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ARTICLE

Improved detection of aberrant splicing
with FRASER 2.0 and the intron Jaccard index

Ines F. Scheller,1,2 Karoline Lutz,1 Christian Mertes,1,3,4 Vicente A. Yépez,1,* and Julien Gagneur1,2,3,4,*
Summary
Detectionof aberrantly splicedgenes isan important step inRNA-seq-basedrare-diseasediagnostics.WerecentlydevelopedFRASER,adenois-

ingautoencoder-basedmethodthatoutperformedalternativemethodsofdetectingaberrantsplicing.However, becauseFRASER’s three splice

metrics are partially redundant and tend to be sensitive to sequencing depth, we introduce here a more robust intron-excision metric, the

intron Jaccard index, that combines the alternative donor, alternative acceptor, and intron-retention signal into a single value. Moreover,

we optimized model parameters and filter cutoffs by using candidate rare-splice-disrupting variants as independent evidence. On 16,213

GTEx samples, our improvedalgorithm, FRASER2.0, called typically 10 times fewer splicingoutlierswhile increasing theproportionof candi-

date rare-splice-disruptingvariants by 10-fold and substantially decreasing the effect of sequencingdepthon thenumberof reportedoutliers.

To lower themultiple-testing correctionburden,we introduce anoption to select the genes to be tested for each sample instead of a transcrip-

tome-wide approach. This option can be particularly useful when prior information, such as candidate variants or genes, is available. Appli-

cation on 303 rare-disease samples confirmed the relative reduction in the number of outlier calls for a slight loss of sensitivity; FRASER 2.0

recovered 22 out of 26 previously identified pathogenic splicing cases with default cutoffs and 24 when multiple-testing correction was

limited toOMIMgenescontaining rarevariants.Altogether, thesemethodological improvementscontribute tomoreeffectiveRNA-seq-based

rare diagnostics by drastically reducing the amount of splicing outlier calls per sample at minimal loss of sensitivity.
Introduction

The regulation of splicing is important to control isoform

expression and cellular function.1–3 Defects at the level

of the pre-mRNA splicing process represent a major cause

of human disease. It is estimated that 15%–50% of all

variants leading to disease in humans alter splicing.4,5

Different methods that predict the impact of a variant in

splicing from sequence alone have been developed.6–12

However, even with increasing precision, their accuracy re-

mains imperfect, especially for diagnostics and for variants

located far from the splice sites.9,12 Even the ACMG guide-

lines for variant pathogenicity require additional func-

tional evidence, such as RNA-seq for variants predicted to

disrupt splicing.13 Importantly, current prediction models

do not provide information about the consequence of a

potential splicing defect on the resulting transcript isoform

(e.g., frameshift or exon truncation).

Identifying splicing aberrations on RNA sequencing

(RNA-seq) data provides more direct evidence of the pres-

ence of splicing defects and reveals the resulting transcript

isoforms. This approach has been successfully used in the

diagnosis of patients with rare genetic disorders in large co-

horts.14–20 After this initial success, computational tools

such as LeafCutterMD,21 SPOT,22 and FRASER23 that are

specialized in detecting aberrant splicing from RNA-seq

data have been developed.

BothLeafCutterMDandSPOTmodel thecountsofclusters

of both annotated and not previously annotated introns
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with shared splice sites by using the Dirichlet-Multinomial

distribution. SPOT identifies abnormal splicing by comp-

uting the Mahalanobis distance of each sample to the fitted

distribution and calculates an empirical p value by comp-

aring it to the Mahalanobis distance of samples simulated

from the fitted distribution.22 LeafCutterMD implements a

one-versus-all splicing outlier test by using the estimated

Dirichlet-Multinomial parameters of each cluster to com-

pute p values with the beta-binomial distribution for each

intron in the cluster.21 One limitation of these approaches

is that they do not account for sources of covariation in the

split-read counts. However, Frésard et al.16 showed that

suchcovariationscanbestrong inRNA-seq splicingmeasure-

ments and may be related both to biological confounders

such as age and to technical biases such as batch effects or

RNA integrity levels.

