic principles using quantum chemistry? Even more, modern models of science and its 
methods of discovery do not aim to unveil “truths” from nature, but to create falsifiable hypotheses that
can be empirically tested, and proof to offer coherent and viable explanations that expand our 
understanding of nature and our ways to modify it/interact with it. Please avoid the use of these 
categorical terms.

Response:  
We greatly appreciate your insightful and thoughtful comments. We have revised it, as shown below. 

“Consequently, the calculated kcat / Km values from these models often deviate significantly from the 
experimental measurements.”

7.- Overall in the introduction and abstract sections prediction of kinetic parameters is mentioned 
repeatedly, but it is never said that this refers to prediction of in vitro measured parameters, please 
clarify this where at least once in these sections. 

Response: 
We apologize for this unclear description, we have added this statement in the introduction of our 
revised manuscript, as shown below. 

“The in vitro measured values of kcat and Km, the maximal turnover rate and Michaelis constant, are 
the indicators of the efficiency of an enzyme in catalyzing a specific reaction and can be used to 
compare the relative catalytic activity of different enzymes [4].”

8.- Line 140: “further demonstrating the superiority of UniKP”. The top used synonyms of the word
superiority are dominance, excellence and perfection, which I doubt that is what the authors wanted 



to express. UniKP shows improved performance in comparison to other frameworks, major in some 
aspects, but as any approximation it is also limited in its prediction power, I recommend to avoid the 
use of this charged term here and in other parts of the text. Science is not a competition, but rather a 
cumulative enterprise of humanity for understanding nature. 

Response: 
We have greatly benefited from your insightful comments. We have checked and revised our 
manuscript, as shown below. 

“Additionally, the highest value of DLKcat in these five rounds was 16% lower than the lowest value 
of UniKP, further demonstrating the robustness of UniKP.”

9.- Line 154: “Theoretically, the former should exhibit higher values”. This has been explored by many
studies before. Please add references. 

Response: Thanks for your careful check. We have added it in our manuscript, as follows. 

“Theoretically, the former should exhibit higher values [27-28].”

10.- Line 154: “Our results revealed”, as mentioned above, many studies have explored this issue
before, using different approaches, therefore, this manuscript is not revealing this but confirming or 
showing that results agree with what has been previously reported. Please modify accordingly. 

Response: 
We greatly appreciate your meticulous review, and we have revised it, as shown below. 

“Our results found that the primary central and energy metabolism category was significantly higher 
than the latter, consistent with expectations (Fig. 2e; p = 9.33 x 10-8)”

11.- Lines 171-176: Could the authors add any error metrics here? (RMSE, or median absolute errors). 
Enzyme parameters are crucial for quantitative studies, hence, provide a measure of the associated 
errors in predictions will inform the community better. 

Response: 
Thanks for your careful consideration, we have added it and checked our manuscript to ensure that 
error metrics are all included, as shown below. 

“Moreover, we obtained R2 values of 0.60 for wild-type enzymes and 0.81 for mutant enzymes, along 
with RMSE values of 0.90 for wild-type enzymes and 0.67 for mutant enzymes.”

12.- Line 182-183: Could the authors elaborate on why the selected enzyme-substrate pair is a crucial 
one and what is its relevance for the field? 

Response: 
We intended to provide an illustrative example to verify the advantages of UniKP. However, we agree 
with your point that it is not necessary to include a single case lacking significant relevance to this field. 
Therefore, we have removed it in our manuscript. 

13.- Line 236: “predicting high kcat values was essential”, these predictions are still gonna be essential
for the field, even after publication of this manuscript. These predictions are very challenging and more 
accurate frameworks for prediction are likely to appear in the upcoming years, with further 
understanding and expansion oof machine learning methods. Please change the word “was” to has
been or something similar. 



Response: 
We hold great admiration for your rigorous check, and we have made the corresponding modifications 
as your suggestions, as shown below. 

“However, predicting high kcat values has been essential in enzymology and synthetic biology [14-15]”

14.- Line 316: “prediction framework, UniKP, which can accurately predict three essential enzyme 
kinetic parameters”. UniKP offers improvements in comparison with previous methods. Nevertheless,
its predictions may differ from in vitro measurements even by an order of magnitude, which questions 
the use of the term “accurately predict” in absolute terms. It would be more fair to mention that it
improves accuracy of predictions. 

