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Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

The authors presented an "ion-centric" alignment method based on neural networks. It got 

potential, but there are several issues to be addressed. 

Overall, I think this paper focused too much on software comparisons with numbers, whereas it is 

own features were rarely discussed. 

Major: 

1. The key selling point of this work is the "ion-centric" or ID-free alignment. However, authors did 

not discuss much on why we need "ion-centric" methods. I only found one in Supp. Note, but this 

is not convincing enough. As a suggestion, this method may be able to detect more regulated but 

mis-identified features in addition to the original HCC studies. To verify this, authors can use PRM-

like methods to check whether the ion-centric finding makes sense or not. If this is proven to work 

well, it will be a great complementary method to existing MBR-based quantification workflow. 

2. Regrading software comparisons, as the quality control module is missing in DeepRTAlign, I 

think the comparisons are somewhat unfair to other tools that have such modules. 

3. For the DNN model, the authors only used (RT, intensity) pairs as the input model features. 

However, for robust signal matching, peak shapes should be considered as well. Otherwise, if two 

co-eluted features share the same m/z, it will be hard for the model to recognize which is the 

correct one. And according to the input vector design (part 2 and part 3), I guess the signal with 

closer intensity will "win". If so, this will lose regulated MS features. Therefore, I highly suggest 

authors to test the robustness of this method against co-elution. 

4. Will mass errors between MS feature pairs as a DNN feature be helpful in the model? In 

principle, mass errors are very useful, as in MS1-only methods, mass is the key information we 

can use to distinguish different signal species. And maybe mass recalibration is also required for 

different runs. 

5. Line 235-248: The RT shift simulation is not sufficient. What I also expected is if adding some 

(n=5?) pseudo features to the left RT or right RT of the target features with minor intensity 

differences, is the algorithm robust enough to get the correct features back? 

6. Line 386 and Figure S5: In single-cell data, it is not surprising that MS1-based methods get 

more peptides than MS2-based ones, as orbitrap is not sensitive enough to detect very low-

abundant fragment signals at single-cell level. What concerns me is what peptides were aligned by 

DeepRTAlign but not DiaNN? Please check both of peptides' MS1 and MS2 signals. As there are 

only 298 peptides, I suggested to check them all on MS1 and MS2 matches, and show the 

consistency of chromatographical profiles of both the MS1 and MS2 peaks. 

7. Figure 1: Triangle and square representation does not make it easier to understand the Input 

Vector, especially for adjacent features. A better Illustration is required. 

8. Line 158-159: More explanation is needed about why using two adjacent features as the input 

vector. What is the idea behind it? 

9. In Figure 2 to 4, it is better to show some PSM or XIC examples illustrating how DeepRTAlign 

can get MS1 features back by alignment, in additional to number comparisons. 

10. It is better to test this tool on quantification benchmark datasets such as LFQ-bench with 

known fold changes. 

Minor: 



1. I suggest to rename "ion-centric" as it is not specific, identification-based methods also use 

ions. 

2. Line 143-144: “The precursor ions with more than one …” is hard to understand. What does it 

mean “the precursor ions”? As a MS2-free method, why it needs “more than one MS2 spectrum”? 

3. Line 154-155: What algorithm did you use for alignment? It should be mentioned here. 

4. Table S1: As this is only supplementary info, please put more information in the table legend, 

such as full dataset description and so on. Otherwise, it is hard to understand the abbreviations 

such as SC, AT, etc. 

5. It is better to test the alignment on samples with different LC conditions, such as 21 min 

gradient to 120 min gradient. 

Reviewer #2: 

Remarks to the Author: 

Liu Yi and colleagues have presented a manuscript in which they use a deep neural network (DNN) 

for retention time alignment. Compared to commonly used methods, the authors claim to have 

generated superior peak-correspondence with MS1 features alone. They have compared the 

performance of DNN against four machine-learning methods, and other software packages such as 

MaxQuant-MBR, FragPipe-MBR, OpenMS, MZmine2. While the results suggest that the deep neural 

network performs better than the other methods, it should be noted that a standard quantitative 

approach for analyzing these tools is currently lacking. Further discussion on the strengths and 

limitations of the manuscript is provided below: 

1. Comparison to other DNN: Authors have not clarified as to why the Siamese network by Li et al 

which has three encoders - the Mass Spectrum Encoder, Peak Encoder, and Chromatograph 

Encoder in addition to ΔRT, would fail. It is natural to assume that incorporating more information, 

such as chromatogram and MS/MS encoding, would lead to better performance. However, the 

authors did not clarify whether the nature of the data, in this case, GC-MS and LC-MS, could be a 

factor in this regard. Although the authors have provided an explanation in the Supplementary 

Notes, it is not entirely convincing. 

2. Standard benchmarking is needed: The model presented by the authors explicitly uses intensity 

for peak-matching, which can introduce a conservative bias towards selecting features with similar 

intensity. Thus, the use of the coefficient of variation (CV) as a measure to assess the superiority 

of a tool is not entirely justifiable. It would be more appropriate for the authors to compare the 

performance of the different tools using manually annotated heterogeneous data or test them on 

dilution-series or synthetic-proteomics data to demonstrate that the intensity of aligned features is 

correlated with the spiked-in pattern.Currently, it appears that the method is vulnerable to 

producing good CV but may not accurately capture differential expression. 

3. Have not elaborated upon the technical details about DNN: In the manuscripts authors have 

presented the results of various software tools, but have not critically analyzed them. Specifically, 

the authors have not explored in detail the specific properties of the deep neural network (DNN) 

that make it superior to other tools, such as MZmine2, OpenMS, or MBR. It is essential to 

investigate what kind of nonlinearities the DNN captures that cannot be identified by other 

methods. Further exploration of the results is necessary to draw definitive conclusions. 

4. Quantitative analysis is lacking. Retention time alignment is typically carried out to enhance the 

quantitativeness of LC-MS/MS data, which should, in turn, enable the identification of novel 

biological insights. While the authors have presented some analysis for early recurrence prediction, 

the analysis is currently quite crude and lacks convincing evidence and is not convincing at all. 

They should provide an explanation and interpretation of differential features. For example, how 

many belong to identified peptides, how many are low-abundant and present how many have 



reproducible MS/MS spectra across multiple samples. 

5. In Table S4, authors have compared the DNN with other non-linear methods for alignment. The 

performance with logistic regression is very poor. I wonder what could be the reason for that? 

Additionally, EC-H has only 20 runs; for such small-datasets non-linear methods typically perform 

at over 90% accuracy, which is not observed in this case. The authors should provide a more 

detailed technical assessment of the specific objectives achieved by the DNN that are missed by 

other tools, particularly in the case of smaller datasets like EC-H. The specific details of what the 

DNN brings to the table that logistic regression, KNN, and SVM cannot achieve should also be 

elaborated upon. 

6. Authors have compared their tool to XCMS, OpenMS which employ a monotonic warping 

function. They have also reported other direct-matching methods: RTAlign, MassUntangler and 

PeakMatch which they claim are not suitable, but their alignment philosophy is similar to that of 

DeepRTAlign. The authors should describe specifically what drawbacks of the direct-matching 

approaches are addressed and fixed in their approach. In addition, it would be beneficial for the 

authors to benchmark their method against other similar approaches, such as LWBmatch. 

7. What is the output vector of DNN? Is it binary Aligned/not-aligned? What would it choose if the 

feature n is aligned to m-1, m and m+1, I am assuming that you slide over five features while 

aligning them? 

8. The claim that MS1-based alignment can outperform approaches that use both MS1 and MS2 

information is counterintuitive. For example, Quandenser uses decoys to control false mappings 

while utilizing MS/MS anchor peptides for aligning MS1 chromatograms. However, the manuscript 

lacks rigorous analysis to support this claim. 

Line 120: Add a supplementary table like S1 for metabolomics and proteomics data. 

Line 214: The RT tolerance for identification is too big (5 mins). It should be less than a minute. 

Please report precision and recall with updated RT tolerance. 

Figure 3: Report median and standard deviation for each boxplot. Are the intensities normalized 

across runs before calculating CV? 

Figure 4a. Why are the last two bars different for MSFragger no-aligned? 

Figure 4: Explain what is unique peptides and shared peptides? Is common means identified in all 

runs 100%? 

Reviewer #3: 

Remarks to the Author: 

# General comment on the paper 

Overall, the paper is well-written and structured. The authors thoroughly tested their proposed 

method, DeepRTAlign, and generously provided code for using the tool. However, there are some 

areas that could be further improved. At present, the selection of datasets does not make it clear if 

this method is a significant contribution to improving alignment (see M1 and M4), and some 

aspects and details of the approach are not clearly explained (see M2). Finally, code for the 

experiments is not available, which hinders reproducibility (see M3). Below, please find my 

(constructive) points for the authors to consider to further improve the paper. 

# Major comments 

## M1. Impact of the method 

Although the authors performed an extensive benchmark of their method, IMHO it is still unclear if 

DeepRTAlign is a significant contribution to improve alignment. Currently, there is a bloat of very 

similar methods for alignment with essentially the same performance of the algorithms they 

pretend to improve. Part of the problem is that the authors of each method select their own 

evaluation data, which is not ideal since researchers may select (probably unconsciously) datasets 

where their methods perform better. To tackle this issue, the use of common benchmarks should 

be promoted. Therefore, I suggest including the datasets from [1] in the comparison. These new 

set of tests can also be used to include further information as suggested in later commentaries. 



[1] Eva Lange, Ralf Tautenhahn, Steffen Neumann and Clemens Gröpl. "Critical assessment of 

alignment procedures for LC-MS proteomics and metabolomics measurements". BMC 

Bioinformatics 2008, 9:375 

# M2. DeepRTAlign description 

Code inspection reveals that the current description of DeepRTAlign, although nicely written, can 

be further improved. 

## Training Part 

* Some details are missing in the description of the DNN and its hyperparameters: 

- The text does not mention the sigmoid activation. 

- It should be specified which initialization scheme the authors used for 

the weights and biases. 

- The authors should mention the optimizer used and, if it makes use of 

hyperparameters, these should be described. 

- The authors should explain how they selected the number of epochs. 

## Application Part 

* The code implementation loads a matrix from an npy file to normalize the 

features feeding the neural network. However, this is not clearly described in the text. 

* Starting at line 188, the manuscript states: "In this part, feature lists will first go through the 

coarse alignment step and the input vector construction step as same as those in the training part. 

Then, the constructed input vectors will be fed into the trained DNN model". However, the code 

reveals that between the coarse alignment and the predictions of the DNN there is a binning 

process based on m/z, which is not obvious from the text. I would suggest to explicitly describe 

this process on the manuscript to enhance clarity. 

* Furthermore, the "bin_width" and "bin_precision" parameters involved in this step seem to have 

a large impact on the alignment process (based on my own experiments). Although this is 

somewhat expected by the meaning of the parameters, a brief discussion on how they should be 

chosen is suggested, due to the large impact of the results. If different values were used during 

tests, it should be reported on the manuscript. 

## M3. Code availability 

The Github repository is well-structured and can be easily read. However, the authors only provide 

code for the "application part" of the tool. That is, the validation experiments can't be reproduced 

without substantial work by other researchers, which hinders reproducibility and comparison with 

future alignment methods. It would be nice if the authors share the whole codebase for 

reproducing all the tests conducted in the study. The code for the tests suggested in M1 should be 

shared. 

## M4. DeepRTAlign computational performance 

The code provided by the author does a lot of disk operations, which may harm the computational 

running time of the algorithm. It is crucial that any new alignment method seeking to make a 

substantial contribution should be highly performant, as it must compete with the current state-of-

the-art tools. Wall-clock runtime for the DeepRTAlign method should be provided for, at least, the 

benchmarks suggested in M1. 

# Minor comments (organized by sections) 

## Workflow of DeepRTAlign 

* "All other parameters are kept by default in Pytorch". Default parameters can change (or even 

disappear!) as software evolves. I would prefer to read the details explained in a software-agnostic 

way. If not possible, the pytorch version should be stated here for the reader's convenience 

(although it is true that it appears later in the text). 

## Machine learning models for evaluation 

* It should be clearly stated if the only difference between DeepRTAlign and the other methods is 

the substitution of the neuronal network by the proper classifier, or if there is any other further 

difference. 

* A few words describing the parameter tuning process should be included. 

* What is the difference between the number of estimators (100) and the tree number in the 



forest (10)? 

* The authors should specify which non-linear kernel was used for the SVM. Furthermore, they 

should state whether the SVM's hyperparameters were tuned. If not, I would suggest optimizing 

them since SVMs are quite sensitive to the hyperparameters configuration. 

## Tools for alignment comparison 

* The software tools MZmine and OpenMS offer numerous alignment methods. However, to ensure 

transparency and reproducibility, the authors should clearly specify which methods they employed 

in their analysis. 

* The precision and recall formulas should be reviewed and better explained. It seems that Ak and 

Gk are sets, but this is not obvious and, in that case, the cardinality of the sets is missing from the 

formulas. 

## Model evaluation on the training set and the test sets 

* Line 281. "We think this is because the RT shift density distribution of UPS2-Y 

is similar to HCC-T (Figure S2)". Does "RT shift" refer to the coarse alignment step? If yes, why 

this explains the better performance of RF? Isn't the coarse alignment step shared between the 

DNN (DeepRTAlign) and the RF version? 

* Line 282. "In general, DNN has a better generalization performance and RF can be an alternative 

solution when computing resources are limited" Can the authors further explain why this occurs? 

Intuitively, in the application part, the prediction times for the DNN and the RF shouldn't be so 

different. 

* In Figure 3, I have trouble understanding "DeepRTAlign Shared" (SH_D) and "Quandenser 

Shared" (SH_Q). I thought "shared" likely referred to the peptides that were identified by both 

DeepRTAlign and Quandenser algorithms, but the boxplot shows different CVs for SH_D and SH_Q 

and hence my interpretation must be wrong. 

### Some typos in the text: 

* Use of two periods after citations. For example, at lines 109 or 118. 

* Line 182: " and the trained model was evaluated..." -> The trained model was also evaluated 

* Lines 187-188: "...can be used after format conversion refer to the formats.." -> ... can be used 

after format conversion. Refer to the formats ... 

* Line 354: "the CV values of DeepRTAlign in all the group are 47.6% smaller in UPS2-M and 

58.3% smaller..." -> "the CV values of DeepRTAlign are 47.6% smaller in UPS2-M and 58.3% 

smaller..." 

* Line 361: "indentification" -> indentification 

* Line 640: "the histograms of ...> -> the barplots of (I don't think they should be referred to as 

histograms). There are a few more occurrences of "histogram" after this first one. 

### Supplementary material 

* Figure S2. It is hard to compare the distributions of the datasets. Maybe a log scale could be 

used in the y-axis to enhance the visualization. 

* Table S10. How are the standard errors computed in Table S10? In all other tables, I suppose 

the standard errors are computed using 10-fold cross-validation but, in this real dataset, this does 

not seem to be the case. If 10-fold cross-validation is indeed used with real datasets, then 

standard errors should be incorporated to other results (for example, error bars could be added to 

figure 2). 



Point-by-point response to reviewers’ comments 

We appreciate the reviewers’ insightful and constrictive comments as they have helped 

us improve the manuscript. Additional experiments, data analysis and manuscript 

revision have been performed to address the reviewers’ comments. In this response, the 

reviewers’ comments are colored in black, and our replies to the comments are colored 

in blue. 

 

Please note that to access the five newly generated datasets in this revision shown in 

Supplementary Table 1, we have uploaded all the corresponding raw data and 

identification results to iProX database (doi: 10.1093/nar/gky869). These datasets will 

be public once this manuscript is accepted. During peer review, reviewers can access 

these data by the following links with codes. 

(1) dataset HCC-R2: IPX0006622000 

URL: https://www.iprox.cn/page/PSV023.html;?url=1690814542091HKwZ 

Code: e31M 

(2) dataset Benchmark-FC: IPX0006638000 

URL: https://www.iprox.cn/page/PSV023.html;?url=1690815188443CVgA 

Code: j0Nz 

(3) datasets Benchmark-QC-H and Benchmark-QC-E: IPX0006819000 

URL: https://www.iprox.cn/page/PSV023.html;?url=1690814745537jgtH 

Code: fF3O 

(4) dataset Benchmark-RT: IPX0006820000 

URL: https://www.iprox.cn/page/PSV023.html;?url=1690814804447Woki 

Code: HP6c 

 

Reviewer #1 (Remarks to the Author): 

The authors presented an "ion-centric" alignment method based on neural networks. It 

got potential, but there are several issues to be addressed. Overall, I think this paper 

focused too much on software comparisons with numbers, whereas it is own features 

were rarely discussed. 

Response: We thank the reviewer for the valuable comments and for highlighting 

certain issues, which, once addressed, have further improved our manuscript. 

 

Major: 

https://www.iprox.cn/page/PSV023.html;?url=1690814542091HKwZ
https://www.iprox.cn/page/PSV023.html;?url=1690815188443CVgA
https://www.iprox.cn/page/PSV023.html;?url=1690814745537jgtH
https://www.iprox.cn/page/PSV023.html;?url=1690814804447Woki


Q1. The key selling point of this work is the "ion-centric" or ID-free alignment. 

However, authors did not discuss much on why we need "ion-centric" methods. I only 

found one in Supp. Note, but this is not convincing enough. As a suggestion, this 

method may be able to detect more regulated but mis-identified features in addition to 

the original HCC studies. To verify this, authors can use PRM-like methods to check 

whether the ion-centric finding makes sense or not. If this is proven to work well, it will 

be a great complementary method to existing MBR-based quantification workflow. 

Response: We thank the reviewer for this constructive suggestion. We agree that the 

ID-free alignment algorithm is the key selling point of our work. Following Reviewer 

#1’s suggestion in Q11, we changed “ion-centric” to “ID-free” to give a clearer 

description. We moved the detailed discussion on why we need ID-free methods from 

the Supplementary Notes to the main text. Furthermore, following the reviewer’s 

suggestion, we enrolled a new HCC cohort (named HCC-R2, N=23) with necessary 

clinical information (Supplementary Table 14). We performed scheduled PRM 

(sPRM) experiments on this cohort to validate our original finding (the 15 features for 

predicting HCC early recurrence). 

A subset of the top 200 MS features identified from our training set (HCC-T), 

including the 15 features used for early recurrence prediction and 34 other features were 

tentatively targeted in our sPRM experiments on an independent cohort. Remarkably, 

48 out of the 49 target features (Supplementary Table 15) were identified by Proteome 

Discoverer (PD) results (Supplementary Table 16) and further verified in Skyline 

results (Supplementary Table 17) of the sPRM data. This confirms the reliability of 

our ID-free strategy. 

Importantly, our sPRM experiments also verified the unidentified features in the 

15 features discovered from the HCC-T dataset (Fig. 5a). Out of the previously 

identified eight features, seven unidentified features were verified in PD and Skyline 

results of the sPRM data (Supplementary Table 13). This is possibly because some 

low-quality peptide signals cannot be accurately identified in DDA data, whereas most 

of those features can be successfully identified in PRM data with high-quality spectra. 

Previously, the feature "1022.52_1022.55_1" from HCC-T results was assigned the 

sequence LSEDYGVLK, however, this sequence was not found in the PD or Skyline 

results of the sPRM dataset. Instead, TLLEDGTFK, which has a similar m/z and RT, 

was identified as the correct sequence for this feature according to sPRM data 

(Supplementary Table 13). Please refer to the Skyline annotated spectra for each 

feature in Supplementary File 1 for details. 