FRASERmodels threemetrics that are computed from split

reads andunsplit reads detected at all splice sites identified in

the RNA-seq data, allowing it to consider expressed splice

sites regardless of whether they have been previously anno-

tated.23 These three metrics are (1) the percent spliced in for

testing the splice acceptor site (j5) and (2) donor site (j3)

and (3) splicing efficiency (q). Thesemetrics capture different

types of aberrant splicing, namely aberrant acceptor-site us-

age, aberrant donor-site usage, and aberrant splicing effi-

ciency. FRASER uses a denoising-autoencoder approach to

control for potentially unknown sources of covariation be-

tween samples and calculates beta-binomial p values to iden-

tify splicingoutliers.Benchmarksonrare-variant enrichment
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among reported splicing outliers showed that FRASER out-

performed LeafCutterMD and SPOT.

Despite FRASER’s improvements, the number of outlier

calls per sample often remains very large. Notably, these

splice-site-centric metrics can lead to reporting outliers

that reflect local aberrations that might only have minor

effects on the abundance of the canonical splicing isoform.

Figure 1A illustrates such a case, where an exon elongation

appearing in one sample is supported by 1,017 reads,

whereas there are 32,018 supporting the annotated intron.

Taking as reference the newly created donor site, this exon

elongation, which is present in only six out of 582 sam-

ples, appears as an outlier event. Consistently, this event

results in a high differential value of 0.99 in the j5 metric

of FRASER. However, this event does not strongly affect the

canonical isoform distribution because the vast majority of

the reads still support the annotated intron.

To address this issue, we here introduce an intron-based

metric that we named the intron Jaccard index. It is defined

as the proportion of reads supporting the splicing of an

intron of interest among all reads associated with either

splice site of the intron (Figure 1B). The intron Jaccard index

is computed from both split and non-split reads, thus allow-

ing it to capture several types of aberrant splicing, including

exon skipping, exon truncation, exon elongation, exon

creation, and full intron retention (Figure 1C). The intron

Jaccard index is conceptually similar to the intron-exci-

sion-ratio concept underpinning LeafCutter.24 However,

the statistical model of LeafCutter models multiple introns

of a locus jointly, which leads to modeling complications

and does not allow for modeling sample co-variation. Here

wemodel the intronJaccard indexof individual introns sepa-

rately by using the same beta-binomial autoencoder

approach as in FRASER. We furthermore perform a system-

atic evaluation of model parameters, including pseudo-

counts and filtering criteria. We refer to this new method as

FRASER 2.0 (Figure S1). We next benchmark FRASER 2.0

against FRASER, LeafCutterMD, and SPOT by using the

multi-tissueGTExdataset. Finally,weapplyFRASER2.0 to in-

dependent rare-disease cohorts and validate it on previously

reported pathogenic splice defects.
Material and methods

Datasets
The GTEx dataset consists of 17,350 RNA-seq samples from 54 tis-

sues of 948 assumed-to-be-healthy individuals of the Genotype-

Tissue Expression Project V8.25 The GTEx data used for the

analyses described in this manuscript were obtained from

dbGaP: phs000424.v8.p1. Samples with an RNA integrity number

(RIN) <5.7 and tissues with less than 100 samples were discarded.

This resulted in a total of 16,146 samples and 48 tissues.

The Yépez et al. dataset consists of 303 individuals affected with

a rare mitochondrial disorder described in Yépez et al.20 The intron

counts were downloaded from Zenodo.26,27

The Undiagnosed Diseases Network (UDN) dataset consists of

data from individuals suffering from a rare genetic disorder, as
The American Jour
well as data collected from unaffected control individuals by

different centers in the United States.28 We downloaded it from

dbGaP (dbGaP: phs001232; v.4.p2). It contains 821 RNA-seq sam-

ples extracted from blood (n ¼ 370), fibroblasts (n ¼ 398), and

other tissues (n ¼ 53) that were not further considered. All RNA-

seq samples are stranded except for one that was removed.

Poly(A)-sequenced samples with a high-quality exonic rate lower

than 0.7 were removed. Samples with size factors, which are a

sequencing-depth metric,29 larger than 3 or less than 0.25 were

also discarded. The resulting dataset consists of 252 poly(A) blood,

104 total RNA blood, and 391 fibroblast samples.