Response: 
Thank you for your valuable comment. We have checked and revised this statement in our manuscript, 
as shown below. 

“Here, we present a pretrained language model-based enzyme kinetic parameters prediction 
framework (UniKP), which improves accuracy of predictions for three enzyme kinetic parameters, kcat, 
Km, and kcat / Km, from a given enzyme sequence and substrate structure.”

15.- Line 337: “As the learnable dataset expands”. Here the authors acknowledge that the available
measurements will expand, which I agree. It is even likely that future techniques will enable high-
throughput characterization of enzymes. Nonetheless, in most of the text, the tone gives the idea that 
high-throughput prediction is the only active direction in this topic. Adding some nuances here and 
probably citing latest research on experimental methods and research directions would benefit the 
discussion.

Response: 
Thank you for your valuable comment. We have taken your suggestion into account and provided a 
more balanced perspective by incorporating some recent research on experimental methods and 
ongoing research directions to enhance the depth of the discussion, as shown below. 

“As experimental techniques advance, including biofoundry lab automation and continuous evolution 
methods [41-42], we anticipate a surge in enzyme kinetic data. This influx will not only enrich the field 
but also enhance the accuracy of prediction models.”



Reviewer #1 (Remarks to the Author): 

All my queries have been well addressed. 

Reviewer #2 (Remarks to the Author): 

I have reviewed the revised manuscript and find that the authors have addressed many of the 

concerns raised by the reviewers, including mine. It is clear that the authors have undertaken 

significant efforts to improve the quality of their manuscript in response to the initial round of 

reviews. However, there are still some issues that need to be resolved. My concerns are detailed 

below: 

1. Data Leakage and Comparison Methodology: 

A lingering concern pertains to the issue of data leakage and the comparison with other methods 

to elucidate the contributions of this work. It is praiseworthy that the authors aligned their 

methodology with a preprint and a paper published in Nature Communications (Nat Commun 14, 

4139, 2023) to facilitate direct comparisons. During the revision, the authors employed the 

geometric mean of the closest 100 sequences in the dataset, citing Kroll et al. However, it should 

be noted that Kroll et al. used the 3 most similar sequences for their calculations. I would 

recommend that the authors follow the same setting for a more accurate and fair comparison. 

Also, the values for UniKP and gmean in the 50–70% mean sequence identity region are 

conspicuously alike. A discussion or clarification of this would add value to the manuscript. Lastly, 

if possible, a head-to-head comparison with TurNuP would enhance the manuscript's validation 

further. 

2. Correlation between Predictors: 

Between lines 308 and 310, the authors state that the Pearson Correlation Coefficient (PCC) 

between prediction and measurement is -0.02 when using other state-of-the-art methods. This 

point would benefit from further elaboration. Specifically, can the authors present the results of 

the correlation between UniKP Kcat/ UniKP Km and the Kcat/Km dataset? Additionally, a more 

thorough discussion about the current failure of using Kcat and Km predictors for the Kcat/Km 

values would be valuable. 

Reviewer #3 (Remarks to the Author): 

The original reviewer was unable to comment. The comments were provided by one of the other 

reviewers. 

For point #2, the limitations of accurate quantitative prediction and the significance of the accurate 

model for bottom-up biological studies have been discussed in the revised manuscript as the 

reviewer suggested. 

For point #3, the results provided by the authors show that Kcat values do not group in t-SNE 

analysis with different parameters, which justify the implementation of uniKP. 

In general, the concerns raised by the reviewer have been addressed in my opinion. 



Response to Reviewer’s Comments: 
We express our sincere gratitude to all reviewers for their thorough and insightful feedback, and for 
giving us an opportunity to further revise our manuscript. In light of their comments, we have carefully 
revised the manuscript and included additional data where necessary. Below, we address each of the 
comments in detail. 

Reviewer comments 
Reviewer #1 (Remarks to the Author): 
All my queries have been well addressed. 

Response: 
We appreciate the reviewer’s thoughtful evaluation of our manuscript.

Reviewer #2 (Remarks to the Author): 
I have reviewed the revised manuscript and find that the authors have addressed many of the concerns 
raised by the reviewers, including mine. It is clear that the authors have undertaken significant efforts 
to improve the quality of their manuscript in response to the initial round of reviews. However, there 
are still some issues that need to be resolved. My concerns are detailed below: 

Response: 
We appreciate the reviewer’s thoughtful evaluation of our manuscript and the constructive comments
about our work which further helped us improve the quality of our manuscript. We have carefully 
revised the manuscript according to the comments. 