Then, we performed an independent test using the sPRM results of the 15-feature-

based classifier on the new HCC cohort (N=23). As shown in Fig. R1 (denoted as Fig. 

5d in this revision), the classifier to predict HCC early recurrence achieved an AUC 

value of 0.833, indicating the generalizability of the 15-feature-based classifier for HCC 

early recurrence prediction. Therefore, our ID-free method may be able to detect more 

regulated but mis-identified features in addition to the original HCC studies and thus 

develop better classifiers. 

 

Fig. 5a. Study design for construction and validation of this 15-feature-based classifier. 

First, all the features in dataset HCC-T (N=101) were aligned by DeepRTAlign. Top 

200 features were selected by mMRM. We mapped the top 200 MS features to an 

independent test set HCC-R (C2). There were 15 features successfully mapped to HCC-

R. In the 101 patients from dataset HCC-T, the cases of early recurrence (N=30), and 

the cases of late recurrence (N=22) were considered as the training set (C1) for HCC 

early recurrence prediction. Then, the mapped 15 features were used to train a SVM 

classifier based on the C1 dataset, and tested on the HCC-R dataset (C2, N=11). 



Peptide- and protein-based classifiers were generated in the same way, but they were 

not marked in Fig.5a for clarity. The 15 features in the early recurrence classifier were 

then targeted in PRM experiments and analyzed by PD and Skyline based on an 

independent dataset HCC-R2 (C3, N=23). The 15-feature-based classifier was further 

tested on dataset HCC-R2 (C3) using the Skyline quantification results. 

 

Fig. R1. The test AUC on PRM dataset HCC-R2 of the 15-feature-based classifier for 

HCC early recurrence prediction. 

Overall, we concurred with the reviewer's opinion and validated our ID-free 

alignment algorithm by sPRM experiments. We believe that our strategy can serve as a 

valuable complementary method to the existing MBR-based quantification workflow. 

 

Q2. Regrading software comparisons, as the quality control module is missing in 

DeepRTAlign, I think the comparisons are somewhat unfair to other tools that have 

such modules. 

Response: We thank the reviewer for pointing out this important issue. Following this 

valuable suggestion, we designed and implemented a quality control (QC) module in 

DeepRTAlign. As shown in Fig. R2 (denoted as Supplementary Fig. 2 in this revision), 

in each m/z window, DeepRTAlign will randomly select a sample as a target and build 

its decoy. In theory, all features in the decoy sample should not be aligned. Based on 

this, the final FDR of the alignment results can be calculated. We have updated all the 

results in this revision using the new version of DeepRTAlign. 

 



 

Fig. R2. Illustration of the QC module in DeepRTAlign. (a) The decoy design workflow. 

(b) The FDR calculation workflow. 

Then, we tested the reliability of the QC module on two newly generated datasets 

consisting of the pure HEK 293T samples and pure E. coli samples, respectively 

(Benchmark-QC-H and Benchmark-QC-E). Both datasets have three technical 

replicates (See Datasets section and Supplementary Table 1 for details). As shown in 

Fig. R3, we tried to align these two different datasets (HEK 293T and E. coli). In theory, 

there should be no features aligned for totally different species. We found that with an 

FDR cutoff of 0.01, no results were reported by DeepRTAlign for the three replicates 

in the two datasets (e.g., repeat 1 in 293T vs repeat 1 in E. coli), proving the reliability 

of our QC method. 

 

Fig. R3. The experimental design to benchmark the QC module in DeepRTAlign. R1, 



R2, and R3 indicate the three replicates in the dataset. 

 

Q3. For the DNN model, the authors only used (RT, intensity) pairs as the input model 

features. However, for robust signal matching, peak shapes should be considered as 

well. Otherwise, if two co-eluted features share the same m/z, it will be hard for the 

model to recognize which is the correct one. And according to the input vector design 

(part 2 and part 3), I guess the signal with closer intensity will "win". If so, this will 

lose regulated MS features. Therefore, I highly suggest authors to test the robustness of 

this method against co-elution. 

Response: We thank the reviewer for this valuable suggestion. We agree that if we only 

used RT and intensity pairs as input for training the alignment model shown in the 

original Fig. 1, we would miss the regulated MS features. Following Reviewer #1’s 

Q3 and Q4 suggestions, we removed intensity from the model features but added m/z 

as a new model feature. Fig. 1 has been updated accordingly. The model of 

DeepRTAlign was re-trained using the new input model features. 

 

Fig. 1. The illustration of DeepRTAlign algorithm. (a) The training procedures of 

DeepRTAlign. The n is the feature rank number (sorted by RT) in one m/z window of 

sample 1. The m is the feature rank number (sorted by RT) in one m/z window of sample 



2. Please note that “n-1”, “n-2”, “n+1” and “n+2” represent four adjacent features of 

the feature n in one m/z window. (b) The workflow for RT alignment using 

DeepRTAlign. DeepRTAlign supports four feature extraction methods (Dinosaur, 

MaxQuant, OpenMS and XICFinder). The features extracted will be aligned using the 

trained model shown in (a), with the aligned feature list as the output. 

Then, we performed a co-elution test on the AT dataset to benchmark 

DeepRTAlign with new input model features. First, we randomly selected a sample in 

the AT dataset and denoted it as Sample N. It contained 11,278 features. For each feature 

in Sample N, we added an RT shift of 5 minutes and thus generated a simulated sample 

named Sample N’. In theory, every feature in Sample N can be aligned to its 

corresponding feature in Sample N’. And as shown in Fig. 4, the precision and recall 

of DeepRTAlign are both 100% (μ = 5 min, σ = 0). Second, for each feature in Sample 

N, its pseudo feature was generated as follows: a mass shift of 1, 3, and 5 ppm, 

respectively, was added to its m/z; a random RT shift based on a normal distribution 

(Table R1) was added to its RT. All the 11,278 pseudo features were added to Sample 

N and Sample N’, respectively. Third, we used DeepRTAlign to align Sample N and 

Sample N’ to test if similar pseudo features would influence DeepRTAlign’s 

performance. As shown in Table R1, we found that the precision and recall of 

DeepRTAlign stayed unchanged (100%), indicating it was a robust alignment method 

against co-elution. 

Table R1. Experiment design of the co-elution test and the corresponding precisions 

and recalls of DeepRTAlign. 

m/z shift (ppm) RT shift  (min) RT shift σ (min) precision recall 

1 1 0.5 1 1 

3 1 0.5 1 1 

5 1 0.5 1 1 

1 1 1 1 1 

3 1 1 1 1 

5 1 1 1 1 

1 1 1.5 1 1 

3 1 1.5 1 1 

5 1 1.5 1 1 

 

Finally, we performed a test for peak shape on dataset HCC-T. Since most feature 

extraction tools did not output the detailed information (intensity and RT) for each MS1 



scan in a feature, we tried a simplified three-point method to represent the peak shape 

of a feature. For each feature, we used a triangle consisting of the RT and intensity from 

RT-Start, RT-Apex and RT-End to mimic its shape. We trained the DeepRTAlign 

model with the shape information using 400,000 feature pairs from HCC-T (200,000 

positive and 200,000 negative pairs) mentioned in this revision's “Workflow of 

DeepRTAlign” section. This model is named DeepRTAlign-shape. 

Then, we built a test set by randomly selecting 10,000 positive and 10,000 negative 

feature pairs from the HCC-N dataset and randomly generating 10,000 decoy feature 

pairs using the method shown in Fig. R2. It should be noted that the feature pairs 

collected from the same peptides are labeled as positive, and the feature pairs collected 

from different peptides (RT difference < 5 min) are labeled as negative. In theory, the 

output score of DeepRTAlign should have a discrimination power to separate the target 

features and the negative ones. Ideally, the decoy features should have a similar score 

distribution to the negative features. 

We tested the training models with and without shape features (DeepRTAlign-

shape and DeepRTAlign) on these 30,000 feature pairs from the HCC-N dataset. As 

shown in Fig. R4, we found that although both models can distinguish negative and 

positive sets, the alignment scores of the decoy pairs from DeepRTAlign (the model 

without shape features) are close to those of the negative pairs. DeepRTAlign-shape 

(the model with shape features) did not show the same trend. We think the reason may 

be that the information from the simplified three-point method is not enough to 

represent feature shape. However, considering existing tools seldom provide detailed 

information (intensity and RT) for each MS1 scan in a feature, we plan to consider the 

peak shape in the next version of DeepRTAlign. 

 

 



Fig. R4. The alignment score distributions for positive, negative and decoy features 

output by DeepRTAlign on randomly selected feature pairs from dataset HCC-N. (a) 

the model with shape features. (b) the model without shape features. 

 

Q4. Will mass errors between MS feature pairs as a DNN feature be helpful in the 

model? In principle, mass errors are very useful, as in MS1-only methods, mass is the 

key information we can use to distinguish different signal species. And maybe mass 

recalibration is also required for different runs. 

Response: We thank the reviewer for this kind suggestion. We agree with the reviewer 

that, as an MS1-only method, the mass error between MS features is a very important 

parameter for training the alignment model in DeepRTAlign. According to Reviewer 

#1’s Q3 and Q4 suggestions, we removed intensity from the model features but added 

m/z as a new model feature. Fig. 1 has been updated accordingly. 

 

Fig. 1. The illustration of DeepRTAlign algorithm. (a) The training procedures of 

DeepRTAlign. The n is the feature rank number (sorted by RT) in one m/z window of 

sample 1. The m is the feature rank number (sorted by RT) in one m/z window of sample 

2. Please note that “n-1”, “n-2”, “n+1” and “n+2” represent four adjacent features of 

the feature n in one m/z window. (b) The workflow for RT alignment using 



DeepRTAlign. DeepRTAlign supports four feature extraction methods (Dinosaur, 

MaxQuant, OpenMS and XICFinder). The features extracted will be aligned using the 

trained model shown in (a), with the aligned feature list as the output. 

Furthermore, we evaluated the performance of DeepRTAlign with QC (FDR<1%) 

on the previously generated simulated datasets. We found that DeepRTAlign still 

showed superior performance over OpenMS on all the proteomic datasets (Fig. R5, 

denoted as Fig. 4 in this revision). While on the metabolomic datasets, the performance 

of DeepRTAlign is not stable (Fig. R6, denoted as Supplementary Fig. 6 in this 

revision): it performed well on two datasets (SM1100 and MM) but showed poor 

performance on three datasets (NCC19, SO and GUS). One possible reason is the model 

in DeepRTAlign was trained on a proteomic dataset (HCC-T), rather than a 

metabolomic dataset. Meanwhile, we explored the extracted features in the three 

metabolomic datasets (NCC19, SO and GUS) and found that they all contained a large 

number of features with very close m/z. Fig. R7 shows an example of these features 

with close m/z, which are from part of the OpenMS-extracted features in one of the 

GUS samples. Thus, we further tested DeepRTAlign on these three datasets without 

QC (setting FDR threshold to 100%). As shown in Fig. R8 (denoted as Supplementary 

Fig. 7 in this revision), we found that the performance of DeepRTAlign became 

comparable with that of OpenMS. However, it should be noted that OpenMS does not 

perform well on these three data sets either, indicating a potential limitation for MS1-

only alignment method. 

 

 

Fig. R5. Comparison of DeepRTAlign and OpenMS on multiple simulated datasets 



generated from 9 real-world proteomic datasets. The simulated datasets were 

constructed by adding normally distributed RT shifts to the corresponding real-world 

dataset. (a) μ=0 min. (b) μ=5 min. (c) μ=10 min. The normal distribution has an 

increasing σ, i.e., σ=0, 0.1, 0.3, 0.5, 0.7, 1, 3, 5 for different μ (0, 5 and 10 minutes), 

respectively. 

 

 

Fig. R6. Comparison of DeepRTAlign and OpenMS on multiple simulated datasets 

generated from 5 real-world metabolomic datasets. The simulated datasets were 

constructed by adding normally distributed RT shifts to the corresponding real-world 

dataset. (a) μ=0 min. (b) μ=5 min. (c) μ=10 min. The normal distribution has an 

increasing σ, i.e., σ=0, 0.1, 0.3, 0.5, 0.7, 1, 3, 5 for different μ (0, 5 and 10 minutes), 

respectively. The FDR of DeepRTAlign’s results is set to 1%. 

 

 



Fig. R7. Screenshot of a part of the OpenMS-extracted features from one of the GUS 

samples. 

 

 

Fig. R8. Comparison of DeepRTAlign and OpenMS on multiple simulated datasets 

generated from 3 real-world metabolomic datasets. The simulated datasets were 

constructed by adding normally distributed RT shifts to the corresponding real-world 

dataset. (a) μ=0 min. (b) μ=5 min. (c) μ=10 min. The normal distribution has an 

increasing σ, i.e., σ=0, 0.1, 0.3, 0.5, 0.7, 1, 3, 5 for different μ (0, 5 and 10 minutes), 

respectively. The FDR of DeepRTAlign’s results is set to 100%. 

Meanwhile, since most mass recalibration methods are based on peptide 

identification results, we think there is no golden standard method to conduct this 

process in ID-free alignment. As an example, Fig. R9 shows the distribution of the 

mass errors between 20,000 randomly selected aligned feature pairs from dataset HCC-

T. We can see that the mass error is relatively low (μ: -0.61 ppm, σ: 2.85 ppm). Thus, 

we have not added a mass recalibration module in the current version of DeepRTAlign. 

But we plan to keep an eye on this issue in the future. 



  

Fig. R9: The distribution of the mass errors between 20,000 randomly selected aligned 

feature pairs from dataset HCC-T according to Mascot search results. 

 

Q5. Line 235-248: The RT shift simulation is not sufficient. What I also expected is if 

adding some (n=5?) pseudo features to the left RT or right RT of the target features 

with minor intensity differences, is the algorithm robust enough to get the correct 

features back? 

Response: We thank the reviewer for this helpful suggestion. We performed the 

simulation experiments following the reviewer’s suggestion. 

First, we randomly selected a sample in the AT dataset and denoted it as Sample 

N. Here, it contained 11,278 features. For each feature in Sample N, we added an RT 

shift of 5 minutes and thus generated a simulated sample named Sample N’. In theory, 

every feature in Sample N can be aligned to its corresponding feature in Sample N’. As 

shown in Fig. R5 (denoted as Fig. 4 in this revision), the precision and recall of 

DeepRTAlign are both 100% (μ = 5 min, σ = 0). Second, for each feature in Sample N, 

its pseudo feature was generated as follows: a mass shift of 1, 3, and 5 ppm, respectively, 

was added to its m/z; a random RT shift based on a normal distribution (Table R1) was 

added to its RT. All 11,278 pseudo features were added to Sample N and Sample N’, 

respectively. Third, we used DeepRTAlign to align Sample N and Sample N’ to test if 

these similar pseudo features would influence DeepRTAlign’s performance. As shown 

in Table R1, we found that the precision and recall of DeepRTAlign stayed unchanged 

(100%), indicating it is a robust alignment method. 



 

Fig. R5. Comparison of DeepRTAlign and OpenMS on multiple simulated datasets 

generated from 9 real-world proteomic datasets. The simulated datasets were 

constructed by adding normally distributed RT shifts to the corresponding real-world 

dataset. (a) μ=0 min. (b) μ=5 min. (c) μ=10 min. The normal distribution has an 

increasing σ, i.e., σ=0, 0.1, 0.3, 0.5, 0.7, 1, 3, 5 for different μ (0, 5 and 10 minutes), 

respectively. 

 

Table R1. Experiment design of the co-elution test and the corresponding precisions 

and recalls of DeepRTAlign. 

m/z shift (ppm) RT shift  (min) RT shift σ (min) precision recall 

1 1 0.5 1 1 

3 1 0.5 1 1 

5 1 0.5 1 1 

1 1 1 1 1 

3 1 1 1 1 

5 1 1 1 1 

1 1 1.5 1 1 

3 1 1.5 1 1 

5 1 1.5 1 1 

 

Q6. Line 386 and Figure S5: In single-cell data, it is not surprising that MS1-based 

methods get more peptides than MS2-based ones, as orbitrap is not sensitive enough to 



detect very low-abundant fragment signals at single-cell level. What concerns me is 

what peptides were aligned by DeepRTAlign but not DiaNN? Please check both of 

peptides' MS1 and MS2 signals. As there are only 298 peptides, I suggested to check 

them all on MS1 and MS2 matches, and show the consistency of chromatographical 

profiles of both the MS1 and MS2 peaks. 

Response: We apologize that our unclear descriptions may have misled the reviewer. 

As shown in the original Fig. S5, DeepRTAlign and DIA-NN's MBR were used to align 

each sample to all the other samples. In each sample, only the peptide that can be 

aligned in another sample were considered in the original Fig. S5. On average, 

DeepRTAlign aligned 298 more peptides than DIA-NN for each sample (N=18). 

However, this result was obtained by using a 5-minute RT tolerance for matching 

peptide identifications to features. Reviewer #2’s Q10 suggested that the 5-minute RT 

tolerance is too big. Thus, in this revision, we restricted the RT of an MS2 spectrum 

(peptide identification) to be within the RT range of the corresponding precursor 

feature when matching the peptide sequence to a feature. As a result, DeepRTAlign 

aligned an average of 39 more peptides (6.33%) than DIA-NN for each sample 

(Supplementary Fig. 5 in this revision). 

However, since DIA-NN does not show the annotated spectra, it is hard for us to 

manually check the MS1 and MS2 signals for each feature in every sample. In this 

revision, we showed two example features from dataset SC that were successfully 

aligned by DeepRTAlign, rather than DIA-NN in Fig. R10 and Fig. R11. The extracted 

ion currents (XIC) of the two features (corresponding to peptides SSVPGVR and 

EKAEGDAAALNR) were obtained from Thermo XcaliburTM software (v3.0). 



 

Fig. R10. The extracted ion currents (XIC) of a feature (m/z: 351.20 Th and charge: 2) 

that was successfully aligned by DeepRTAlign, rather than DIA-NN’s MBR in sample 

N_12 from dataset SC. The corresponding peptide sequence is SSVPGVR based DIA-

NN’s identification results. 



 

Fig. R11. The extracted ion currents (XIC) of a feature (m/z: 622.79 Th and charge: 2) 

that was successfully aligned by DeepRTAlign, rather than DIA-NN’s MBR in sample 

N_12 from dataset SC. The corresponding peptide sequence is EKAEGDAAALNR 

based DIA-NN’s identification results. 

For a clearer description, we have modified the corresponding descriptions about 

the Supplementary Fig. 5 as follows (“Comparison with existing alignment tools” 

section, Page 15): 

Considering the aligned peptides present in at least two cells, DeepRTAlign can align 

39 (6.33%) more peptides on average than the existing popular tool DIA-NN in each 

cell. 

 



 

Supplementary Fig. 5. The peptide number and feature number of each HT22 cell. 

Features are extracted by Dinosaur. Only the features presented in at least two cells are 

considered. MBR: match between runs. Error bar indicates standard deviation. It should 

be noted that a group is defined as a set of aligned features in different runs. 

 

Q7. Figure 1: Triangle and square representation does not make it easier to understand 

the Input Vector, especially for adjacent features. A better Illustration is required. 