Splicing-outlier detection with FRASER
Weused the integratedworkflowDROP v.1.1.330 to count split and

non-split reads from the BAM files (from the GTEx and UDN data-

sets) and to detect splicing outliers with FRASER v.1.2.223 on all da-

tasets. Default cutoffs (FDR < 0.1, |Dj| R 0.3, minimal intron

coverage R 5 reads) and default intron filtering settings (95% of

samples with n R 1 and at least one sample with an intron count

R20) were used.

Splicing quantification with the intron Jaccard index
We defined the intron Jaccard index (J) as the Jaccard index of the

sets of donor-associated reads D and acceptor-associated reads A.

For a given sample i and intron j, the set of donor-associated reads

Dij was defined as the set of all split reads with the same donor site

as intron j as well as all non-split reads spanning the exon-intron

boundary at that donor site of sample i. The set of acceptor-associ-

ated reads Aij was analogously defined for the split and non-split

reads at the acceptor site of intron j (Figure 1B).

The intron Jaccard index Jij for sample i and intron j was calcu-

lated as follows:

Jij ¼
��DijXAij

����DijWAij

�� ¼ sijP
d˛Lj

sid þ
P
a˛Rj

sia þ
P

t ˛fdj ;ajg
uit � sij

;

where sij denotes the count of split reads mapping to intron j in

sample i, dj is the donor site of intron j, aj is the acceptor site of

intron j, Lj is the set of introns using dj, Rj is the set of introns using

aj, and uit denotes the count of non-split reads spanning the exon-

intron boundary at a splice site t.

Denoising autoencoder
As for the original FRASER, we modeled and controlled for sample

covariation by using an autoencoder that takes as input a matrix X

consisting of the logit-transformed splice metrics of each intron i

and sample j by using the following formula:

xij ¼ logit

�
kij þ a

nijþ2$a

�

wherekijandnijare thenumerator andthedenominatorof the intron

Jaccard index of intron j in sample i, respectively, and a corresponds

to apseudocountneeded toavoid taking the logarithmofor dividing

by zero. Originally, in FRASER a pseudocount of 1 was used as a

default. Here we assessed various possible pseudocount values.

Annotation of genes to introns
To report results on the gene level, FRASER uses a user-provided

gene annotation file to assign introns to genes. Each intron is as-

signed to the gene(s) overlapping either the donor or the acceptor

site of the intron in a strand-specific manner. As such, an intron
nal of Human Genetics 110, 2056–2067, December 7, 2023 2057
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Figure 1. Intron Jaccard index improves splicing outlier calling
(A) Sashimi plot of three GTEx skin not-sun-exposed RNA-seq samples showing exons 4 and 5 of KRT1. A splicing outlier was detected in
the top sample with the j5metric of FRASER (red). The position of the donor site of the outlier intron is indicatedwith a blue dashed line.
Although this intron is not expressed in most other samples (dark blue) and is therefore detected with a high Dj5 value as shown in the
table on the right, its functional impact is probably minor because the canonical intron remains largely dominant.
(B) Schematic definition of the intron Jaccard index for an intron of interest (purple) defined by a donor site d and acceptor site a. The set
of donor-associated reads D (red) and acceptor-associated reads A (blue) are highlighted.
(C) Representation of different types of aberrant splicing events that can be captured with the intron Jaccard index. The right column
contains the formulae to compute the intron Jaccard index of the canonical intron (black dotted line) from the split (s) and non-split
(u) reads of the involved introns in each scenario.
(D) Recall of rare splice-disrupting candidate variants as defined by VEP (canonical splice-site variants, n¼ 1,544), MMSplice (n¼ 3,395),
SpliceAI (n ¼ 2,971), and AbSplice (n ¼ 2,265) versus the rank of nominal p values from FRASER (light blue) and from an adaptation of
FRASER using the intron Jaccard index (dark blue) on the GTEx skin not-sun-exposed dataset (n ¼ 582). Different nominal p value cut-
offs are indicated with shapes.
might contribute to the gene-level p value of several genes. Genes

fully contained in an intron but not overlapping either splice site

are not assigned to the intron.