1. Data Leakage and Comparison Methodology: 
A lingering concern pertains to the issue of data leakage and the comparison with other methods to 
elucidate the contributions of this work. It is praiseworthy that the authors aligned their methodology 
with a preprint and a paper published in Nature Communications (Nat Commun 14, 4139, 2023) to 
facilitate direct comparisons. During the revision, the authors employed the geometric mean of the 
closest 100 sequences in the dataset, citing Kroll et al. However, it should be noted that Kroll et al. 
used the 3 most similar sequences for their calculations. I would recommend that the authors follow 
the same setting for a more accurate and fair comparison.  

Response: 
We apologize for any confusion caused by unclear description. To clarify, our approach is exactly the 
same as the methods detailed in the bioRxiv manuscript, where the R2 of geometric mean of the kcat

values of the 3 most similar enzymes for each enzyme in the training dataset (represent the potential 
leaking information) was compared with corresponding UniKP predicted values. And the curves are 
R2, calculated in sliding windows of size n=100 across sequences in the test set ordered by the 
maximal sequence identity between individual test enzymes and all sequences in the training data, as 
previously outlined in the same bioRxiv manuscript. 

We have also provided explanations in the legend of Supplementary Fig. 3. 
“Supplementary Figure 3. a, b) Performance Comparison of UniKP and geometric mean (gmean). 
The curves are coefficients of variation R2 (a), RMSE (b), calculated in sliding windows of size n=100 
across sequences in the test set ordered by the maximal sequence identity between individual test 
enzymes and all sequences in the training data. Position on the x-axis indicates the mean across the 
window. Red: UniKP predictions; yellow: geometric mean of kcat values, calculated over the three most 
similar enzymes in the training set. The two points at the top right are for test datapoints with enzymes 
already used for training (100% max. sequence identity), these were not included in the sliding 
windows.”



Also, the values for UniKP and gmean in the 50–70% mean sequence identity region are 
conspicuously alike. A discussion or clarification of this would add value to the manuscript.  

We appreciate the reviewer’s astute observation regarding the similarity in values between UniKP and
gmean within the 50–70% mean sequence identity region. Upon further examination, we undertook a 
meticulous analysis to elucidate this phenomenon, which encompassed an investigation into data 
distribution, potential data leakage, and the limitations inherent in the method employed. Our 
conclusion posits that within the realm of biochemistry and enzymology, particularly in the pursuit of 
alternative enzyme discovery, researchers frequently use BLAST analysis to identify closely related 
sequences (with a sequence identity range of 50-95%) under the assumption of potential functional 
similarity albeit with nuanced differences in activities or substrate specificities. It is plausible that the 
three most analogous sequences harbor a certain predictive capacity for kinetic parameters, hence 
the observed similarity between the gmean curve and the UniKP values within the specified identity 
range. This commonality in machine learning tasks is expected as the predictive values invariably 
reflect the characteristics of the most similar samples. However, the discernible difference between 
the two curves accentuates the enhanced depth of information captured by UniKP, displaying a 
notable advantage over the simple gmean prediction. 

The divergences in curves at low identity regions (<50) and high identity regions (>70) warrant further 
discussion. In the low identity region, due to the scant sequence similarity, there is a higher probability 
of the most similar sequences pertaining to entirely distinct enzyme groups with divergent functions, 
thereby resulting in significantly lower correlations in gmean. Conversely, in the high identity region, 
the training dataset encompasses many enzyme mutants with a broad spectrum of kinetics, often 
generated from mutational experiments, which consequently lowers the gmean correlations. The 
higher correlation of UniKP predicted values in these regions underscores the capability of UniKP in 
discerning deeper interconnected information, thus exhibiting enhanced performance amidst 
seemingly contradictory data. The successful application of UniKP in identifying better enzyme single 
point mutants further substantiates our conclusion, as potential data leakage would invariably impede 
the accuracy of such predictive tasks. 