Response: We thank the reviewer for this helpful suggestion. We replaced the triangle 

and square with a text description. Following Reviewer #1’s Q3, Q4 and Q7 

suggestions, we removed intensity from the model features but added m/z as a new 

model feature. The updated Fig. 1 is shown below. 



 

Fig. 1. The illustration of DeepRTAlign algorithm. (a) The training procedures of 

DeepRTAlign. The n is the feature rank number (sorted by RT) in one m/z window of 

sample 1. The m is the feature rank number (sorted by RT) in one m/z window of sample 

2. Please note that “n-1”, “n-2”, “n+1” and “n+2” represent four adjacent features of 

the feature n in one m/z window. (b) The workflow for RT alignment using 

DeepRTAlign. DeepRTAlign supports four feature extraction methods (Dinosaur, 

MaxQuant, OpenMS and XICFinder). The features extracted will be aligned using the 

trained model shown in (a), with the aligned feature list as the output. 

 

Q8. Line 158-159: More explanation is needed about why using two adjacent features 

as the input vector. What is the idea behind it? 

Response: We found that if a feature (such as feature n in sample 1) is correctly aligned 

to another feature (such as feature m in sample 2), the similarity of feature n and the 

adjacent feature of feature m is more likely to be low, thus, considering the adjacent 

features can help us perform an accurate alignment. As shown in Fig. 1, we consider 

the two adjacent features before and after the feature to be aligned as the input vector 

to increase model performance in DeepRTAlign. 

 



Q9. In Figure 2 to 4, it is better to show some PSM or XIC examples illustrating how 

DeepRTAlign can get MS1 features back by alignment, in additional to number 

comparisons. 

Response: We thank the reviewer for this suggestion. According to Reviewer #1’s Q2, 

Q3 and Q4 suggestions, we updated the input model feature for training DeepRTAlign 

and implemented a QC module. Thus, we have updated all the results in revision using 

the new version of DeepRTAlign. When matching features with peptide identification 

results, we restricted the RT of an MS2 spectrum (peptide identification) to be within 

the RT range of the corresponding precursor feature. Taking the updated Fig. 2 as an 

example, the new version of DeepRTAlign is superior to MZmine 2 and OpenMS in 

both precision and recall. Considering the search results of Mascot as ground truth, we 

show two examples aligned by DeepRTAlign but not by MZmine 2 or OpenMS in 

Tables R2 and R3. In both cases, DeepRTAlign is able to align the correct ions despite 

the interference ions with similar m/z and RT. We think this is because MZmine 2 and 

OpenMS are likely to align to the interference ions with similar RT when using a 

warping function. While, DeepRTAlign can consider the m/z and RT of the target 

feature and its adjacent features for alignment in its deep learning-based model to 

achieve an accurate alignment (Fig. 1).  

 

Fig. 2. Performance evaluation of DeepRTAlign compared with MZmine 2 and 

OpenMS. Panel a shows the precisions and recalls of MZmine 2 and DeepRTAlign on 



different test sets. Panel b shows the precisions and recalls of OpenMS and 

DeepRTAlign on different test datasets. “FE” means the feature extraction method. “A” 

means the RT alignment method. We took the Mascot identification results with 

FDR<1% as the ground truth in datasets HCC-N, UPS2-M and UPS2-Y and took the 

MaxQuant identification results with FDR<1% as the ground truth in datasets EC-H 

and AT. In dataset EC-H, we only considered the E. coli peptides for evaluation. In 

datasets UPS2-M and UPS2-Y, we only considered the UPS2 peptides for evaluation. 

 

Table R2. One example of a feature pair successfully aligned by DeepRTAlign, but not 

by MZmine 2. The peptide sequence was identified from the Mascot search results. 

Method sample m/z charge intensity RT peptide 

DeepRTAlign sample 1 419.2094 2 2299482 22.543 EESGFLR 

DeepRTAlign sample 2 419.2088 2 4346550 21.57131 EESGFLR 

MZmine 2 sample 1 419.2097 2 18040604 22.97301 EFLDGTR 

MZmine 2 sample 2 419.2088 2 4346550 21.57131 EESGFLR 

 

Table R3. One example of a feature pair successfully aligned by DeepRTAlign, but not 

by OpenMS. The peptide sequence was identified from the Mascot search results. 

Method sample m/z charge intensity RT peptide 

DeepRTAlign sample 1 530.7687 2 1.54E+09 11.97347 QVDQLTNDK 

DeepRTAlign sample 2 530.7673 2 1.19E+09 11.89762 QVDQLTNDK 

OpenMS sample 1 530.7589 2 5.11E+08 11.93935 TCTPTPVER 

OpenMS sample 2 530.7673 2 1.19E+09 11.89762 QVDQLTNDK 

 

Q10. It is better to test this tool on quantification benchmark datasets such as LFQ-

bench with known fold changes. 

Response: We thank the reviewer for the valuable suggestion. Following the reviewer’s 

suggestion, we designed and produced a benchmark dataset (dataset Benchmark-FC) 

with known fold changes in this revision. In this benchmark dataset, 10 ng, 15 ng, 20 

ng, and 25 ng of E. coli samples were spiked into 200 ng of 293T samples, respectively. 

Each group contained 3 replicates. 

We used the peptide intensities aligned by DeepRTAlign or the MBR function of 

OpenMS, MaxQuant and MSFragger to calculate the ratio of all E. coli peptides 

between specific samples (15 ng/10 ng, 20 ng/10 ng, and 25 ng/10 ng) in each replicate. 

As shown in Fig. 3, we found that the combination of using MaxQuant to extract 



features, DeepRTAlign to align features and MSFragger to identify their peptide 

sequences could obtain 150% more peptides compared with the original MaxQuant 

workflow (using MaxQuant to extract features, align them and identify their peptide 

sequences) without compromising the quantification accuracy. DeepRTAlign also 

aligned 7% and 14.5% more peptides than OpenMS and MSFragger's MBR, 

respectively, while its quantification accuracy was comparable with other methods. 

Overall, we found that OpenMS extracted features represented a slightly better 

accuracy, regardless of the alignment methods employed. This may be because 

OpenMS has strict quality controls in feature extraction. DeepRTAlign can still 

increase the number of aligned peptides based on OpenMS extracted features, showing 

a higher sensitivity than OpenMS in terms of alignment. 

It should be noted that DeepRTAlign is compatible with multiple feature 

extraction methods (Dinosaur, MaxQuant, OpenMS and XICFinder), which is 

convenient for users to choose the feature extraction method suitable for their 

experiments. 

 

Fig. 3. The number and ratio distributions of all E. coli peptides between specific 

samples (15ng/10ng, 20ng/10ng, and 25ng/10ng) in each replicate (R1, R2 and R3) 

after alignment. In all boxplots, the center black line is the median of log2 of the peptide 

fold changes. The box limits are the upper and lower quartiles. The whiskers extend to 

1.5 times the size of the interquartile range. 

 



Minor: 

Q11. I suggest to rename "ion-centric" as it is not specific, identification-based methods 

also use ions.  

Response: We thank the reviewer for this kind suggestion. “Ion-centric” was renamed 

“ID-free” in this revision. 

 

Q12. Line 143-144: “The precursor ions with more than one …” is hard to understand. 

What does it mean “the precursor ions”? As a MS2-free method, why it needs “more 

than one MS2 spectrum”? 

Response: We apologize that our unclear descriptions may have misled the reviewer. 

We have deleted this sentence to eliminate the discrepancy. 

 

Q13. Line 154-155: What algorithm did you use for alignment? It should be mentioned 

here. 

Response: To align each piece with the anchor sample, the average RT shift between a 

piece and the anchor sample is directly added to each feature in this piece. We have 

added a detailed description in this revision (“Workflow of DeepRTAlign” section, 

Page 7). 

 

Q14. Table S1: As this is only supplementary info, please put more information in the 

table legend, such as full dataset description and so on. Otherwise, it is hard to 

understand the abbreviations such as SC, AT, etc. 

Response: We thank the reviewer for this kind suggestion. We have updated 

Supplementary Table 1 accordingly. All the datasets, including the five newly 

generated datasets in this revision, have been listed in Supplementary Table 1. 

 

Q15. It is better to test the alignment on samples with different LC conditions, such as 

21 min gradient to 120 min gradient. 

Response: Following the reviewer’s suggestion, we tried to align one sample with 60 

min gradient to another with 120 min gradient using the Benchmark-RT dataset. 

According to the identification results of Proteome Discoverer, 9,529 peptides were 

commonly identified in two samples. Then, the precision and recall of DeepRTAlign 

and OpenMS were calculated based on the 9529 peptides. Table R4 shows that 

DeepRTAlign showed a much higher precision and recall than OpenMS, suggesting 

that DeepRTAlign is robust for alignment on samples with different RT gradients. 



 

Table R4. The precision and recall of DeepRTAlign and OpenMS when aligning two 

samples with different RT gradients (60 min vs 120 min). 

Method precision recall 

DeepRTAlign 0.91 0.94 

OpenMS 0.22 0.06 

 

Reviewer #2 (Remarks to the Author): 

Liu Yi and colleagues have presented a manuscript in which they use a deep neural 

network (DNN) for retention time alignment. Compared to commonly used methods, 

the authors claim to have generated superior peak-correspondence with MS1 features 

alone. They have compared the performance of DNN against four machine-learning 

methods, and other software packages such as MaxQuant-MBR, FragPipe-MBR, 

OpenMS, MZmine2. While the results suggest that the deep neural network performs 

better than the other methods, it should be noted that a standard quantitative approach 

for analyzing these tools is currently lacking. Further discussion on the strengths and 

limitations of the manuscript is provided below: 

Response: Yes, we agree that a standard quantitative approach to evaluate these 

alignment tools is currently lacking. Following reviewers’ valuable suggestions, a new 

benchmark dataset (Benchmark-FC) with known fold changes is generated and used 

for quantitative evaluation in this revision. We performed PRM experiments for further 

validation. Please see the detailed replies below. All the datasets used in this study 

(Supplementary Table 1) are freely available. We expect to provide a resource and a 

solution to alignment evaluation for the community. 

 

Q1. Comparison to other DNN: Authors have not clarified as to why the Siamese 

network by Li et al which has three encoders - the Mass Spectrum Encoder, Peak 

Encoder, and Chromatograph Encoder in addition to ΔRT, would fail. It is natural to 

assume that incorporating more information, such as chromatogram and MS/MS 

encoding, would lead to better performance. However, the authors did not clarify 

whether the nature of the data, in this case, GC-MS and LC-MS, could be a factor in 

this regard. Although the authors have provided an explanation in the Supplementary 

Notes, it is not entirely convincing. 

Response: We apologize that our unclear descriptions misled the reviewer. We agree 

that Li et al.’s Siamese network (ChromAlignNet) contains more information due to 



the three encoders, but it was developed for GC-MS data alignment. We would like to 

clarify that the Siamese network we compared with DeepRTAlign in Supplementary 

Notes was built by ourselves rather than ChromAlignNet. In our original manuscript, 

the Siamese network we built was trained on the same training set (LC-MS data rather 

than GC-MS data) using the same input model features (RT and intensity). However, 

we have updated the input model features following Reviewer #1’s Q3 and Q4 

suggestions (Fig. 1). We agree that the data type (GC-MS or LC-MS) should be 

considered for training an alignment model. Our model in DeepRTAlign was trained 

and tested on LC-MS data, while ChromAlignNet was trained and tested on GC-LC 

data. Thus, to make a clear description, we revised the Introduction section (Page 3 in 

the main text) and Supplementary Notes (Page 15 in the SI). The original Table S11 

has been updated using the new input model features and denoted as Supplementary 

Table 18 in this revision. 

 

Q2. Standard benchmarking is needed: The model presented by the authors explicitly 

uses intensity for peak-matching, which can introduce a conservative bias towards 

selecting features with similar intensity. Thus, the use of the coefficient of variation 

(CV) as a measure to assess the superiority of a tool is not entirely justifiable. It would 

be more appropriate for the authors to compare the performance of the different tools 

using manually annotated heterogeneous data or test them on dilution-series or 

synthetic-proteomics data to demonstrate that the intensity of aligned features is 

correlated with the spiked-in pattern. Currently, it appears that the method is vulnerable 

to producing good CV but may not accurately capture differential expression. 

Response: We thank the reviewer for the valuable suggestion. We agree that using 

intensity for alignment is not proper, and thus only using CV as a measure of alignment 

performance is not entirely justifiable. Following Reviewer #2’s Q2 and Reviewer 

#1’s Q10 suggestions, we have designed and generated a new benchmark dataset 

(dataset Benchmark-FC) with known fold changes for quantification evaluation. In this 

benchmark dataset, 10 ng, 15 ng, 20 ng, and 25 ng of E. coli samples were spiked into 

200 ng of 293T samples, respectively. Each group contained 3 replicates. We used the 

peptide intensities aligned by DeepRTAlign or the MBR function of OpenMS, 

MaxQuant and MSFragger to calculate the ratio of all E. coli peptides between specific 

samples (15 ng/10 ng, 20 ng/10 ng, and 25 ng/10 ng) in each replicate. 

As shown in Fig. 3, we found that the combination of using MaxQuant to extract 

features, DeepRTAlign to align features and MSFragger to identify their peptide 



sequences could obtain 150% more peptides compared with the original MaxQuant 

workflow (using MaxQuant to extract features, align them and identify their peptide 

sequences) without compromising the quantification accuracy. DeepRTAlign also 

aligned 7% and 14.5% more peptides than OpenMS and MSFragger's MBR, while its 

quantification accuracy was comparable with other methods. Overall, we found that 

OpenMS extracted features represented a slightly better accuracy, regardless of the 

alignment methods employed. This may be because OpenMS has strict quality controls 

in feature extraction. DeepRTAlign can still increase the number of aligned peptides 

based on OpenMS extracted features, showing a higher sensitivity than OpenMS in 

terms of alignment. 

It should be noted that DeepRTAlign is compatible with multiple feature 

extraction methods (Dinosaur, MaxQuant, OpenMS and XICFinder), which is 

convenient for users to choose the feature extraction method suitable for their 

experiments. 

 

Fig. 3. The number and ratio distributions of all E. coli peptides between specific 

samples (15ng/10ng, 20ng/10ng, and 25ng/10ng) in each replicate (R1, R2 and R3) 

after alignment. In all boxplots, the center black line is the median of log2 of the peptide 

fold changes. The box limits are the upper and lower quartiles. The whiskers extend to 

1.5 times the size of the interquartile range. 

 



Q3. Have not elaborated upon the technical details about DNN: In the manuscripts 

authors have presented the results of various software tools, but have not critically 

analyzed them. Specifically, the authors have not explored in detail the specific 

properties of the deep neural network (DNN) that make it superior to other tools, such 

as MZmine2, OpenMS, or MBR. It is essential to investigate what kind of nonlinearities 

the DNN captures that cannot be identified by other methods. Further exploration of 

the results is necessary to draw definitive conclusions. 

Response: We thank the reviewer for this helpful suggestion. According to Smith et 

al.’s review of RT alignment1, there are two types of computational methods for RT 

alignment: the warping method (such as MZmine 2 and OpenMS) and the direct 

matching method (such as MBR). Based on Mitra et al.’s paper2, RT shifts can be 

classified into two parts: the monotonic and non-monotonic shifts. Monotonic shifts 

are defined as the differences of values in one of the RT and m/z dimensions or in the 

ion intensity readout of MS1 map pair of the same compounds (for RT and m/z 

dimensions) or the same compounds with the same quantity (ion intensity readout) that 

can be corrected using a monotonic function. Non-monotonic shifts are defined as the 

differences of values in one of the RT and m/z dimensions or in the ion intensity readout 

of MS1 map pair of the same compounds (for RT and m/z dimensions) or the same 

compounds with the same quantity (ion intensity readout), which remains after 

correction with monotonic shift. Here, we try to explain the superiority of DeepRTAlign 

over MZmine 2, OpenMS and MBR technically and theoretically following the 

reviewer’s suggestion. 

(1) Comparison with MZmine 2 and OpenMS. Since the warping functions used 

in MZmine 2 and OpenMS are monotonic, the features aligned by the two methods can 

be considered as the features with monotonic RT shift1. And the rest of the features can 

be considered as those with non-monotonic shift. Taking the OpenMS-extracted 

features as an example, the features with monotonic shifts and non-monotonic shifts in 

one HCC-N pair (patient 314, fraction 1 vs. patient 355, fraction 1) were shown in Fig. 

R12. The features commonly identified by OpenMS and DeepRTAlign, as well as the 

features uniquely identified by OpenMS can be regarded as monotonic shift features. 

The features uniquely identified by DeepRTAlign as well as the “none” features, can be 

regarded as non-monotonic shift features (Fig. R12). The percentages of monotonic 

shift features and non-monotonic shift features in 24 randomly selected sample pairs 

from dataset HCC-N were shown in Fig. R13, where an average of 81.78% of features 

have monotonic shifts and 18.22% of features have non-monotonic shifts. 



DeepRTAlign can align 96.51% of all the ground truths on average. 

(2) Comparison with MBR. Briefly, the MBR algorithm compares each 

identified peak in an MS1 spectrum from an LC−MS/MS run to the unidentified peaks 

in another run. An identification is transferred if an unidentified peak with the same 

properties (e.g., m/z and charge state) is found within a specified RT window. Thus, the 

RT window size is a key parameter. MaxQuant and MSFragger (FragPipe) usually use 

a static RT window size on all samples. But based on the DNN model of DeepRTAlign, 

an appropriate window size can be learned from the training data to distinguish whether 

two features should be aligned. 

Here, considering the Mascot search results as ground truth, we show two 

examples aligned by DeepRTAlign but not by MZmine 2 or OpenMS in Tables R2 

and R3. In both cases, DeepRTAlign is able to align the correct ions despite the 

interference ions with similar m/z and RT. We think this is because MZmine 2 and 

OpenMS are likely to align to the interference ions with similar m/z using a warping 

function. DeepRTAlign can consider the m/z and RT of the target feature and its 

adjacent features for alignment in its deep learning-based model (Fig. 1). 

In summary, DeepRTAlign can deal with monotonic shifts as well as non-

monotonic shifts by implementing a coarse alignment as a pseudo-warping function for 

monotonic RT shifts and a deep learning-based model for non-monotonic RT shifts. 

 

Fig. R12. Comparison of monotonic and non-monotonic shift features in one HCC-N 

pair (patient X314, fraction 1 vs. patient X355, fraction 1). (a) The scatterplot shows 

the RT of the features that should be aligned according to the Mascot identification 

results in one HCC-N pair. Shared: commonly aligned by DeepRTAlign and OpenMS. 

DeepRTAlign Only: only aligned by DeepRTAlign. OpenMS Only: only aligned by 



OpenMS. None: should be aligned based on Mascot results, but both DeepRTAlign and 

OpenMS failed to align the features. (b) The Venn diagram of all the features that should 

be aligned according to the Mascot identifications in one HCC-N pair. 

 

Fig. R13. The proportions of the features with monotonic shifts (OpenMS), non-

monotonic shifts and DeepRTAlign aligned features in 24 randomly selected sample 

pairs from dataset HCC-N. 

 

Table R2. One example of a feature pair successfully aligned by DeepRTAlign, but not 

by MZmine 2. The peptide sequence was identified from the Mascot search results. 