Multiple-testing correction and effect-size cutoff
FRASER 2.0 obtains p values for each intron by using the beta-bino-

mial distribution to evaluate the significance of the observed split-

read count given the intron Jaccard index value predicted from the

autoencoder latent space.23Weused the same strategy as in FRASER

to obtain gene-level p values. Specifically, intron-level p values are

correctedviaHolm’smethodper geneand sample, and theminimal

correctedpvalue is selected.Then, false-discovery rate (FDR) correc-

tion of those selected p values is applied across genes per sample by

the Benjamini-Yekutieli method. This FDR correction step is by

default done transcriptome-wide across all expressed genes. Genes

are considered to be expressed if they have at least one intron with

enough supporting reads to pass the filtering step assigned to them
2058 The American Journal of Human Genetics 110, 2056–2067, Dec
in the dataset. FRASER 2.0 introduces the additional option to

restrict the FDR correction to user-provided lists of genes. The pro-

vided genes can differ between samples. To define outlier status, we

set the FRASER 2.0 default cutoffs at FDR%0.1 and effect size at DJ

R 0.1, whereDJ¼ Jij� bmij and bmij is the predicted intron Jaccard in-

dex value as modeled by the autoencoder. FRASER 2.0 additionally

introduces an option to flag results located in blacklist regions of

the genome31 because those results might be less trustworthy.

Rare-variant-recall benchmarks
To perform analyses of rare-variant recalls, we considered five

different sets of splice-affecting variants, each defined by a different

variant-effect prediction tool. The first two sets are canonical splice-

site variants (thefirst twobases into the intron)andsplice-regionvar-

iants (corresponding to the first three bases into an exon and from

the third to the eighth bases into an intron) as defined by VEP.32

For the third set, we used SpliceAI9 and considered variants with a
ember 7, 2023



SpliceAI scoreR0.5.WeusedthemaskedSpliceAI scores for thisanal-

ysis because those are the recommended scores for variant interpre-

tation. For the fourth set, we used MMSplice7 and considered vari-

ants with an |D logit J| score R2. The fifth set contained variants

predicted to cause aberrant splicingbyAbSplice;12 specifically, it con-

tained variants with a maximum score across tissues except testis

R0.05,which corresponds to the suggested "medium" cutoff of AbS-

plice. Rare variants were defined by having a minor-allele frequency

(MAF) of<0.1%, obtained from gnomAD,33 and by being present in

at most two individuals of GTEx.

In each GTEx tissue, genes were ranked based on the nominal

gene-level p value, and the recall of rare splice-affecting variants

in expressed genes was calculated at each rank. To facilitate com-

parison across tissues and ensure that the reported outliers are rele-

vant, we used two different measures of performance for each tis-

sue: (1) the recall and precision of ranking the nominal p values of

FDR significant results, and (2) the recall at the rank corresponding

to a mean of 20 outliers per sample for each tissue.

Correlation with mapped reads
The number of mapped reads was computed using the function

idxstats from SAMtools v.1.11.34 Then, the Spearman correlation

coefficient and p value between the mapped reads and its splicing

outliers per sample were calculated with the cor.test function in R.

Tissue reproducibility analysis
To assess the reproducibility of our splicing-outlier calls, we called

aberrant splicing events across all 48 GTEx tissues with both

FRASER and FRASER 2.0, as well as SPOT v.1.0.2 and LeafCutterMD

v.0.2.9, under default settings for all methods. We performed this

analysis on the set of individuals with at least 20 out of the 48 tissues

and genes with available p values in at least 25 out of the 48 tissues.

This led to 14,707 genes for FRASER 2.0, 16,104 genes for FRASER,

12,154 genes for SPOT, and 14,001 genes for LeafCutterMD. For all

methods, we applied three nominal p value cutoffs, of 10�5, 10�7,

and 10�9, and for each gene-sample combination that passed this

cutoff in at least one tissue, we computed in howmany other tissues

it could be reproduced with a nominal p value <10�3.

Benchmark on previously reported pathogenic splice

events
For the Yépez et al. dataset (n¼ 303), 26 cases were found to have a

splice defect in the disease-causal gene with FRASER. Further infor-

mation about the pathogenic variants of those cases is available in

Tables S2 and S4 of Yépez et al.20 The list of OMIM genes was

downloaded from the website www.omim.org.