We have incorporated the following text in the discussion section to reflect this analysis: 

“The disparity between the high identity region (>70 identity) and low identity region (<50 identity) of 
the R2 of UniKP predicted values and R2 of the gmean method underscores the adeptness of UniKP 
in extracting deeper interconnected information, thereby demonstrating a higher predictive accuracy 
in these tasks.”

Lastly, if possible, a head-to-head comparison with TurNuP would enhance the manuscript's validation 
further. 

We agreed with the reviewers that more comparison with related methods would be better to validate 
our method, however, TurNuP used different dataset with additional reaction information, which 
hindered the head-to-head comparison. In the future, we also plan to add reaction information in UniKP 
to enable it with improved accuracy and additional functions.

2. Correlation between Predictors: 
Between lines 308 and 310, the authors state that the Pearson Correlation Coefficient (PCC) between 
prediction and measurement is -0.02 when using other state-of-the-art methods. This point would 
benefit from further elaboration. Specifically, can the authors present the results of the correlation 
between UniKP Kcat/ UniKP Km and the Kcat/Km dataset? Additionally, a more thorough discussion 
about the current failure of using Kcat and Km predictors for the Kcat/Km values would be valuable. 



Response: 
Thanks for your valuable comment. As the response to the first issue from reviewer 1, we conducted 
an additional detailed analysis and discussion. 

We validated the UniKP framework based on experimentally measured kcat / Km values and kcat / Km

values calculated using kcat and Km prediction models on kcat / Km dataset. In the case of kcat and Km

prediction models, their corresponding training data came from different sources with different curation 
standards, which may result in inconsistency, posing challenges in achieving great performance when 
the predicted values were used for further calculation (PCC = -0.01 between experimentally measured 
kcat / Km values and kcat / Km values calculated using kcat and Km prediction models on kcat / Km dataset). 

However, if the same set of data was used to train both models, the calculation should work. To 
demonstrate this, we retrieved 658 samples containing kcat / Km values from the BRENDA database, 
all of which were presented in the kcat dataset. The corresponding Km value can be calculated. 
Subsequently, we performed 5-fold cross-validation to independently predict the values of kcat and Km

for all samples, and then calculated the corresponding kcat / Km values for each sample. We observed 
a higher correlation coefficient of 0.64 between the calculated kcat / Km values and experimentally 
measured kcat / Km. This further confirms that our proposed UniKP framework can indeed ensure 
consistent predictions when the data is consistent. Although the calculation has some accuracy, the 
PCC is still lower than prediction with kcat / Km dataset owing to its relatively limited sample size. 
Therefore, we have presented different prediction models for each enzyme kinetic parameters to 
provide more insights for various downstream tasks. 

We have added the following texts in the discussion section:  

“Furthermore, we validated the UniKP framework based on experimentally measured kcat / Km values 
and kcat / Km values calculated using kcat and Km prediction models on kcat / Km dataset. It is to be noted 
that the correlation observed between the values derived from UniKP kcat / UniKP Km and the 
experimental kcat / Km is relatively low (PCC=-0.01). This discrepancy is likely attributable to the 
disparate datasets employed in constructing the respective models, necessitating the development of 
a distinct model for predicting kcat / Km values. In the future, with the availability of a unified dataset 
encompassing both kcat and Km values, it is anticipated that the calculated outputs from the kcat and 
Km models would closely align with those generated by a dedicated model for kcat / Km.”

Reviewer #3 (Remarks to the Author): 
The original reviewer was unable to comment. The comments were provided by one of the other 
reviewers. 

For point #2, the limitations of accurate quantitative prediction and the significance of the accurate 
model for bottom-up biological studies have been discussed in the revised manuscript as the reviewer 
suggested. 

For point #3, the results provided by the authors show that Kcat values do not group in t-SNE analysis 
with different parameters, which justify the implementation of uniKP. 

In general, the concerns raised by the reviewer have been addressed in my opinion. 

Response: 
We appreciate the reviewer’s thoughtful evaluation of our manuscript.



Reviewer #2 (Remarks to the Author): 

All my concerns have been addressed



Response to Reviewer’s Comments: 
We express our sincere gratitude to all reviewers for their thorough and insightful feedback. Below, 
we address each of the comments in detail. 

Reviewer comments 
Reviewer #2 (Remarks to the Author): 
All my concerns have been addressed. 

Response: 
We appreciate the reviewer’s thoughtful evaluation of our manuscript.