Method sample m/z charge intensity RT peptide 

DeepRTAlign sample 1 419.2094 2 2299482 22.543 EESGFLR 

DeepRTAlign sample 2 419.2088 2 4346550 21.57131 EESGFLR 

MZmine 2 sample 1 419.2097 2 18040604 22.97301 EFLDGTR 

MZmine 2 sample 2 419.2088 2 4346550 21.57131 EESGFLR 

 

Table R3. One example of a feature pair successfully aligned by DeepRTAlign, but not 

by OpenMS. The peptide sequence was identified from the Mascot search results. 

Method sample m/z charge intensity RT peptide 

DeepRTAlign sample 1 530.7687 2 1.54E+09 11.97347 QVDQLTNDK 

DeepRTAlign sample 2 530.7673 2 1.19E+09 11.89762 QVDQLTNDK 



OpenMS sample 1 530.7589 2 5.11E+08 11.93935 TCTPTPVER 

OpenMS sample 2 530.7673 2 1.19E+09 11.89762 QVDQLTNDK 

 

References: 

1. Smith, R.; Ventura, D.; Prince, J. T. LC-MS Alignment in Theory and Practice: A 

Comprehensive Algorithmic Review. Briefings in Bioinformatics 2013, 16 (1), 

104–117. https://doi.org/10.1093/bib/bbt080. 

2. Mitra, V.; Smilde, A. K.; Bischoff, R.; Horvatovich, P. Tutorial: Correction of Shifts 

in Single-Stage LC-MS(/MS) Data. Analytica Chimica Acta 2018, 999, 37–53. 

https://doi.org/10.1016/j.aca.2017.09.039. 

 

Q4. Quantitative analysis is lacking. Retention time alignment is typically carried out 

to enhance the quantitativeness of LC-MS/MS data, which should, in turn, enable the 

identification of novel biological insights. While the authors have presented some 

analysis for early recurrence prediction, the analysis is currently quite crude and lacks 

convincing evidence and is not convincing at all. They should provide an explanation 

and interpretation of differential features. For example, how many belong to identified 

peptides, how many are low-abundant and present how many have reproducible 

MS/MS spectra across multiple samples. 

Response: We thank the reviewer for pointing out the lack of quantitative analysis and 

that the early recurrence prediction results were not convincing in our original 

manuscript. To address these issues, we enrolled a new HCC cohort (named HCC-R2, 

N=23) and performed scheduled PRM (sPRM) experiments on this cohort to validate a 

subset of the top 200 MS features identified from our training set (HCC-T), including 

the 15 features used for early recurrence prediction and 34 other features (Fig. 5a). The 

sPRM data were analyzed by Proteome Discoverer (PD) and Skyline. Remarkably, 48 

out of the 49 target features (Supplementary Table 15) were identified by Proteome 

Discoverer (PD) results (Supplementary Table 16) and further verified in Skyline 

results (Supplementary Table 17) of the sPRM data. Only one feature failed to be 

identified, possibly due to low abundance. Importantly, all 48 identified features 

exhibited reproducible, high-quality MS/MS spectra in the majority of the HCC 

samples in the HCC-R2 cohort. Please see the Skyline annotated spectra for each 

feature in Supplementary File 1. Furthermore, we performed an independent test of 

the 15 features on the HCC-R2 cohort (N=23) using the Skyline results from sPRM 

data. As shown in Fig. R1 (denoted as Fig. 5d in this revision), we found that the AUC 



value of the classifier to predict HCC early recurrence is 0.833, indicating the good 

generalizability of our original findings, despite the fact that the HCC samples used in 

the sPRM experiments were unfractionated and collected from another medical center. 

Overall, these results provide convincing evidence for the reliability of our ID-free 

strategy and show the ability to discover novel biological insights. We have 

incorporated these new results into our revised manuscript (Page 16). 

 

Fig. 5a. Study design for construction and validation of this 15-feature-based classifier. 

First, all the features in dataset HCC-T (N=101) were aligned by DeepRTAlign. Top 

200 features were selected by mMRM. We mapped the top 200 MS features to an 

independent test set HCC-R (C2). There were 15 features successfully mapped to HCC-

R. In the 101 patients from dataset HCC-T, the cases of early recurrence (N=30), and 

the cases of late recurrence (N=22) were considered as the training set (C1) for HCC 

early recurrence prediction. Then, the mapped 15 features were used to train a SVM 

classifier based on the C1 dataset, and tested on the HCC-R dataset (C2, N=11). 

Peptide- and protein-based classifiers were generated in the same way, but they were 



not marked in Fig.5a for clarity. These 15 features in the early recurrence classifier were 

then targeted in PRM experiments and analyzed by PD and Skyline based on an 

independent dataset HCC-R2 (C3, N=23). The 15-feature-based classifier was further 

tested on dataset HCC-R2 (C3) using the Skyline quantification results. 

 

Fig. R1. The test AUC on PRM dataset HCC-R2 of the 15-feature-based classifier for 

HCC early recurrence prediction. 

 

Q5. In Table S4, authors have compared the DNN with other non-linear methods for 

alignment. The performance with logistic regression is very poor. I wonder what could 

be the reason for that? Additionally, EC-H has only 20 runs; for such small-datasets 

non-linear methods typically perform at over 90% accuracy, which is not observed in 

this case. The authors should provide a more detailed technical assessment of the 

specific objectives achieved by the DNN that are missed by other tools, particularly in 

the case of smaller datasets like EC-H. The specific details of what the DNN brings to 

the table that logistic regression, KNN, and SVM cannot achieve should also be 

elaborated upon. 

Response: We thank the review for the suggestion. We agree that for small datasets, 

non-linear methods typically perform at over 90% accuracy. In this revision, according 

to Reviewer #1’s Q3 and Q4 suggestions, we removed intensity from the model 

features but added m/z as a new model feature (Fig. 1). All the results have been 

updated using the new version of DeepRTAlign. The original Table S4 is denoted as 

Supplementary Table 3 in this revision. As shown in the Supplementary Table 3, we 

found DNN outperforms other machine learning models in all the test datasets. Please 

note that in this revision, all the results on test datasets were based on the model trained 



on the whole training set (HCC-T) with tuned hyperparameters (hyperparameters were 

optimized based on 10-fold cross validation on the training set HCC-T), no longer from 

the 10-fold cross validation models on the training set HCC-T. Thus, we did not have 

to calculate the mean and standard deviation of the precisions and recalls in each test 

set. As shown in the Supplementary Table 3, SVM and LR performed much better 

than before, indicating that it may be inappropriate to use intensity as features for SVM 

and LR. But for KNN, its performance did not increase after using new features 

suggesting it may not be suitable for the current task. 

 

Supplementary Table 3. The AUCs on different test sets. All the results are based on 

the model trained on the HCC-T dataset. In each test set, we randomly selected 10,000 

positive and 10,000 negative feature pairs to perform this evaluation. 

Dataset  DNN RF KNN SVM LR 

HCC-N 0.925 0.916 0.656 0.865 0.894 

HCC-R 0.933 0.905 0.668 0.901 0.899 

UPS2-M 0.979 0.919 0.683 0.896 0.905 

UPS2-Y 0.971 0.920 0.702 0.900 0.897 

EC-H 0.972 0.938 0.733 0.912 0.944 

AT 0.975 0.943 0.785 0.932 0.945 

SC 0.917 0.901 0.752 0.842 0.898 

 

Theoretically, a DNN with non-polynomial activation functions can 

approximate any function1. This great property of DNN makes it less depend on an 

elaborately designed input features and largely save our efforts on feature engineering 

and hyper-parameter tuning. On the contrary, classical machine learning methods such 

as a KNN model, are more sensitive to and largely rely on the selected features and 

hyper-parameters since their approximation ability is not as strong as a DNN. Therefore, 

whether these classical methods perform well depends more on the complexity of the 

underlying mapping function between the given feature and the target variable that 

needs to be approximated, while the amount of data may be the secondary factor. And 

we believe this is the reason why the other models cannot achieve satisfactory 

performance in our task. 

Reference: 



1. M. Leshno, V. Ya. Lin, A. Pinkus and S. Schocken (1993), 'Multilayer feedforward 

networks with a non-polynomial activation function can approximate any function', 

Neural Networks 6, 861-867. 

 

Q6. Authors have compared their tool to XCMS, OpenMS which employ a monotonic 

warping function. They have also reported other direct-matching methods: RTAlign, 

MassUntangler and PeakMatch which they claim are not suitable, but their alignment 

philosophy is similar to that of DeepRTAlign. The authors should describe specifically 

what drawbacks of the direct-matching approaches are addressed and fixed in their 

approach. In addition, it would be beneficial for the authors to benchmark their method 

against other similar approaches, such as LWBmatch. 

Response: We thank the reviewer for this helpful suggestion. Direct matching methods 

attempt to establish a correspondence based only on the similarity between specific 

signals from run to run without applying a warping function. The core of this type of 

method is how to accurately calculate the similarity. As stated in Smith et al.’s review1, 

direct matching methods are easily influenced by the data complexity, especially for 

alignment of large-scale samples. 

Here, we would like to clarify that the philosophy of DeepRTAlign is combining 

both advantages of the warping function-based and direct-matching methods. Its coarse 

alignment step can be regarded as a simplified warping function, and its DNN can be 

regarded as a direct matching method. To further improve the alignment accuracy, 

DeepRTAlign considers not only the feature to be aligned but also its adjacent features. 

In addition, we compared DeepRTAlign with LWBmatch and OpenMS on the 

newly generated dataset with known fold changes (dataset Benchmark-FC) using the 

OpenMS extracted features and MSFragger search results. As shown in Fig. R14, we 

can find that the quantification accuracy of LWBmatch is not as good as that of 

OpenMS and DeepRTAlign. 

 



 

Fig. R14. The number and ratio distributions of all E. coli peptides between specific 

samples (15ng/10ng, 20ng/10ng, and 25ng/10ng) in each replicate (R1, R2 and R3) 

after alignment by LWBMatch, OpenMS and DeepRTAlign. 

 

Reference: 

1. Smith, R.; Ventura, D.; Prince, J. T. LC-MS Alignment in Theory and Practice: A 

Comprehensive Algorithmic Review. Briefings in Bioinformatics 2013, 16 (1), 

104–117. https://doi.org/10.1093/bib/bbt080. 

 

Q7. What is the output vector of DNN? Is it binary Aligned/not-aligned? What would 

it choose if the feature n is aligned to m-1, m and m+1, I am assuming that you slide 

over five features while aligning them? 

Response: We are sorry for the unclear descriptions. The output is binary aligned/not-

aligned. As shown in Fig. 1, when the feature n is aligned to feature m, the 

DeepRTAlign model will consider the adjacent features before and after the 

feature n and feature m as the input vector, rather than sliding over five features 

while aligning them. We found that if a feature (such as feature n in sample 1) is 

correctly aligned to another feature (such as feature m in sample 2), the similarity of 

feature n and the adjacent feature of m (such as m-1 or m+1) is more likely to be low. 

Thus, considering the adjacent features can help us perform an accurate alignment. 



 

Fig. 1. The illustration of DeepRTAlign algorithm. (a) The training procedures of 

DeepRTAlign. The n is the feature rank number (sorted by RT) in one m/z window of 

sample 1. The m is the feature rank number (sorted by RT) in one m/z window of sample 

2. Please note that “n-1”, “n-2”, “n+1” and “n+2” represent four adjacent features of 

the feature n in one m/z window. (b) The workflow for RT alignment using 

DeepRTAlign. DeepRTAlign supports four feature extraction methods (Dinosaur, 

MaxQuant, OpenMS and XICFinder). The features extracted will be aligned using the 

trained model shown in (a), with the aligned feature list as the output. 

 

Q8. The claim that MS1-based alignment can outperform approaches that use both MS1 

and MS2 information is counterintuitive. For example, Quandenser uses decoys to 

control false mappings while utilizing MS/MS anchor peptides for aligning MS1 

chromatograms. However, the manuscript lacks rigorous analysis to support this claim. 

Response: We thank the reviewer for this helpful comment. Following Reviewer #2’s 

Q2 suggestions, using intensity for alignment is improper, and thus only using CV as a 

measure of alignment performance is not entirely justifiable. Therefore, we compared 

DeepRTAlign with Quandenser on a new benchmark dataset (dataset Benchmark-FC) 

with known fold changes for performance evaluation. Please note that the 



DeepRTAlign evaluated in this revision is an updated version with new input model 

features and a QC module. As shown in Fig. R15a-b, we can find that DeepRTAlign 

is comparable to Quandenser in terms of the number of aligned peptides and the 

quantification accuracy. DeepRTAlign can align more features (regardless of 

corresponding identification results) than Quandenser since it is ID-free (Fig. R15c). 

The original Fig. 3 is removed and Fig. R15 is denoted as Supplementary Fig. 4 in 

this revision. 

 

 

Fig. R15. The number and ratio distributions of all E. coli peptides and the group 

number of aligned features between specific samples (a: 15ng/10ng, b: 20ng/10ng, and 

c: 25ng/10ng) in each replicate (R1, R2 and R3) after alignment by Quandenser and 

DeepRTAlign. It should be noted that a group is defined as a set of aligned features in 

different runs. 

 

Q9. Line 120: Add a supplementary table like S1 for metabolomics and proteomics data. 

Response: We have updated Supplementary Table 1 to contain all the datasets in this 

work. 

 



Q10. Line 214: The RT tolerance for identification is too big (5 mins). It should be less 

than a minute. Please report precision and recall with updated RT tolerance. 

Response: We thank the reviewer for this valuable suggestion. We agree that a 5-

minute RT tolerance is too big. Thus, in this revision, we restricted the RT of an MS2 

spectrum (peptide identification) to be within the RT range of the corresponding 

precursor feature when matching the peptide identification result to a feature. All the 

results have been updated in this revision. 

 

Q11. Figure 3: Report median and standard deviation for each boxplot. Are the 

intensities normalized across runs before calculating CV? 

Response: We thank the reviewer for this helpful comment. Feature intensities were 

not normalized across runs before calculating CV in our original manuscript. However, 

following Reviewer #2’s Q2 suggestions, using intensity for alignment is improper and 

only using CV as a measure of alignment performance is not entirely justifiable. 

Therefore, we removed this figure and further compared DeepRTAlign with 

Quandenser on a new benchmark dataset (dataset Benchmark-FC) with known fold 

changes for performance evaluation. Please note that the DeepRTAlign evaluated in 

this revision is a new version with new input model features and a QC module. Please 

see Supplementary Fig. 4 and the reply to Reviewer #2’s Q8 for details. 

 

Q12. Figure 4a. Why are the last two bars different for MSFragger no-aligned? Figure 

4: Explain what is unique peptides and shared peptides? Is common means identified 

in all runs 100%? 

Response: We are sorry for these unclear descriptions. The reason that the last two bars 

for MSFragger no-aligned were different is that MBR (F) no-aligned means features 

were extracted by MSFragger and then identified by MSFragger, while DeepRTAlign 

(MF) no-aligned means features were extracted by MaxQuant and then identified by 

MSFragger (because MSFragger did not provide its extracted features). Shared peptides 

were the peptides that existed in both no-aligned and aligned. Unique peptides only 

exist in no-aligned or aligned. Common means exist in both no-aligned and aligned, 

rather than “identified in all runs 100%”. Please note that the peptides without missing 

values in all three replicates were considered in the original Fig. 4. However, following 

the suggestion in Reviewer #2’s Q2, only using CV as a measure of alignment 

performance is not entirely justifiable. Thus, we compared DeepRTAlign with other 

alignment methods on a new benchmark dataset (dataset Benchmark-FC) with known 



fold changes for performance evaluation (Fig. 3 in this revision). The original Fig. 4 

has been removed in this revision. 

 

Reviewer #3 (Remarks to the Author): 

# General comment on the paper 

Overall, the paper is well-written and structured. The authors thoroughly tested their 

proposed method, DeepRTAlign, and generously provided code for using the tool. 

However, there are some areas that could be further improved. At present, the selection 

of datasets does not make it clear if this method is a significant contribution to 

improving alignment (see M1 and M4), and some aspects and details of the approach 

are not clearly explained (see M2). Finally, code for the experiments is not available, 

which hinders reproducibility (see M3). Below, please find my (constructive) points for 

the authors to consider to further improve the paper. 

Response: We thank the reviewer for the positive remarks and valuable suggestions. 

 

# Major comments 

## M1. Impact of the method 

Although the authors performed an extensive benchmark of their method, IMHO it is 

still unclear if DeepRTAlign is a significant contribution to improve alignment. 

Currently, there is a bloat of very similar methods for alignment with essentially the 

same performance of the algorithms they pretend to improve. Part of the problem is that 

the authors of each method select their own evaluation data, which is not ideal since 

researchers may select (probably unconsciously) datasets where their methods perform 

better. To tackle this issue, the use of common benchmarks should be promoted. 

Therefore, I suggest including the datasets from [1] in the comparison. These new set 

of tests can also be used to include further information as suggested in later 

commentaries. 

[1] Eva Lange, Ralf Tautenhahn, Steffen Neumann and Clemens Gröpl. "Critical 

assessment of alignment procedures for LC-MS proteomics and metabolomics 

measurements". BMC Bioinformatics 2008, 9:375 

Response: We thank the reviewer for this helpful suggestion. We agree that some 

researchers may select datasets where their methods perform better. Thus, we tried to 

include different types of datasets (proteomics or metabolomics, different species, MS 

instruments, MS parameters, LC columns etc.) to make a fair and comprehensive 

evaluation of DeepRTAlign and the other methods in this work. Lange et al.’s dataset 



is a classical benchmark dataset that was published 15 years ago. Lange et al.’s dataset 

is a low-resolution dataset, generated by an ESI IT mass spectrometer (Thermo 

Finnigan Dexa XP Plus). However, DeepRTAlign is trained on a high-resolution 

proteomic dataset (HCC-T) generated by an Orbitrap Fusion mass spectrometer 

(Thermo Fisher) with the OT-IT mode. Thus, we admit that DeepRTAlign is only 

applicable to high-resolution datasets. 

 Following Reviewer #1’s Q10 and Reviewer #2’s Q2 suggestions, we designed 

and produced a benchmark dataset (dataset Benchmark-FC) with known fold changes 

in this revision. In this benchmark dataset, 10 ng, 15 ng, 20 ng, and 25 ng of E. coli 

samples were spiked into 200 ng of 293T samples, respectively. Each group contained 

3 replicates. We used the peptide intensities aligned by DeepRTAlign or the MBR 

function of OpenMS, MaxQuant and MSFragger to calculate the ratio of all E. coli 

peptides between specific samples (15 ng/10 ng, 20 ng/10 ng, and 25 ng/10 ng) in each 

replicate. 

As shown in Fig. 3, we found that the combination of using MaxQuant to extract 

features, DeepRTAlign to align features and MSFragger to identify their peptide 

sequences could obtain 150% more peptides compared with the original MaxQuant 

workflow (using MaxQuant to extract features, align them and identify their peptide 

sequences) without compromising the quantification accuracy. DeepRTAlign also 

aligned 7% and 14.5% more peptides than OpenMS and MSFragger's MBR, while its 

quantification accuracy was comparable with other methods. Overall, we found that 

OpenMS extracted features represented a slightly better accuracy despite the alignment 

methods. This may be because OpenMS has strict quality controls in feature extraction. 