Ethics declaration
The study was approved by the ethical committee of the Technical

University of Munich (#200/15s, #5360/13, and #2341/09). We

adhered to the German Genetic Diagnostics Act (GenDG) and the

international guidelines for good clinical practice (GCP). The

research conformed to theprinciples of theDeclarationofHelsinki.
Results

Introduction of the intron Jaccard index as a robust

splice metric

To be less sensitive to local splice-site aberrations that do

not have a strong effect on the canonical splice isoform,
The American Jour
we introduce the intron Jaccard index, an intron-centric

metric that integrates the alternative donor, alternative

acceptor, and intron retention signal (Figure 1B).We define

the intron Jaccard index Jij as the Jaccard index of the set of

donor-associated reads Dij and the set of acceptor-associ-

ated reads Aij for a given sample i and intron j:

Jij ¼
��DijXAij

����DijWAij

�� ;
where Dij contains, for sample i, both the split reads with

the same donor site as intron j and the non-split reads span-

ning the exon-intron boundary at that donor site and anal-

ogously for Aij (Figure 1B, materials and methods). The

intersection of those two sets represents the split readsmap-

ping exactly to intron j, whereas the union captures all reads

mapping to any intron with the same donor or acceptor site

as intron j in addition to non-split reads at those splice sites.

The inclusion of both split and non-split reads in the

metric allows retaining FRASER’s capability to capture

several types of aberrant splicing, including partial or full

intron retention, within a single metric (Figure 1C). As in

FRASER, we model the intron Jaccard index with a beta-

binomial denoising autoencoder and calculate p values

with the beta-binomial distribution to assess the statistical

significance of each intron Jaccard index value. Outliers are

then called on the basis of the multiple-testing-corrected p

values and effect size (DJ).

We ran FRASERwith the intron Jaccard index as the splice

metric on several GTEx tissues. Following the rationale that

rare variants in the vicinity of splice sites are likely to disrupt

splicing,35 we evaluated our new metric on the recall of rare

(MAF < 0.1%) splice-disrupting candidate variants in ex-

pressed genes by using a combination of variant annotation

tools (materials and methods). On this benchmark, adopt-

ing the intron Jaccard index increased the recall at each

rank in comparison to the three metrics from FRASER

together and individually (Figures 1D and S2).
Optimization of FRASER 2.0 parameters

After having established the intron Jaccard index, we evalu-

ated several FRASER parameters to identify their optimal

values with respect to the newmetric. Because FRASER’s au-

toencoder works with values in the logit space, which is

defined for values greater than 0 and less than 1, we needed

to add a pseudocount to both thenumerator anddenomina-

tor when calculating each metric on raw read counts. So far

we had set the pseudocount to 1. Here we investigated a

range of possible values on a subset of 15 selected representa-

tive GTEx tissues because this analysis is computing inten-

sive. Reducing the pseudocount improved the recall of rare

splice-disrupting candidate variants until an optimal perfor-

mance was reached at a pseudocount of 0.1, after which

further reduction of the pseudocount decreased the perfor-

mance again (Figures S3A and S3B).

We further investigated the effect-size cutoff. The high-

est recall of splice-disrupting candidate variants was
nal of Human Genetics 110, 2056–2067, December 7, 2023 2059
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Figure 2. FRASER 2.0 increases recall of rare splice-disrupting candidate variants on GTEx
(A) Quantile-quantile plots of the p values for the different splicemetrics from FRASER (j3, j5, q, shown in shades of blue) and the intron
Jaccard index from FRASER 2.0 (purple) on the GTEx skin not-sun-exposed dataset. The red line depicts the diagonal, and the gray ribbon
around it depicts the 95% confidence interval.

(legend continued on next page)
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achieved for a DJ of 0.2 consistently across different

filtering settings, where DJ denotes the difference between

the observed value and the expected value (Figure S4).

However, the more permissive cutoff DJ¼ 0.1 was similarly

optimal. We therefore decided to adopt the D ¼ 0.1 cutoff

as the default (Figures S3C and S3D).

Furthermore, we investigated the intron filtering criteria.