However, DeepRTAlign can still increase the number of aligned peptides based on 

OpenMS extracted features, showing a higher sensitivity than OpenMS in terms of 

alignment. 

It should be noted that DeepRTAlign is compatible with multiple feature 

extraction methods (Dinosaur, MaxQuant, OpenMS and XICFinder), which is 

convenient for users to choose the feature extraction method suitable for their own 

experiments. 



 

Fig. 3. The number and ratio distributions of all E. coli peptides between specific 

samples (15ng/10ng, 20ng/10ng, and 25ng/10ng) in each replicate (R1, R2 and R3) 

after alignment. In all boxplots, the center black line is the median of log2 of the peptide 

fold changes. The box limits are the upper and lower quartiles. The whiskers extend to 

1.5 times the size of the interquartile range. 

 

# M2. DeepRTAlign description 

Code inspection reveals that the current description of DeepRTAlign, although nicely 

written, can be further improved. 

## Training Part 

* Some details are missing in the description of the DNN and its hyperparameters:  

- The text does not mention the sigmoid activation. 

- It should be specified which initialization scheme the authors used for the weights and 

biases. 

- The authors should mention the optimizer used and, if it makes use of hyperparameters, 

these should be described. 

- The authors should explain how they selected the number of epochs. 

Response: We thank the reviewer for the helpful suggestions. The detailed descriptions 

have been added in the “Workflow of DeepRTAlign” section in this revision: 

The sigmoid function was used as the activation function. We used the default 

initialization method of pytorch (kaiming_uniform). We used Adam (betas=(0.9, 0.999), 



eps=1e-08, weight_decay=0, amsgrad=False, foreach=None, maximize=False, 

capturable=False, differentiable=False, fused=None) as the optimizer. The initial 

learning rate is set to 0.001, and is multiplied by 0.1 every 100 epochs. Batch size is se 

to 500. The number of epochs is chosen empirically. We conducted several trial runs 

and found that the loss tended to be stable at 100-300. So we set the epoch number to 

400 for final training. 

 

## Application Part 

* The code implementation loads a matrix from an npy file to normalize the features 

feeding the neural network. However, this is not clearly described in the text. 

Response: We thank the reviewer for the helpful suggestions. We randomly select a 

feature from training data (HCC-T) to normalize all the features feeding to DNN. In the 

new version of DeepRTAlign, we used two base vectors (base_1 is [5,0.03], and base_2 

is [80,1500]) to do the same things. So, there is no need to read the npy file in the new 

version anymore. The base vectors refer to the value range of features from HCC-T. 

The detailed descriptions have been added in the “Workflow of DeepRTAlign” section 

in this revision. 

 

* Starting at line 188, the manuscript states: "In this part, feature lists will first go 

through the coarse alignment step and the input vector construction step as same as 

those in the training part. Then, the constructed input vectors will be fed into the trained 

DNN model". However, the code reveals that between the coarse alignment and the 

predictions of the DNN there is a binning process based on m/z, which is not obvious 

from the text. I would suggest to explicitly describe this process on the manuscript to 

enhance clarity. 

Response: We apologize for missing these details. After coarse alignment, all features 

will be grouped based on m/z, according to the parameters bin_width and bin_precision 

(0.03 and 2 by default). Bin_width is the m/z window size, and bin_precision is the 

number of decimal places used in this step. Only the features in the same m/z window 

will be aligned. After the binning step, there is also an optional filtering step. For each 

sample in each m/z window, only the feature with the highest intensity will be kept in 

the user-defined RT range. Then the DNN model in DeepRTAlign will align the 

features in each m/z window. The detailed descriptions have been added in this 

revision's “Workflow of DeepRTAlign” section (Page 7). 

 



* Furthermore, the "bin_width" and "bin_precision" parameters involved in this step 

seem to have a large impact on the alignment process (based on my own experiments). 

Although this is somewhat expected by the meaning of the parameters, a brief 

discussion on how they should be chosen is suggested, due to the large impact of the 

results. If different values were used during tests, it should be reported on the 

manuscript. 

Response: We thank the reviewer for the kind suggestion. After coarse alignment, all 

features will be grouped based on m/z according to the parameters bin_width and 

bin_precision. Bin_width is the m/z window size, and bin_precision is the number of 

decimal places used in this step. Only the features in the same m/z window will be 

aligned. In this work, we used 0.03 Da for bin_width and 2 for bin_precision as the 

default values in all the tests. Our original manuscript used RT and intensity as features 

and bin_width and bin_precision represented mass accuracy. Thus, they were two 

important parameters. But in this revision, following Reviewer #1’s Q3 and Q4 

suggestions, we removed intensity from the model features but added m/z as a new 

model feature (Fig. 1). Thus, the importance of the two parameters has decreased. Users 

can set the m/z window wider to ensure the completeness of the alignment, but we do 

not recommend exceeding 0.03 Da as it will introduce more interfering ions. On the 

contrary, the m/z window can be appropriately narrowed if we use high-quality MS 

data. 

 

## M3. Code availability 

The Github repository is well-structured and can be easily read. However, the authors 

only provide code for the "application part" of the tool. That is, the validation 

experiments can't be reproduced without substantial work by other researchers, which 

hinders reproducibility and comparison with future alignment methods. It would be nice 

if the authors share the whole codebase for reproducing all the tests conducted in the 

study. The code for the tests suggested in M1 should be shared. 

Response: We thank the reviewer for the positive remarks. We have uploaded all the 

codes for reproducing all the experiments in this work to GitHub 

(https://github.com/PHOENIXcenter/deeprtalign). 

 

## M4. DeepRTAlign computational performance 

The code provided by the author does a lot of disk operations, which may harm the 

computational running time of the algorithm. It is crucial that any new alignment 



method seeking to make a substantial contribution should be highly performant, as it 

must compete with the current state-of-the-art tools. Wall-clock runtime for the 

DeepRTAlign method should be provided for, at least, the benchmarks suggested in 

M1. 

Response: We thank the reviewer for this valuable suggestion. Indeed, the codes in our 

original manuscript contained many disk operations to write down the intermediate data, 

which was not efficient enough. In the latest version of DeepRTAlign, we directly 

stored all the intermediate data in the memory by default. We also kept the hard disk 

mode, which allows users to check intermediate results conveniently. 

As shown in Table R5, we evaluated the wall-clock runtime of OpenMS, 

LWBMatch and DeepRTAlign on dataset Benchmark-FC using the same computer 

server. Since the direct-matching methods (a part of DeepRTAlign and LWBMatch) 

need to do a lot of pairwise comparisons between any two features within a specific 

m/z window and RT window, they are usually slower than the warping function-based 

methods (such as OpenMS), especially for large scale samples. Meanwhile, considering 

OpenMS and LWBMatch were coded using C++, a much more efficient programming 

language than Python (we used in DeepRTAlign), we think there is still room to 

improve the efficiency of DeepRTAlign. In this revision, we provide a multi-process 

mode (-pn parameter) in DeepRTAlign for large dataset. In the future, we plan to 

develop a new version of DeepRTAlign coded by C++. 

 

Table R5. The wall-clock runtime (min) of three alignment tools on Benchmark-FC 

dataset using a server (Intel® Xeon™ Platinum 9242 CPU @ 2.30GHz). The input of 

all three tools are features extracted by OpenMS. DeepRTAlign uses 10 processes (-pn 

10). The average and standard deviation of the runtime are calculated based on all the 

sample pairs in Benchmark-FC. 

Method  OpenMS LWBMatch DeepRTAlign 

Runtime (min) 41 21724 15628 

 

# Minor comments (organized by sections) 

## Workflow of DeepRTAlign 

* "All other parameters are kept by default in Pytorch". Default parameters can change 

(or even disappear!) as software evolves. I would prefer to read the details explained in 

a software-agnostic way. If not possible, the pytorch version should be stated here for 

the reader's convenience (although it is true that it appears later in the text). 



Response: We are so sorry for the careless descriptions. We have added the pytorch 

version and the detailed descriptions of the all the parameters in this revision 

(“Workflow of DeepRTAlign” section, Page 7):  

(5) Deep neural network (DNN). The DNN model in DeepRTAlign contains three 

hidden layers (each has 5000 neurons), which is used as a classifier that distinguishes 

between two types of feature-feature pairs (i.e., the two features should be or not be 

aligned). Finally, a total of 400,000 feature-feature pairs were collected from the HCC-

T dataset based on the Mascot identification results (mass tolerance: ± 10 ppm, restrict 

the RT of a peptide to be within the RT range of the corresponding precursor feature). 

200,000 of them are collected from the same peptides, which should be aligned (labeled 

as positive). The other 200,000 are collected from different peptides, which should not 

be aligned (labeled as negative). These 400,000 feature-feature pairs were used to train 

the DNN model. It should be noted that it is not necessary to know the peptide sequences 

corresponding to the features when performing feature alignment. The identification 

results of several popular search engines (such as Mascot, MaxQuant and MSFragger) 

are only used as ground truths when benchmarking DeepRTAlign. 

(6) The hyperparameters in DNN. BCELoss function in Pytorch is used as the loss 

function. The sigmoid function was used as the activation function. We used the default 

initialization method of pytorch (kaiming_uniform). We used Adam (betas=(0.9, 0.999), 

eps=1e-08, weight_decay=0, amsgrad=False, foreach=None, maximize=False, 

capturable=False, differentiable=False, fused=None) as the optimizer. The initial 

learning rate is set to 0.001, and is multiplied by 0.1 every 100 epochs. Batch size is set 

to 500. The number of epochs is chosen empirically. We conducted several trial runs 

and found that the loss tended to be stable at 100-300. So, we set the epoch number to 

400 for final training. All other parameters are kept by default in Pytorch v1.8.0. 

 

## Machine learning models for evaluation 

* It should be clearly stated if the only difference between DeepRTAlign and the other 

methods is the substitution of the neuronal network by the proper classifier, or if there 

is any other further difference. 



Response: We would like to clarify that DeepRTAlign is different from the other 

alignment methods in three aspects: (1) DeepRTAlign includes a coarse alignment step 

(see “Workflow of DeepRTAlign” section for details). (2) The classifier of 

DeepRTAlign is a deep neuron network (DNN) model rather than another machine 

learning-based model. (3) DeepRTAlign combines both advantages of the warping 

function-based and direct-matching methods in theory. Its coarse alignment function 

can be regarded as a simplified warping function, and its DNN model can be used for 

direct matching alignment. (4) To further improve the alignment accuracy, 

DeepRTAlign considers the feature to be aligned and its adjacent features. We found 

that if a feature (such as feature n in sample 1) is correctly aligned to another feature 

(such as feature m in sample 2), the similarity of feature n and the adjacent feature of 

m (such as m-1 or m+1) is more likely to be low. 

 

* A few words describing the parameter tuning process should be included.  

Response: We thank the reviewer for this suggestion. Here is the tuning process: The 

AUCs of different DNN hidden layer numbers (each layer has 5000 neurons) in 

DeepRTAlign when performing 10-fold cross-validation on the training set HCC-T 

were shown in Supplementary Table 2a. Based on the results, we chose 3 hidden 

layers for the model in DeepRTAlign. The AUCs of different neuron numbers in 

DeepRTAlign based on 10-fold cross-validation on the training set HCC-T were shown 

in Supplementary Table 2b. All the models have 3 hidden layers. According to these 

results, we chose 5000 neurons in each layer for the model in DeepRTAlign. 

 

* What is the difference between the number of estimators (100) and the tree number 

in the forest (10)? 

Response: We are sorry that the tree number in the forest (10) is a typo here. Based on 

10-fold cross validation on the training set HCC-T, we optimized the hyperparameters 

of RF, KNN, SVM and LR in this revision (Supplementary Tables 4-7). We used 

max_depth=50, n_estimators=50 for the RF model. All the other parameters were kept 

default in scikit-learn v0.21.3. The corresponding descriptions have been modified in 

the “Machine learning models for evaluation” section. 

The parameters for each machine learning method were optimized based on the 10-fold 

cross validation results of the training set HCC-T (Supplementary Tables 4-7). The 

parameters of the RF model are number of estimators 50, and max depth 50. For KNN, 

the k is set to 5. For SVM, the kernel function is set to ’poly’ (gamma=’auto’, C=1, and 



degree=3). For LR, the penalty is L2 and the solver is “lbfgs”. All the other parameters 

are default values in scikit-learn v0.21.3. 

 

* The authors should specify which non-linear kernel was used for the SVM. 

Furthermore, they should state whether the SVM's hyperparameters were tuned. If not, 

I would suggest optimizing them since SVMs are quite sensitive to the hyperparameters 

configuration. 

Response: We thank the reviewer for this suggestion. Based on 10-fold cross validation 

results of the training set HCC-T, we optimized the hyperparameters of RF, KNN, SVM 

and LR in this revision (Supplementary Tables 4-7). For SVM, parameters 

kernel=’poly’, gamma=’auto’, C=1, and degree=3 were used. 

 

## Tools for alignment comparison 

* The software tools MZmine and OpenMS offer numerous alignment methods. 

However, to ensure transparency and reproducibility, the authors should clearly specify 

which methods they employed in their analysis.  

Response: We thank the reviewer for the kind suggestion. For MZmine 2, the ADAP-

LC workflow was used. For OpenMS, we used FeatureFinderCentroided for feature 

extraction and MapAlignerPoseClustering for feature alignment. After alignment, we 

used FeatureLinkerUnlabeled and TextExporter to get the results. We have added the 

detailed descriptions to the “Tools for alignment comparison” section (Page 9). 

 

* The precision and recall formulas should be reviewed and better explained. It seems 

that Ak and Gk are sets, but this is not obvious and, in that case, the cardinality of the 

sets is missing from the formulas. 

Response: We thank the reviewer for pointing out this mistake. We have corrected the 

formulas and added a clearer description into the “Tools for alignment comparison” 

section in this revision (Page 9). 

The precision formula is: 

Precision =
1

𝑁
∑

|𝐴𝑘 ∩ 𝐺𝑘|

|𝐴𝑘|

𝑁

𝑘=1

 

The recall formula is: 



Recall =
1

𝑁
∑

|𝐴𝑘 ∩ 𝐺𝑘|

|𝐺𝑘|

𝑁

𝑘=1

 

N is the sample pair number. 𝐴𝑘 is a set containing all the aligned feature pairs 

in the kth sample pair. 𝐺𝑘 is a set containing all the ground truth of the kth sample pair. 

|𝑋| indicates the number of elements in the set X. 

 

## Model evaluation on the training set and the test sets 

* Line 281. "We think this is because the RT shift density distribution of UPS2-Y is 

similar to HCC-T (Figure S2)". Does "RT shift" refer to the coarse alignment step? If 

yes, why this explains the better performance of RF? Isn't the coarse alignment step 

shared between the DNN (DeepRTAlign) and the RF version? 

Response: We apologize for the unclear descriptions about the original Fig. S2 and 

Table S4. The RT shifts in Fig. S2 were the original RT difference of the same peptide 

in two samples, calculated from original features without coarse alignment. However, 

in the original Table S4, coarse alignment step is performed before DNN 

(DeepRTAlign) and machine learning models including RF. We agree that Fig. S2 

cannot explain why RF outperformed DNN on the UPS2-Y dataset in the original 

Table S4. 

In this revision, according to Reviewer #2’s Q5 suggestions, we have updated 

Table S4 (denoted as Supplementary Table 3) using the new version of DeepRTAlign 

(new input model features and a new QC module, suggested by Reviewer #1’s Q2, Q3 

and Q4). As shown in the Supplementary Table 3, we found DNN outperforms RF 

in all the test datasets. Please note that in this revision, all the results on test datasets 

were based on the model trained on the whole training set (HCC-T) with tuned 

hyperparameters (hyperparameters were optimized based on 10-fold cross validation 

on the training set HCC-T), no longer from the 10-fold cross validation models on the 

training set HCC-T. Thus, we did not have to calculate the mean and standard deviation 

of the precisions and recalls in each test set. Using the new version of DeepRTAlign, 

we think the original Fig. S2 is unnecessary, thus delete it in this revision. 

 

Supplementary Table 3. The AUCs on different test sets. All the results are based on 

the model trained on the HCC-T dataset. In each test set, we randomly selected 10,000 

positive and 10,000 negative feature pairs to perform this evaluation. 

Dataset  DNN RF KNN SVM LR 



HCC-N 0.925 0.916 0.656 0.865 0.894 

HCC-R 0.933 0.905 0.668 0.901 0.899 

UPS2-M 0.979 0.919 0.683 0.896 0.905 

UPS2-Y 0.971 0.920 0.702 0.900 0.897 

EC-H 0.972 0.938 0.733 0.912 0.944 

AT 0.975 0.943 0.785 0.932 0.945 

SC 0.917 0.901 0.752 0.842 0.898 

 

* Line 282. "In general, DNN has a better generalization performance and RF can be 

an alternative solution when computing resources are limited" Can the authors further 

explain why this occurs? Intuitively, in the application part, the prediction times for the 

DNN and the RF shouldn't be so different.  

Response: We apologize that our unclear descriptions misled the reviewer. In our test, 

the prediction times of DNN and RF were close. But training the RF model is much 

faster than training the DNN model. This is why we wrote, “RF can be an alternative 

solution when computing resources are limited”. In this revision, to avoid discrepancy, 

we have deleted this sentence. 

 

* In Figure 3, I have trouble understanding "DeepRTAlign Shared" (SH_D) and 

"Quandenser Shared" (SH_Q). I thought "shared" likely referred to the peptides that 

were identified by both DeepRTAlign and Quandenser algorithms, but the boxplot 

shows different CVs for SH_D and SH_Q and hence my interpretation must be wrong. 

Response: We are sorry for these unclear descriptions about the original Fig. 3. 

“Shared” did refer to the peptides commonly aligned by DeepRTAlign and Quandenser. 

The boxplots showed the CVs of SH_D and SH_Q using the Dinosaur extracted 

features. In theory, these CVs should be the same. However, in our original manuscript, 

we used a mass tolerance of 10 ppm and an RT tolerance of 5 min for matching 

identifications to features. As suggested by Reviewer #2’s Q10, a 5-minute RT 

tolerance is too big. Some peptides may correspond to multiple features. We only kept 

the most intense features in the DeepRTAlign and Quandenser results. Thus, the chosen 

feature may be different for the same peptide. That’s why the reviewer found the CV 

boxplots of SH_D and SH_Q were different. Following the suggestion in Reviewer 

#2’s Q2, only using CV as a measure of alignment performance is not entirely 

justifiable. Thus, we compared DeepRTAlign with Quandenser on a new benchmark 



dataset (dataset Benchmark-FC) with known fold changes for performance evaluation. 

Please note that the DeepRTAlign evaluated in this revision is a new version with new 

input model features and a QC module. As shown in Fig. R15a-b, we can find that 

DeepRTAlign is comparable to Quandenser in terms of the number of aligned peptides 

and the quantification accuracy. DeepRTAlign can align more features (regardless of 

corresponding identification results) than Quandenser since it is ID-free (Fig. R15c). 

The original Fig. 3 is removed and Fig. R15 is denoted as Supplementary Fig. 4 in 

this revision. 

 

 

Fig. R15. The number and ratio distributions of all E. coli peptides and the group 

number of aligned features between specific samples (a: 15ng/10ng, b: 20ng/10ng, and 

c: 25ng/10ng) in each replicate (R1, R2 and R3) after alignment by Quandenser and 

DeepRTAlign. It should be noted that after alignment, the same features in different 

runs will be put into a group. 

 

### Some typos in the text: 

* Use of two periods after citations. For example, at lines 109 or 118. 

* Line 182: " and the trained model was evaluated..." -> The trained model was also 

evaluated. 



* Lines 187-188: "...can be used after format conversion refer to the formats.." -> ... can 

be used after format conversion. Refer to the formats ... 

* Line 354: "the CV values of DeepRTAlign in all the group are 47.6% smaller in 

UPS2-M and 58.3% smaller..." -> "the CV values of DeepRTAlign are 47.6% smaller 

in UPS2-M and 58.3% smaller..." 

* Line 361: "indentification" -> identification 

* Line 640: "the histograms of ...> -> the barplots of (I don't think they should be 

referred to as histograms). There are a few more occurrences of "histogram" after this 

first one. 

Response: All these typos have been corrected in this revision. 

 

### Supplementary material 

* Figure S2. It is hard to compare the distributions of the datasets. Maybe a log scale 

could be used in the y-axis to enhance the visualization. 

Response: Similar to the response to the minor issue “## Model evaluation on the 

training set and the test sets” of Reviewer #3, we think the original Fig. S2 is 

unnecessary using the new version of DeepRTAlign, thus delete it in this revision. 

 

* Table S10. How are the standard errors computed in Table S10? In all other tables, I 

suppose the standard errors are computed using 10-fold cross-validation but, in this real 

dataset, this does not seem to be the case. If 10-fold cross-validation is indeed used with 

real datasets, then standard errors should be incorporated to other results (for example, 

error bars could be added to figure 2). 

Response: We apologize that our unclear descriptions misled the reviewer. In the 

original Table S10, the average and the standard deviation of the precisions and recalls 

were calculated between different sample pairs (such as sample 1-sample 2 and sample 

2-sample 3) in the test set (SM1100, N=10) rather than the 10-fold cross-validation 

results. We found that the standard deviations were misleading and thus were removed 

in this revision. And this table updated using the new version of DeepRTAlign and is 

denoted as Supplementary Table 12 in this revision. 

 

Supplementary Table 12. The different algorithm combinations for benchmarking 

DeepRTAlign against MZmine 2 and OpenMS on a public metabolomic test set 

SM1100. 

Abbreviations Feature extraction Feature alignment Precision Recall 

MM MZmine 2 MZmine 2 1.000 1.000 

MD MZmine 2 DeepRTAlign 1.000 1.000 



OO OpenMS OpenMS 1.000 0.980 

OD OpenMS DeepRTAlign 0.997 0.985 

DD Dinosaur DeepRTAlign 0.971 0.965 

 

 



Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

This reviewer appreciated the authors’ improvement in both of the manuscript and the program 

based on reviewers’ comments and suggestions. Most of my concerns have been addressed in the 

revised version, while there are still two key issues to be processed. 

1. In the reply of Q3, authors tried to fix the issue by changing the intensity feature to m/z 

feature. However, m/z feature also has its own problem as false ms1 features may have the same 

m/z values as true ms1 features. Therefore, a proper comparison between m/z feature and 

intensity feature is needed. 

2. In the reply of Q1, authors used a subset of top-200 MS1 features, I think this is biased as top-

200 features are usually high-quality features which are easier to be identified. So it did not well 

validate the proposed method itself. I wondered how accurate it will be if evaluating all aligned 

MS1 features at 1% FDR. I believe it is better to randomly select aligned pairs for validation. 

Reviewer #2: 

Remarks to the Author: 

Thank you for addressing the concerns. Liu Yi et al. have made a significant improvement by using 

m/z instead of intensity, removing alignment bias towards intense peaks. They tested their 

approach on a fold-change dataset, Benchmark-FC and clinical cohort, showing its usefulness in 

predicting clinical responses, such as recurrence of HCC. However, the technical explanation of 

their algorithms seems weak. Given the introduction of a new method, at least a standard 

evaluation is needed, if not exhaustive. 

Their use of neighboring signals and deep neural networks is innovative. Yet, the results are 

comparable to existing tools, slightly better in some cases. As demonstrated in Supplementary 

Table 3, the performance is better than logistic regression (LR), however it follows a similar 

pattern as LR across datasets. In Figure 3 and Figure R15, a comparison with OpenMS and 

Dinosaur reveals a slight performance advantage in favor of the proposed method. This modest 

improvement, in my opinion, may be attributed to the authors' limited utilization of the neural 

network's capabilities, as they primarily rely on RT and m/z values. In contrast, other tools make 

use of readily available MS/MS and intensity information. Nonetheless, it's worth noting that 

software developers might argue that a mere 5% increase in performance could be achieved with 

some parameter adjustments. Nonetheless, using only two parameters, the authors have shown to 

achieve results comparable to standard tools. 

I suggest performing a technical analysis with existing data to understand the alignment approach. 

Here are my comments: 

1. In Figure 3, the lower panel shows that there is little discernible difference between OpenMS, 

Dinosaur, and DeepRTAlign. In cases of improved quantitation, one would anticipate a noticeable 

shift in the median towards the dotted line and a decrease in the lower whisker height. However, 

this expected change is not observed. It's worth noting that the claim of a 150% increase in 

peptides in MaxQuant appears to be due to the presence of potentially spurious peptides, as the 

whisker height increases with alignment. Therefore, Figure 3 suggests that DeepRTAlign performs 

comparably to existing alignment methods. 

2. The authors should conduct a more in-depth examination of the peaks selected after alignment. 

One useful plot to include in Figure 3 would be the fold-change vs. intensity before and after 

alignment. This plot can help determine whether the alignment process primarily adds low-

intensity peaks or corrects high-intensity peaks. Such FC vs. intensity plots are standard in 

LFQbench studies and would enhance the persuasiveness of the approach to readers. Additionally, 

the authors could explore a FC vs. m/z plot to check for any potential bias towards m/z values. 

While such bias is not expected, including this as a sanity check would be beneficial. 

3. The y-axis of the lower panel should be adjusted to a range of -1 to 3 in order to better 



visualize the medians. 

4. In the manuscript, the discussion of Figure 3 primarily revolves around peptide identification, 

rather than delving into fold-change and other quantitative metrics. To provide a more 

comprehensive analysis, the authors are encouraged to explore and discuss the quantitative 

aspects of this technical dataset in detail in the manuscript. 

5. Table R3 highlights a feature pair that OpenMS could not successfully align, but the current 

listing lacks sufficient information to comprehend the reasons behind OpenMS/MzMine2's failure. 

To provide a clearer understanding of this issue, the authors have the option to either present 

chromatographic traces for the specified m/z values or create an RT-MZ map with intensity 

represented as heatmaps. Such visualizations would elucidate how neighboring features contribute 

to alignment, a capability not exhibited by OpenMS. This is just my suggestion, any other way to 

visualize the input to DNN and alignment outcome is also welcome. 

6. In the last Figure 5, authors have demonstrated that the tool is useful in fetching features that 

can be used for training models. However, since the paper is focused on technical advancements, 

one good comparison would be how does the model fare with features from unaligned? Currently, 

they use aligned data and select 200 features which were filtered further through validation cohort 

and selected 15 features. It would be good to know if the same process is done for unaligned, 

would we miss these features? or how many would we get out of 15 in top 200. This would 

illustrate the advantages of the proposed alignment method in the context of biological research. 

It is just a suggestion, authors may opt not to do it. 

Reviewer #3: 

Remarks to the Author: 

The reviewer would like to thank the authors for performing additional studies on their proposed 

method to provide additional insights. The authors have put considerable efforts to address the 

comments of all reviewers, further improving the quality of the paper. While the authors have 

made significant progress in addressing my previous concerns, I still have a few minor questions, 

particularly regarding the comparison between the neural network and other machine learning 

methods. 

#1.In response to my initial minor comment in the section titled "Machine Learning Models for 

Evaluation," the authors mentioned that other machine learning models do not incorporate the 

coarse alignment step or the use of adjacent features. My concern here is that if the different 

machine learning methods employ dissimilar sets of features, it becomes challenging to draw 

meaningful comparisons. It is crucial to establish whether observed differences in performance are 

attributable to (1) the choice of features or (2) the specific algorithm used. In my view, ensuring 

that all algorithms use the same inputs is essential for a fair comparison and the experiments 

should be rerun. 

#2. Building on the previous point, it is essential that the experiments conclusively demonstrate 

whether the DNN offers any advantages over other algorithms. If such advantages exist, the paper 

should provide a clear explanation for them. Based on my experience and considering the features 

employed by the authors, it appears unlikely that a DNN would significantly outperform, for 

example, a Random Forest (RF). DNNs are typically advantageous when processing raw data like 

text or images, as they can autonomously extract relevant features. However, for tabular data, RF 

and boosting methods often outperform DNNs, and this is a common observation in machine 

learning competitions of this nature. 

#3. In Supplementary Tables 4-7, it appears that hyperparameters were tuned sequentially. This 

approach may result in suboptimal parameter combinations, particularly for complex classifiers like 

RF and Support Vector Machines (SVMs). Building on the previous point (point #1), if the authors 

choose to re-tune the hyperparameters with the new features as suggested, I would recommend 

employing a grid search for both RF and SVMs. This approach is not necessary for LR and KNN 

since they only involve a single main parameter. 



Point-by-point response to reviewers’ comments 

We appreciate the reviewers’ insightful and constrictive comments as they have helped 

us improve the algorithm and the manuscript. Additional data analysis and manuscript 

revision have been performed to address the reviewers’ comments. In this response, the 

reviewers’ comments are colored in black, and our replies to the comments are colored 

in blue. 

 

Reviewer #1 (Remarks to the Author): 

This reviewer appreciated the authors’ improvement in both of the manuscript and the 

program based on reviewers’ comments and suggestions. Most of my concerns have 

been addressed in the revised version, while there are still two key issues to be 

processed. 

1. In the reply of Q3, authors tried to fix the issue by changing the intensity feature to 

m/z feature. However, m/z feature also has its own problem as false ms1 features may 

have the same m/z values as true ms1 features. Therefore, a proper comparison between 

m/z feature and intensity feature is needed. 

Response: We thank the reviewer for this constructive suggestion. It is known that MS 

data consists of three dimensions: RT, m/z and intensity (despite that MS data from 

timsTOF Pro additionally contain ion mobility as a fourth dimension). In theory, the 

information in RT dimension and m/z dimension are the most relevant factors for 

accurate RT alignment. The information in intensity dimension was used in the 

original version of DeepRTAlign to assist RT alignment. However, as the reviewer 

pointed out in the first round of review (Q3 and Q4), the intensity dimension is only 

useful when the intensities of two features are equal or close, making DeepRTAlign 

difficult to align the regulated MS features. We realized that even if the intensity feature 

performs well in some situations, we should avoid using it in theory. Thus, we changed 

the intensity feature to m/z feature in the last revision. 

In this revision, following the reviewer’s suggestion, we compared the feature 

combinations of intensity+RT and m/z+RT in seven test sets. As shown in Table R1, 

when using random feature to replace intensity or m/z, the performances of model 



“Intensity+RT” and model “m/z+RT” were close and they did decrease much compared 

with the original model (none of the features were replaced by random values) in the 

“None (Original)” column. On the contrary, when using random value to replace RT, 

the performance of model “Intensity+RT” dropped more than that of model “m/z+RT” 

in all the test sets. These results showed that m/z is more suitable than intensity as a 

feature when combining with RT. In addition, we agree with the reviewer that some 

false positive results in DeepRTAlign (the features should not be aligned but falsely 

aligned by DeepRTAlign) may have similar or same m/z values. This is actually one of 

the main reasons for false positive alignments, which is a major limitation for all the 

MS1-based alignment methods. We could improve the accuracy of alignment by using 

additional features (such as ion mobility) if possible. 

 

Table R1. The AUCs of DeepRTAlign when using random values to replace the 

original features in the test sets. All the results are based on the models trained on the 

HCC-T dataset. “Intensity+RT” indicates the model considering the information of 

intensity and RT dimensions, i.e., the previous version of DeepRTAlign model we used 

in the original submission. And “m/z+RT” indicates the model considering the 

information of m/z and RT dimensions, i.e., the latest version of DeepRTAlign model 

we used in this revision. 

Model Intensity+RT m/z+RT 

Random 

features 
Intensity RT 

None 

(Original) 
m/z RT 

None 

(Original) 

HCC-N 0.901 0.825 0.985 0.899 0.841 0.924 

HCC-R 0.897 0.774 0.944 0.895 0.855 0.930 

UPS2-M 0.955 0.811 0.982 0.952 0.932 0.979 

UPS2-Y 0.960 0.776 0.972 0.958 0.941 0.970 

EC-H 0.954 0.660 0.957 0.959 0.942 0.970 

AT 0.965 0.766 0.966 0.964 0.950 0.972 

SC 0.897 0.741 0.935 0.901 0.831 0.917 

 

2. In the reply of Q1, authors used a subset of top-200 MS1 features, I think this is 



biased as top-200 features are usually high-quality features which are easier to be 

identified. So it did not well validate the proposed method itself. I wondered how 

accurate it will be if evaluating all aligned MS1 features at 1% FDR. I believe it is better 

to randomly select aligned pairs for validation. 

Response: We apologize that our unclear descriptions may have misled the reviewer. 

We would like to clarify that top-200 MS1 features for classifying the HCC patients 

between the early recurrence group and late recurrence group were selected from all 

the aligned features based on mRMR importance scores, rather than top-200 

abundant MS1 features (Figure 5a). The intensities of the top-200 MS1 features 

selected by mRMR were shown in Figure R1. We can find that the 200 MS1 features 

were evenly distributed from high abundance to low abundance. In this study, we 

would also like to clarify that following the reviewers’ suggestion in the last revision, 

we used PRM to verify the candidate markers (the aligned MS1 features which have 

the potential ability to distinguish HCC early recurrence patients from late recurrence 

patients), rather than verify all the aligned pairs. 

 

Figure R1. All the features aligned by DeepRTAlign are displayed with their average 

intensities in the training set (HCC-T dataset) against their intensity ranks. Top 200 

features based on mRMR scores are highlighted in orange. 

 

 



Reviewer #2 (Remarks to the Author): 

Thank you for addressing the concerns. Liu Yi et al. have made a significant 

improvement by using m/z instead of intensity, removing alignment bias towards 

intense peaks. They tested their approach on a fold-change dataset, Benchmark-FC and 

clinical cohort, showing its usefulness in predicting clinical responses, such as 

recurrence of HCC. However, the technical explanation of their algorithms seems weak. 

Given the introduction of a new method, at least a standard evaluation is needed, if not 

exhaustive. 

Their use of neighboring signals and deep neural networks is innovative. Yet, the results 

are comparable to existing tools, slightly better in some cases. As demonstrated in 

Supplementary Table 3, the performance is better than logistic regression (LR), 

however it follows a similar pattern as LR across datasets. In Figure 3 and Figure R15, 

a comparison with OpenMS and Dinosaur reveals a slight performance advantage in 

favor of the proposed method. This modest improvement, in my opinion, may be 

attributed to the authors’ limited utilization of the neural network’s capabilities, as they 

primarily rely on RT and m/z values. In contrast, other tools make use of readily 

available MS/MS and intensity information. Nonetheless, it’s worth noting that 

software developers might argue that a mere 5% increase in performance could be 

achieved with some parameter adjustments. Nonetheless, using only two parameters, 

the authors have shown to achieve results comparable to standard tools. I suggest 

performing a technical analysis with existing data to understand the alignment approach. 

Response: We thank the reviewer for the positive comment and valuable suggestion. 

We agree with reviewer that we should enhance the technical explanation of our 

algorithm in this revision. As shown in Supplementary Table 3, RF showed the best 

performance in the traditional machine learning models, except DNN. Here, we would 

like to discuss the advantages of DNN over RF in the aspects of data and theory. 

First, we randomly collected 2000 negative pairs correctly predicted by both DNN 

and RF (BOTH-right pairs), and 2000 negative pairs correctly predicted by DNN but 

wrongly predicted by RF (DNN-right pairs) in a test set (HCC-N, RT range: 1-80 min, 

m/z tolerance: 0.03 Da, the same way as we collected the negative pairs in the training 



set HCC-T, see “Workflow of DeepRTAlign” section in the manuscript for details). We 

found that the average RT differences of the 2000 BOTH-right pairs and the 2000 

DNN-right pairs were similar (5.03 min and 4.89 min, respectively). However, the 

average m/z difference of the 2000 BOTH-right pairs was 0.011 Da, which was five 

times the average m/z differences of the 2000 DNN-right pairs (0.002 Da). These 

results indicated that the advantages of DNN may mainly lie in recognizing the 

negative pairs with close m/z values. 

Second, we found that those negative pairs with similar m/z values (with 

differences less than 0.002 Da) were rare cases in the whole training data (10% only). 

Traditional machine learning methods usually are difficult to discriminate and 

predict correctly in such a situation. Although the bootstrapping-based RF is 

supposed to alleviate the problem such as imbalanced data in some degree, its 

classification power will drastically drop when the minority is extremely rare (Xu, Z., 

Shen, D., Nie, T., & Kou, Y. (2020). A hybrid sampling algorithm combining M-

SMOTE and ENN based on Random forest for medical imbalanced data. Journal of 

biomedical informatics, 103465). The minor pairs might be scarcely sampled during 

the bootstrapping and their effects on trees are overwhelmed by the majority of the data. 

In contrast, the DNN model is trained with mini-batches iteratively through 

gradient descent, which guarantees each pair, including the rare cases, is learned 

through a shuffled order. Particularly, those wrongly predicted rare cases lead to 

greater loss values and thus greater gradients to update the model, which may 

explain why DNN can predict them better. 

Third, for the 40 features (58 vector, Supplementary Fig. 1) we used in 

DeepRTAlign, we calculated the importance of each feature in the DNN model, the RF 

model and the LR model to show which feature is more important when training the 

DNN, RF and LR models on the same training set (HCC-T). Please note that for DNN, 

the importance of each feature in DNN is calculated as the AUC decrease tested in the 

HCC-N dataset when each feature in DNN was replaced with a random value, 

compared to the DNN model without random features. For RF, the feature importance 

is the attribute “feature_importances_” in sklearn.ensemble.RandomForestClassifier 



(scikit-learn framework v0.21.3). For LR, the feature importance is the attribute “coef_” 

in sklearn.linear_model.LogisticRegression (scikit-learn framework v0.21.3). 

We found that feature 6 (mzn-mzm) and feature 16 (mzm-mzn) were the top 2 

important features, indicating that DNN, RF and LR models rely mostly on the features 

about m/z for alignment prediction. We also found the importances of feature 5 (RTn-

RTm) and feature 15 (RTm-RTn) in DNN are about half those of feature 6 (mzn-mzm) 

and feature 16 (mzm-mzn), while the ratio (importance of feature 5/importance of 

feature 6) decreased to only about 32.7% in RF and 0.72% in LR. This difference 

indicates that the importance of RT-related features in the DNN model is relatively 

higher than that in the RF and LR models (Table R2, denoted as Supplementary Table 

11 in this revision). 

In summary, we have added more detailed descriptions and discussions about the 

technical explanation and analysis of our algorithm in this revision (Pages 12-13). We 

thank the reviewer again for the helpful suggestion. 

 

Table R2 (Supplementary Table 11 in this revision). The list of feature importance 

of the DNN model, the RF model and the LR model. The DNN model, the RF model 

and the LR model were trained on the same training set (HCC-T dataset). Please note 

that the feature importance of LR model is ranked by the absolute value of “coef_”. 

DNN RF LR 

index importance Features index importance Features index importance Features 

16 0.107 mzm-mzn 16 0.205  mzm-mzn 16 8.804  mzm-mzn 

6 0.107 mzn-mzm 6 0.199  mzn-mzm 6 8.803  mzn-mzm 

5 0.048 RTn-RTm 5 0.065  RTn-RTm 27 -2.435  RTn+1 

15 0.048 RTm-RTn 15 0.058  RTm-RTn 21 -2.294  RTn-2 

11 0.026 RTm-2-RTn 11 0.030  RTm-2-RTn 25 1.129  RTn 

13 0.024 RTm-1-RTn 35 0.025  RTm 37 0.928  RTm+1 

1 0.023 RTn-2-RTm 25 0.023  RTn 29 0.854  RTn+2 

17 0.017 RTm+1-RTn 13 0.018  RTm-1-RTn 31 0.679  RTm-2 

10 0.010 mzn+2-mzm 19 0.017  RTm+2-RTn 23 0.415  RTn-1 

4 0.010 mzn-1-mzm 17 0.016  RTm+1-RTn 35 0.397  RTm 

31 0.006 RTm-2 37 0.016  RTm+1 17 0.234  RTm+1-RTn 

21 0.006 RTn-2 27 0.015  RTn+1 32 -0.216  mzm-2 

8 0.005 mzn+1-mzm 39 0.015  RTm+2 30 -0.216  mzn+2 



14 0.005 mzm-1-mzn 7 0.014  RTn+1-RTm 34 -0.216  mzm-1 

9 0.004 RTn+2-RTm 9 0.013  RTn+2-RTm 38 -0.216  mzm+1 

3 0.002 RTn-1-RTm 36 0.013  mzm 24 -0.216  mzn-1 

7 0.002 RTn+1-RTm 23 0.013  RTn-1 40 -0.216  mzm+2 

18 0.002 mzm+1-mzn 12 0.012  mzm-2-mzn 36 -0.216  mzm 

34 0.002 mzm-1 1 0.012  RTn-2-RTm 26 -0.216  mzn 

20 0.001 mzm+2-mzn 14 0.012  mzm-1-mzn 22 -0.216  mzn-2 

36 0.001 mzm 3 0.012  RTn-1-RTm 28 -0.216  mzn+1 

22 0.001 mzn-2 10 0.012  mzn+2-mzm 18 -0.210  mzm+1-mzn 

33 0.001 RTm-1 32 0.012  mzm-2 4 -0.185  mzn-1-mzm 

38 0.001 mzm+1 34 0.012  mzm-1 11 -0.163  RTm-2-RTn 

19 0.001 RTm+2-RTn 21 0.011  RTn-2 19 -0.141  RTm+2-RTn 

28 0.001 mzn+1 38 0.011  mzm+1 33 -0.101  RTm-1 

40 0.001 mzm+2 18 0.011  mzm+1-mzn 20 0.080  mzm+2-mzn 

26 0.001 mzn 22 0.011  mzn-2 7 -0.080  RTn+1-RTm 

30 0.000 mzn+2 29 0.011  RTn+2 8 -0.074  mzn+1-mzm 

32 0.000 mzm-2 30 0.010  mzn+2 14 -0.073  mzm-1-mzn 

25 0.000 RTn 2 0.010  mzn-2-mzm 5 0.063  RTn-RTm 

23 0.000 RTn-1 33 0.010  RTm-1 15 0.063  RTm-RTn 

24 0.000 mzn-1 20 0.010  mzm+2-mzn 39 0.058  RTm+2 

2 0.000 mzn-2-mzm 8 0.010  mzn+1-mzm 9 -0.045  RTn+2-RTm 

12 0.000 mzm-2-mzn 40 0.010  mzm+2 2 -0.040  mzn-2-mzm 

27 0.000 RTn+1 24 0.010  mzn-1 1 0.036  RTn-2-RTm 

29 0.000 RTn+2 26 0.009  mzn 13 0.036  RTm-1-RTn 

35 0.000 RTm 28 0.009  mzn+1 10 -0.026  mzn+2-mzm 

37 0.000 RTm+1 31 0.009  RTm-2 12 -0.023  mzm-2-mzn 

39 0.000 RTm+2 4 0.009  mzn-1-mzm 3 0.010  RTn-1-RTm 

 

Here are my comments: 

1. In Figure 3, the lower panel shows that there is little discernible difference between 

OpenMS, Dinosaur, and DeepRTAlign. In cases of improved quantitation, one would 

anticipate a noticeable shift in the median towards the dotted line and a decrease in the 

lower whisker height. However, this expected change is not observed. It's worth noting 

that the claim of a 150% increase in peptides in MaxQuant appears to be due to the 

presence of potentially spurious peptides, as the whisker height increases with 



alignment. Therefore, Figure 3 suggests that DeepRTAlign performs comparably to 

existing alignment methods. 

Response: We thank the reviewer for this comment. A complete identification and 

quantification workflow of MS data involves three major steps, i.e., feature extraction, 

feature alignment, and feature identification. (1) After feature extraction, the intensity, 

RT and m/z values of each MS1 feature (potential peptide) are obtained and the 

extracted ion chromatogram (XIC) for each MS1 feature is constructed. The area under 

the XIC curve is usually used as the quantification result (abundance) of an MS1 feature 

in a single sample. (2) Feature alignment between samples is a prerequisite for the 

subsequent analysis. Because unaligned features are incomparable between samples. 

Feature alignment can also reduce the missing values between samples especially for 

MS data analysis with multiple samples or replicates. (3) Feature identification means 

assigning the corresponding peptide sequence to each aligned feature. Peptide 

sequences are usually identified by database search engines (such as MSFragger and 

Mascot). In theory, feature extraction has a major influence on quantification 

accuracy. While, our work focuses on the alignment step, whose main usage is to 

improve the identification sensitivity and reduce missing values for large-scale 

samples. We think the main contribution of our work is providing a universal and 

flexible alignment algorithm (DeepRTAlign) that can significantly reduce missing 

values by aligning more features without compromising the quantification 

accuracy compared to existing alignment methods (which has been demonstrated by 

the benchmarking results). 

Large-cohort proteomic data, especially DDA data, usually contain numerous 

missing values. In this revision, to demonstrate the power of DeepRTAlign in 

eliminating the missing values from search results, we benchmarked DeepRTAlign 

against MSFragger’s MBR on a new dataset Benchmark-MV. This dataset is generated 

by analyzing the mixtures containing four different proportions of HEK 293T peptides 

(73%, 91%, 97% and 99%) and E. coli peptides (27%, 9%, 3% and 1%) using six 

Orbitrap Exploris 480 instruments, resulting a total of 24 (4*6) RAW data files. We 

calculated the percentage of missing values (missing rate) of all the identified 3928 E. 



coli peptides from the 24 RAW data files. As shown in Figure R2 (Supplementary 

Fig. 5 in this revision), DeepRTAlign significantly reduced the missing rate to 34%, in 

comparison to the 75% missing rate for MSFragger’s MBR.  

 

Figure R2 (Supplementary Fig. 5 in this revision). Features corresponding to E. coli 

peptides identified in dataset Benchmark-MV by MSFragger with MBR (a) and 

DeepRTAlign (b). For DeepRTAlign results, features were extracted by Dinosaur, and 

then aligned by DeepRTAlign. MSFragger's identification results were used to match 

these features (mass tolerance: ± 10 ppm, RT tolerance: restrict the RT of a peptide to 

be within the RT range of the corresponding precursor feature). 

In terms of the 150% increase in peptide identification compared to MaxQuant 

with MBR function, we would like to claim that it should be mainly due to the use of 

MSFragger as the feature identification method. The identification results using 

MSFragger were much more than MaxQuant results (also shown in Figure 3). We 

agree that it is possible that there were false positives when matching MaxQuant's 

features to MSFragger's identification results (mass tolerance: ± 10 ppm, RT tolerance: 

restrict the RT of a peptide to be within the RT range of the corresponding precursor 

feature). Thus, we have added a QC module in the last revision (Supplementary Fig. 

2) to ensure the accuracy of alignment. While, we admit that it is hard to achieve 

significant quantitative improvements only using a novel alignment algorithm. The 

improvement of quantification accuracy requires to optimize and harmonize all the 



three steps (feature extraction, feature alignment, and feature identification), and this is 

our future goal. 

Please note that to access the new dataset Benchmark-MV in this revision shown 

in Supplementary Table 1, we have uploaded all the corresponding RAW data files 

and identification results to iProX database with the identifier IPX0007319000. The 

dataset will be public once this manuscript is accepted. During peer review, reviewers 

can access it by the following link with code. 

URL: https://www.iprox.cn/page/PSV023.html;?url=1697544593596n9QC 

Code: ixMK 

 

2. The authors should conduct a more in-depth examination of the peaks selected after 

alignment. One useful plot to include in Figure 3 would be the fold-change vs. intensity 

before and after alignment. This plot can help determine whether the alignment process 

primarily adds low-intensity peaks or corrects high-intensity peaks. Such FC vs. 

intensity plots are standard in LFQbench studies and would enhance the persuasiveness 

of the approach to readers. Additionally, the authors could explore a FC vs. m/z plot to 

check for any potential bias towards m/z values. While such bias is not expected, 

including this as a sanity check would be beneficial. 

Response: We thank the reviewer for this constructive suggestion. We have plotted the 

figures (FC vs. intensity and FC vs. m/z) suggested by the reviewer in three different 

groups (15 ng/10 ng, 20 ng/10 ng and 25 ng/10 ng) with three replicates (R1, R2 and 

R3). We found that no significant biases were shown for DeepRTAlign and other 

methods in FC vs. intensity plots and FC vs. m/z plots (Figure R3). 

https://www.iprox.cn/page/PSV023.html;?url=1697544593596n9QC


 

 

Figure R3a. The fold change (FC) vs. intensity (upper) and m/z (lower) plots of 15 

ng/10 ng samples in replicate 1 (R1). The dotted lines indicate the theoretical FC values 

of HEK 293T (orange) and E. coli (blue). 

 



 

 

Figure R3b. The fold change (FC) vs. intensity (upper) and m/z (lower) plots of 15 

ng/10 ng samples in replicate 2 (R2). The dotted lines indicate the theoretical FC values 

of HEK 293T (orange) and E. coli (blue). 



 

 

Figure R3c. The fold change (FC) vs. intensity (upper) and m/z (lower) plots of 15 

ng/10 ng samples in replicate 3 (R3). The dotted lines indicate the theoretical FC values 

of HEK 293T (orange) and E. coli (blue). 

 



 

Figure R3d. The fold change (FC) vs. intensity (upper) and m/z (lower) plots of 20 

ng/10 ng samples in replicate 1 (R1). The dotted lines indicate the theoretical FC values 

of HEK 293T (orange) and E. coli (blue). 

 



 

Figure R3e. The fold change (FC) vs. intensity (upper) and m/z (lower) plots of 20 

ng/10 ng samples in replicate 2 (R2). The dotted lines indicate the theoretical FC values 

of HEK 293T (orange) and E. coli (blue). 

 



 

Figure R3f. The fold change (FC) vs. intensity (upper) and m/z (lower) plots of 20 

ng/10 ng samples in replicate 3 (R3). The dotted lines indicate the theoretical FC values 

of HEK 293T (orange) and E. coli (blue). 

 



 

Figure R3g. The fold change (FC) vs. intensity (upper) and m/z (lower) plots of 25 

ng/10 ng samples in replicate 1 (R1). The dotted lines indicate the theoretical FC values 

of HEK 293T (orange) and E. coli (blue). 

 



 

Figure R3h. The fold change (FC) vs. intensity (upper) and m/z (lower) plots of 25 

ng/10 ng samples in replicate 2 (R2). The dotted lines indicate the theoretical FC values 

of HEK 293T (orange) and E. coli (blue). 

 



 

Figure R3i. The fold change (FC) vs. intensity (upper) and m/z (lower) plots of 25 

ng/10 ng samples in replicate 3 (R3). The dotted lines indicate the theoretical FC values 

of HEK 293T (orange) and E. coli (blue). 

 

 



3. The y-axis of the lower panel should be adjusted to a range of -1 to 3 in order to 

better visualize the medians. 

Response: We thank the reviewer for this constructive suggestion. We have updated 

Figure 3 as the reviewer suggested. 

 

Figure 3. The number and ratio distributions of all E. coli peptides between specific 

samples (15 ng/10 ng, 20 ng/10 ng, and 25 ng/10 ng) in each replicate (R1, R2 and R3) 

after alignment. In all boxplots, the center black line is the median of log2 of the peptide 

fold changes. The box limits are the upper and lower quartiles. The whiskers extend to 

1.5 times the size of the interquartile range. 

 

4. In the manuscript, the discussion of Figure 3 primarily revolves around peptide 

identification, rather than delving into fold-change and other quantitative metrics. To 

provide a more comprehensive analysis, the authors are encouraged to explore and 

discuss the quantitative aspects of this technical dataset in detail in the manuscript. 

Response: We thank the reviewer for pointing out the quantification issue. As described 

in response to Q1, a complete identification and quantification workflow of MS data 

involves three major steps, i.e., feature extraction, feature alignment, and feature 

identification. (1) After feature extraction, the intensity, RT and m/z values of each 



MS1 feature (potential peptide) are obtained and the extracted ion chromatogram (XIC) 

for each MS1 feature is constructed. The area under the XIC curve is usually used as 

the quantification result (abundance) of an MS1 feature in a single sample. (2) Feature 

alignment between samples is a prerequisite for the subsequent analysis. Because 

unaligned features are incomparable between samples. Feature alignment can also 

reduce the missing values between samples especially for MS data analysis with 

multiple samples or replicates. (3) Feature identification means assigning the 

corresponding peptide sequence to each aligned feature. Peptide sequences are usually 

identified by database search engines (such as MSFragger and Mascot). We can see 

that feature extraction has a major influence on quantification accuracy. While, 

our work focuses on the alignment step, whose main usage is to improve the 

identification sensitivity and reduce missing values for large-scale samples. We 

think the main contribution of this work is providing a universal and flexible 

alignment algorithm (DeepRTAlign) that can align more features without 

compromising the quantification accuracy compared to existing alignment methods 

(which has been demonstrated by the benchmarking results). 

Large-cohort proteomic data, especially DDA data, usually contain numerous 

missing values. In this revision, to demonstrate the power of DeepRTAlign in 

eliminating the missing values from search results, we benchmarked DeepRTAlign 

against MSFragger’s MBR on a new dataset Benchmark-MV. This dataset is generated 

by analyzing the mixtures containing four different proportions of HEK 293T peptides 

(73%, 91%, 97% and 99%) and E. coli peptides (27%, 9%, 3% and 1%) using six 

Orbitrap Exploris 480 instruments, resulting a total of 24 (4*6) RAW data files. We 

calculated the percentage of missing values (missing rate) of all the identified 3928 E. 

coli peptides from the 24 RAW data files. As shown in Figure R2 (Supplementary 

Fig. 5 in this revision), DeepRTAlign significantly reduced the missing rate to 34%, in 

comparison to the 75% missing rate for MSFragger’s MBR. Meanwhile, we found that 

no significant biases were shown in FC vs. intensity plots and FC vs. m/z plots for 

DeepRTAlign (Figure R3). 



We admit that it is hard to achieve significant quantitative improvements only 

using a novel alignment algorithm. The improvement of quantification accuracy 

requires to optimize and harmonize all the three steps (feature extraction, feature 

alignment, and feature identification), and this is our future goal. Following the 

reviewer’s kind suggestion, we have added the limitation of DeepRTAlign and our 

future work in the discussion part in this revision (Page 20). 

 

5. Table R3 highlights a feature pair that OpenMS could not successfully align, but the 

current listing lacks sufficient information to comprehend the reasons behind 

OpenMS/MzMine2's failure. To provide a clearer understanding of this issue, the 

authors have the option to either present chromatographic traces for the specified m/z 

values or create an RT-MZ map with intensity represented as heatmaps. Such 

visualizations would elucidate how neighboring features contribute to alignment, a 

capability not exhibited by OpenMS. This is just my suggestion, any other way to 

visualize the input to DNN and alignment outcome is also welcome. 

Response: We thank the reviewer for this constructive suggestion. In this revision, we 

added a schematic diagram (Figure R4) to explain the role of adjacent features. As 

shown in the left column of Figure R4, when a feature (feature n) has a high similarity 

on m/z and RT with another feature (feature m), but has a low similarity with the 

adjacent features of feature m, DeepRTAlign will output a high alignment score. On 

the contrary, DeepRTAlign will output a low alignment score (the right column of 

Figure R4). 



 

Figure R4. A schematic diagram to explain how adjacent features (features n-2, n-1, 

n+1, n+2 and features m-2, m-1, m+1, m+2) assist center features (feature n and feature 

m) in alignment scoring. In the left column, red center features indicate the two features 

should be aligned. In the right column, the red center feature and the grey center feature 

indicate the two features should not be aligned. 

Then, following the reviewer’s suggestion, we collected the chromatographic 

traces of the features shown in “Table R2 and Table R3” in the last revision by 

Xcalibur (Figure R5 and Figure R6). 

“Table R2” in the last revision. One example of a feature pair successfully aligned by 

DeepRTAlign, but not by MZmine 2. The peptide sequence was identified from the 

Mascot search results. 

Method sample m/z charge intensity RT peptide 

DeepRTAlign sample 1 419.2094 2 2299482 22.543 EESGFLR 

DeepRTAlign sample 2 419.2088 2 4346550 21.57131 EESGFLR 

MZmine 2 sample 1 419.2097 2 18040604 22.97301 EFLDGTR 

MZmine 2 sample 2 419.2088 2 4346550 21.57131 EESGFLR 

 



 

Figure R5. The extracted ion chromatogram (XIC) of a feature pair successfully 

aligned by DeepRTAlign, rather than MZmine 2 in Table R2 in the last revision. 

 

“Table R3” in the last revision. One example of a feature pair successfully aligned by 

DeepRTAlign, but not by OpenMS. The peptide sequence was identified from the 

Mascot search results. 

Method sample m/z charge intensity RT peptide 

DeepRTAlign sample 1 530.7687 2 1.54E+09 11.97347 QVDQLTNDK 

DeepRTAlign sample 2 530.7673 2 1.19E+09 11.89762 QVDQLTNDK 

OpenMS sample 1 530.7589 2 5.11E+08 11.93935 TCTPTPVER 

OpenMS sample 2 530.7673 2 1.19E+09 11.89762 QVDQLTNDK 

 



 

Figure R6. The extracted ion chromatogram (XIC) of a feature pair successfully 

aligned by DeepRTAlign, rather than OpenMS shown in Table R3 in the last revision. 

 

6. In the last Figure 5, authors have demonstrated that the tool is useful in fetching 

features that can be used for training models. However, since the paper is focused on 

technical advancements, one good comparison would be how does the model fare with 

features from unaligned? Currently, they use aligned data and select 200 features which 

were filtered further through validation cohort and selected 15 features. It would be 

good to know if the same process is done for unaligned, would we miss these features? 

or how many would we get out of 15 in top 200. This would illustrate the advantages 

of the proposed alignment method in the context of biological research. It is just a 

suggestion, authors may opt not to do it. 

Response: We thank the reviewer for this suggestion. We apologize that our unclear 

descriptions may have misled the reviewer. We would like to clarify that feature 

alignment between samples is a prerequisite for MS data analysis with multiple 

samples or replicates. Unaligned features are incomparable between samples. The 

commonly used MBR (match between runs) workflow can also be viewed as an 

identification-based alignment (features in different samples are aligned based on 



peptide identifications). The unaligned features could not be used to build this 

recurrence prediction model. In this work, to illustrate the advantages of the proposed 

alignment method in the context of biological research, as shown in Figure 5, we 

compared the performances of different models trained on top 200 aligned features, top 

200 peptides and top 200 proteins selected by mRMR scores in the same training set. 

The results showed that the classifier built on aligned features owned the highest AUC 

(Figure 5b). 

 

Reviewer #3 (Remarks to the Author): 

The reviewer would like to thank the authors for performing additional studies on their 

proposed method to provide additional insights. The authors have put considerable 

efforts to address the comments of all reviewers, further improving the quality of the 

paper. While the authors have made significant progress in addressing my previous 

concerns, I still have a few minor questions, particularly regarding the comparison 

between the neural network and other machine learning methods. 

#1.In response to my initial minor comment in the section titled "Machine Learning 

Models for Evaluation," the authors mentioned that other machine learning models do 

not incorporate the coarse alignment step or the use of adjacent features. My concern 

here is that if the different machine learning methods employ dissimilar sets of features, 

it becomes challenging to draw meaningful comparisons. It is crucial to establish 

whether observed differences in performance are attributable to (1) the choice of 

features or (2) the specific algorithm used. In my view, ensuring that all algorithms use 

the same inputs is essential for a fair comparison and the experiments should be rerun. 

Response: We apologize that our unclear descriptions may have misled the reviewer. 

When compared DNN with other machine learning methods, the inputs are 

exactly the same, i.e., the features after coarse alignment step. The claim of “do not 

incorporate the coarse alignment step or the use of adjacent features” indicates when 

we compared DeepRTAlign with existing alignment methods such as OpenMS and 

MZmine 2, the existing alignment methods did not contain the coarse alignment step 



and they did not use the adjacent features. We have modified the corresponding 

descriptions to make a clear statement (Page 9). 

 

#2. Building on the previous point, it is essential that the experiments conclusively 

demonstrate whether the DNN offers any advantages over other algorithms. If such 

advantages exist, the paper should provide a clear explanation for them. Based on my 

experience and considering the features employed by the authors, it appears unlikely 

that a DNN would significantly outperform, for example, a Random Forest (RF). DNNs 

are typically advantageous when processing raw data like text or images, as they can 

autonomously extract relevant features. However, for tabular data, RF and boosting 

methods often outperform DNNs, and this is a common observation in machine learning 

competitions of this nature. 

Response: We thank the reviewer for the valuable suggestion. In this response, we 

would like to enhance the technical explanations of our algorithm. As shown in 

Supplementary Table 3, RF showed the best performance in the traditional machine 

learning models, except DNN. Here, we would like to discuss the advantages of DNN 

over RF in the aspects of data and theory. 

First, we randomly collected 2000 negative pairs correctly predicted by both DNN 

and RF (BOTH-right pairs), and 2000 negative pairs correctly predicted by DNN but 

wrongly predicted by RF (DNN-right pairs) in a test set (HCC-N, RT range: 1-80 min, 

m/z tolerance: 0.03 Da, the same way as we collected the negative pairs in the training 

set HCC-T, see “Workflow of DeepRTAlign” section in the manuscript for details). We 

found that the average RT differences of the 2000 BOTH-right pairs and the 2000 

DNN-right pairs were similar (5.03 min and 4.89 min, respectively). However, the 

average m/z difference of the 2000 BOTH-right pairs was 0.011 Da, which was five 

times the average m/z differences of the 2000 DNN-right pairs (0.002 Da). These 

results indicated that the advantages of DNN may mainly lie in recognizing the 

negative pairs with close m/z values. 

Second, we found that those negative pairs with similar m/z values (with 

differences less than 0.002 Da) were rare cases in the whole training data (10% only). 



Traditional machine learning methods usually are difficult to discriminate and 

predict correctly in such a situation. Although the bootstrapping-based RF is 

supposed to alleviate the problem such as imbalanced data in some degree, its 

classification power will drastically drop when the minority is extremely rare (Xu, Z., 

Shen, D., Nie, T., & Kou, Y. (2020). A hybrid sampling algorithm combining M-

SMOTE and ENN based on Random forest for medical imbalanced data. Journal of 

biomedical informatics, 103465). The minor pairs might be scarcely sampled during 

the bootstrapping and their effects on trees are overwhelmed by the majority of the data. 

In contrast, the DNN model is trained with mini-batches iteratively through 

gradient descent, which guarantees each pair, including the rare cases, is learned 

through a shuffled order. Particularly, those wrongly predicted rare cases lead to 

greater loss values and thus greater gradients to update the model, which may 

explain why DNN can predict them better. 

Third, for the 40 features (58 vector, Supplementary Fig. 1) we used in 

DeepRTAlign, we calculated the importance of each feature in the DNN model, the RF 

model and the LR model to show which feature is more important when training the 

DNN, RF and LR models on the same training set (HCC-T). Please note that for DNN, 

the importance of each feature in DNN is calculated as the AUC decrease tested in the 

HCC-N dataset when each feature in DNN was replaced with a random value, 

compared to the DNN model without random features. For RF, the feature importance 

is the attribute “feature_importances_” in sklearn.ensemble.RandomForestClassifier 

(scikit-learn framework v0.21.3). For LR, the feature importance is the attribute “coef_” 

in sklearn.linear_model.LogisticRegression (scikit-learn framework v0.21.3). 

We found that feature 6 (mzn-mzm) and feature 16 (mzm-mzn) were the top 2 

important features, indicating that DNN, RF and LR models rely mostly on the features 

about m/z for alignment prediction. We also found the importances of feature 5 (RTn-

RTm) and feature 15 (RTm-RTn) in DNN are about half those of feature 6 (mzn-mzm) 

and feature 16 (mzm-mzn), while the ratio (importance of feature 5/importance of 

feature 6) decreased to only about 32.7% in RF and 0.72% in LR. This difference 

indicates that the importance of RT-related features in the DNN model is relatively 



higher than that in the RF and LR models (Table R2, denoted as Supplementary Table 

11 in this revision). 

In summary, we have added more detailed descriptions and discussions about the 

technical explanation and analysis of our algorithm in this revision (Pages 12-13). We 

thank the reviewer again for the helpful suggestion. 

 

Table R2 (Supplementary Table 11 in this revision). The list of feature importance 

of the DNN model, the RF model and the LR model. The DNN model, the RF model 

and the LR model were trained on the same training set (HCC-T dataset). Please note 

that the feature importance of LR model is ranked by the absolute value of “coef_”. 

DNN RF LR 

index importance Features index importance Features index importance Features 

16 0.107 mzm-mzn 16 0.205  mzm-mzn 16 8.804  mzm-mzn 

6 0.107 mzn-mzm 6 0.199  mzn-mzm 6 8.803  mzn-mzm 

5 0.048 RTn-RTm 5 0.065  RTn-RTm 27 -2.435  RTn+1 

15 0.048 RTm-RTn 15 0.058  RTm-RTn 21 -2.294  RTn-2 

11 0.026 RTm-2-RTn 11 0.030  RTm-2-RTn 25 1.129  RTn 

13 0.024 RTm-1-RTn 35 0.025  RTm 37 0.928  RTm+1 

1 0.023 RTn-2-RTm 25 0.023  RTn 29 0.854  RTn+2 

17 0.017 RTm+1-RTn 13 0.018  RTm-1-RTn 31 0.679  RTm-2 

10 0.010 mzn+2-mzm 19 0.017  RTm+2-RTn 23 0.415  RTn-1 

4 0.010 mzn-1-mzm 17 0.016  RTm+1-RTn 35 0.397  RTm 

31 0.006 RTm-2 37 0.016  RTm+1 17 0.234  RTm+1-RTn 

21 0.006 RTn-2 27 0.015  RTn+1 32 -0.216  mzm-2 

8 0.005 mzn+1-mzm 39 0.015  RTm+2 30 -0.216  mzn+2 

14 0.005 mzm-1-mzn 7 0.014  RTn+1-RTm 34 -0.216  mzm-1 

9 0.004 RTn+2-RTm 9 0.013  RTn+2-RTm 38 -0.216  mzm+1 

3 0.002 RTn-1-RTm 36 0.013  mzm 24 -0.216  mzn-1 

7 0.002 RTn+1-RTm 23 0.013  RTn-1 40 -0.216  mzm+2 

18 0.002 mzm+1-mzn 12 0.012  mzm-2-mzn 36 -0.216  mzm 

34 0.002 mzm-1 1 0.012  RTn-2-RTm 26 -0.216  mzn 

20 0.001 mzm+2-mzn 14 0.012  mzm-1-mzn 22 -0.216  mzn-2 

36 0.001 mzm 3 0.012  RTn-1-RTm 28 -0.216  mzn+1 

22 0.001 mzn-2 10 0.012  mzn+2-mzm 18 -0.210  mzm+1-mzn 

33 0.001 RTm-1 32 0.012  mzm-2 4 -0.185  mzn-1-mzm 

38 0.001 mzm+1 34 0.012  mzm-1 11 -0.163  RTm-2-RTn 

19 0.001 RTm+2-RTn 21 0.011  RTn-2 19 -0.141  RTm+2-RTn 



28 0.001 mzn+1 38 0.011  mzm+1 33 -0.101  RTm-1 

40 0.001 mzm+2 18 0.011  mzm+1-mzn 20 0.080  mzm+2-mzn 

26 0.001 mzn 22 0.011  mzn-2 7 -0.080  RTn+1-RTm 

30 0.000 mzn+2 29 0.011  RTn+2 8 -0.074  mzn+1-mzm 

32 0.000 mzm-2 30 0.010  mzn+2 14 -0.073  mzm-1-mzn 

25 0.000 RTn 2 0.010  mzn-2-mzm 5 0.063  RTn-RTm 

23 0.000 RTn-1 33 0.010  RTm-1 15 0.063  RTm-RTn 

24 0.000 mzn-1 20 0.010  mzm+2-mzn 39 0.058  RTm+2 

2 0.000 mzn-2-mzm 8 0.010  mzn+1-mzm 9 -0.045  RTn+2-RTm 

12 0.000 mzm-2-mzn 40 0.010  mzm+2 2 -0.040  mzn-2-mzm 

27 0.000 RTn+1 24 0.010  mzn-1 1 0.036  RTn-2-RTm 

29 0.000 RTn+2 26 0.009  mzn 13 0.036  RTm-1-RTn 

35 0.000 RTm 28 0.009  mzn+1 10 -0.026  mzn+2-mzm 

37 0.000 RTm+1 31 0.009  RTm-2 12 -0.023  mzm-2-mzn 

39 0.000 RTm+2 4 0.009  mzn-1-mzm 3 0.010  RTn-1-RTm 

 

#3. In Supplementary Tables 4-7, it appears that hyperparameters were tuned 

sequentially. This approach may result in suboptimal parameter combinations, 

particularly for complex classifiers like RF and Support Vector Machines (SVMs). 

Building on the previous point (point #1), if the authors choose to re-tune the 

hyperparameters with the new features as suggested, I would recommend employing a 

grid search for both RF and SVMs. This approach is not necessary for LR and KNN 

since they only involve a single main parameter. 

Response: We thank the reviewer for this constructive suggestion. As we claimed in 

the response for point #1, the input features of DNN and other machine learning 

methods are exactly the same. Following the reviewer’s suggestion, we employed grid 

searches on RF (n_estimators=[10, 50, 100, 150], max_depth=[10, 50, 100, none]) and 

SVM (kernel=[“linear”, “poly”, “rbf”, “sigmoid”], gamma=[“scale”, “auto”, 0.01, 0.1, 

1], C=[0.1, 1, 5], degree=[1, 3, 5]), and found the hyperparameters we used still 

achieved the best results. The grid search results have been updated to Supplementary 

Table 4 (RF) and Supplementary Table 6 (SVM) in this revision. 

 



Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

My concerns have been addressed. Thank you. 

Reviewer #2: 

Remarks to the Author: 

Thanks for addressing the concerns and explaining the model as it is clear that DNN uses both m/z 

differences and RT differences more effectively than traditional logistic regression models and 

Random Forest models. 

If you are including Figure R2, You must show that alignment doesn’t affect quantification 

negatively. One can reduce the missing values from 75% tpo 34% but the quantification should be 

accurate. This is reflected in the quantitation ratio which is missing. 

In Figure 3, you mention that OpenMS has better features that is why deep learning is not able to 

perform better than OpenMS. 

In Figure R3, you should include the median line and box plots for both Samples. Otherwise, it is 

difficult to see the differences by just scatter plots. 

Reviewer #3: 

Remarks to the Author: 

I would like to acknowledge the authors for their work on this article. After this review, all my 

concerns have been satisfactorily addressed, and I recommend that the work be admitted for 

publication. 



Reviewer #1 (Remarks to the Author): 

My concerns have been addressed. Thank you. 

Response: We appreciate the reviewer’s constructive comments in the previous 

reviews, which helped us improve the algorithm and the manuscript. 

 

Reviewer #2 (Remarks to the Author): 

Thanks for addressing the concerns and explaining the model as it is clear that DNN 

uses both m/z differences and RT differences more effectively than traditional logistic 

regression models and Random Forest models. 

If you are including Figure R2, you must show that alignment doesn’t affect 

quantification negatively. One can reduce the missing values from 75% to 34% but the 

quantification should be accurate. This is reflected in the quantitation ratio which is 

missing. 

Response: We thank the reviewer for this valuable suggestion. Following this 

suggestion, we first checked the previous results, and found that these results were 

obtained from the earlier version of DeepRTAlign which used “mass tolerance: ± 10 

ppm, RT tolerance: ± 5 min” when matching aligned features to peptide sequences. 

While according to the suggestions of Reviewer #2 in the first round of review, we have 

updated the matching method as “mass tolerance: ± 10 ppm, RT tolerance: restrict the 

RT of a peptide to be within the RT range of the corresponding precursor feature” in the 

current version of DeepRTAlign. Thus, the missing rates in dataset Benchmark-MV 

have been updated to 68% for MSFragger and 41% for DeepRTAlign. 

Importantly, following the reviewer’s suggestion, we calculated the aligned 

feature number and the quantitation ratios for different groups of the six Orbitrap 

Exploris 480 mass spectrometers in dataset Benchmark-MV. As shown in the figure 

below (denoted as Supplementary Fig. 4 in this revision, replacing the original 

Supplementary Fig. 4 in last revision since it didn’t provide quantitative information), 

the identified peptides aligned by DeepRTAlign are more than those aligned by 

MSFragger with MBR. Meanwhile, the boxplots of quantitation ratios of both E. coli 

peptides and HEK 293T peptides for different groups on six MS instruments (2700 



ng/900 ng, 900 ng/300 ng, and 300 ng/100 ng for E. coli peptides; 9100 ng/7200 ng, 

9700 ng/9100 ng, and 9900 ng/9700 ng for HEK 293T peptides) show that 

DeepRTAlign does not affect quantification accuracy negatively. 

 

Supplementary Fig. 4. Comparison of DeepRTAlign and MSFragger on 

Benchmark-MV dataset. a, e Feature numbers corresponding to the E. coli peptides 

and the HEK 293T peptides identified in dataset Benchmark-MV by MSFragger with 

match between runs (MBR) and DeepRTAlign, respectively. b-d and f-h Ratio 

boxplots for the features corresponding to the E. coli peptides or the HEK 293T peptides 

identified in dataset Benchmark-MV by MSFragger with MBR and DeepRTAlign, 

respectively. The orange dashed line indicates the theoretical ratio. For DeepRTAlign 

results, features were extracted by Dinosaur, and then aligned by DeepRTAlign. 

MSFragger's identification results were used to match these features (mass tolerance: ± 

10 ppm, RT tolerance: restrict the RT of a peptide to be within the RT range of the 

corresponding precursor feature). Source data are provided as a Source Data file. 

 

In Figure 3, you mention that OpenMS has better features that is why deep learning is 

not able to perform better than OpenMS. In Figure R3, you should include the median 

line and box plots for both Samples. Otherwise, it is difficult to see the differences by 

just scatter plots. 

Response: We thank the reviewer for this valuable suggestion. We have added the 

median line and boxplots for both samples in Figure R3. Here is the updated Figure R3. 



 

 

Figure R3a. The fold change (FC) vs. intensity (upper) and m/z (lower) plots of 15 

ng/10 ng samples in replicate 1 (R1). The dotted lines indicate the theoretical FC values 

of HEK 293T (orange) and E. coli (blue). 

 



 

 

Figure R3b. The fold change (FC) vs. intensity (upper) and m/z (lower) plots of 15 

ng/10 ng samples in replicate 2 (R2). The dotted lines indicate the theoretical FC values 

of HEK 293T (orange) and E. coli (blue). 



 

 

Figure R3c. The fold change (FC) vs. intensity (upper) and m/z (lower) plots of 15 

ng/10 ng samples in replicate 3 (R3). The dotted lines indicate the theoretical FC values 

of HEK 293T (orange) and E. coli (blue). 

 



 

Figure R3d. The fold change (FC) vs. intensity (upper) and m/z (lower) plots of 20 

ng/10 ng samples in replicate 1 (R1). The dotted lines indicate the theoretical FC values 

of HEK 293T (orange) and E. coli (blue). 

 



 

Figure R3e. The fold change (FC) vs. intensity (upper) and m/z (lower) plots of 20 

ng/10 ng samples in replicate 2 (R2). The dotted lines indicate the theoretical FC values 

of HEK 293T (orange) and E. coli (blue). 

 



 

Figure R3f. The fold change (FC) vs. intensity (upper) and m/z (lower) plots of 20 

ng/10 ng samples in replicate 3 (R3). The dotted lines indicate the theoretical FC values 

of HEK 293T (orange) and E. coli (blue). 

 



 

Figure R3g. The fold change (FC) vs. intensity (upper) and m/z (lower) plots of 25 

ng/10 ng samples in replicate 1 (R1). The dotted lines indicate the theoretical FC values 

of HEK 293T (orange) and E. coli (blue). 

 



 

Figure R3h. The fold change (FC) vs. intensity (upper) and m/z (lower) plots of 25 

ng/10 ng samples in replicate 2 (R2). The dotted lines indicate the theoretical FC values 

of HEK 293T (orange) and E. coli (blue). 

 



 

Figure R3i. The fold change (FC) vs. intensity (upper) and m/z (lower) plots of 25 

ng/10 ng samples in replicate 3 (R3). The dotted lines indicate the theoretical FC values 

of HEK 293T (orange) and E. coli (blue). 

 

Reviewer #3 (Remarks to the Author): 

I would like to acknowledge the authors for their work on this article. After this review, 



all my concerns have been satisfactorily addressed, and I recommend that the work be 

admitted for publication. 

Response: We appreciate the reviewer’s constructive comments in the previous 

reviews, which helped us improve the algorithm and the manuscript. 
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