FRASER uses three parameters, denoted k, n, and q, to filter

out lowly expressed introns. Theparameter k is theminimal

value of the splice-metric numerator required in at least one

sample. The parameter n is the minimal value of the splice-

metric denominator at percentile q across samples. Among

parameter values with optimal performance, we opted for

the most permissive setting (k ¼ 20, q ¼ 25%, and n ¼ 10,

Figure S3E). This parameter settingmeans that to be consid-

ered by the algorithm in the first place, an intron must be

supported by at least 20 split reads in at least one sample

(intron Jaccard index numerator) and shall have a total of

more than 10 donor-site- and acceptor-site-related reads

(intron Jaccard index denominator, Figure 1B) in at least

25% of the samples. Adopting these cutoffs resulted in

testing 287,943 introns and 16,548 coding and non-coding

genes on average for each GTEx tissue (Figure S3F).

Finally, we investigatedwhether discarding outlier calls in

introns with a poor goodness-of-fit would improve the per-

formance further. Generally, a poor fit can indicate a viola-

tion of the modeling assumption, making the p value esti-

mates not trustworthy. FRASER models the data of each

individual intron by using a beta-binomial regression on

the latent space. We observed some instances for which the

modeling assumption was violated—in particular, cases of

splicing quantitative trait loci (sQTL) in cis that were not

captured by the latent space (Figures S5C and S5D). To sys-

tematically capture those cases,weconsidered thebeta-bino-

mial overdispersion parameter (r) as a measure of the good-

ness-of-fit. However, filtering out introns with a high

overdispersion parameter hadminimal effects on the overall

recall of rare variants. Therefore, we decided not to imple-

ment this filtering (Figures S5A and S5B).

Overall, we call this new approach FRASER 2.0. The user

can change all the parameters for which we explored the

optimal default values here.

Improved performance and robustness of FRASER 2.0 on

GTEx

We ran FRASER 2.0 on 48 GTEx (V8) tissues and bench-

marked it against FRASER,23 LeafCutterMD,21 and SPOT.22

All the analyses are performed independently for each tis-

sue. Notable sample-sample correlations were present in

raw intron Jaccard index values, analogous to what has
(B) Recall of rare splice-disrupting candidate variants as defined by th
(facets) versus the rank of nominal p values combined across GTEx t
low), and SPOT (green). Nominal p value cutoffs are indicated with
(C) Venn diagram of the overlap of gene-level splicing outliers found
(D) Box plots of the number of splicing outliers (gene level) per sampl
GTEx tissue (x axis). All brain tissues have been combined for readab

The American Jour
been previously described in FRASER, and the autoencoder

of FRASER 2.0 was able to correct for them (Figure S6).

Introns that were detected as outliers in FRASER but not

with FRASER 2.0 tended to have a high J5 or J3 value

and a low intron Jaccard index value, whereas the intron

splice-metric values that were found as outliers by both

methods were similar (Figure S7). FRASER 2.0 p values

were better calibrated than FRASER’s p values for each

metric (Figures 2A and S8), confirming that the intron Jac-

card index is more robust. We then evaluated each method

on its ability to identify splicing outliers in genes predicted

to be affected by a rare splice-disrupting candidate variant.

FRASER 2.0 consistently outperformed FRASER, SPOT, and

LeafCutterMD and increased the recall of such genes

throughout all ranks and across tissues (10-fold increase in

precision at FDR ¼ 0.1, Figures 2B, S9, and S10). Impor-

tantly, FRASER 2.0 reported significantly fewer outliers per

sample than FRASER on all tissues (10.0 5 2.6 times less,

Figures 2C and 2D). Although the overlap of outliers from

FRASER and FRASER 2.0 is only 8% across all tissues

(Figure 2C), outliers identified only by FRASER 2.0 were

more enriched for candidate rare splice-disrupting variants

than those identified by FRASER only (Figure S11), high-

lighting that FRASER 2.0 reports fewer outlier calls that are

not supported by such variants than FRASER does. In addi-

tion, splicing outliers from FRASER, LeafCutterMD, and

SPOT were more likely to arise with a higher sequencing

depth than ones detected with FRASER 2.0 (Figure 3), thus

confirming the robustness of the latter. FRASER 2.0 outliers

were also more often reproducible across tissues than

competitor methods (Figure S12). Using skeletal muscle,

the GTEx tissue with the largest available sample size

(n ¼ 782), we explored the effect of the sample size on the

amount of detected outliers by subsampling to smaller

dataset sizes. The median number of outliers detected per

sample initially increases with increasing sample size but

plateaus at sample sizes of 300 or more (Figure S13).

To evaluate the sensitivityof FRASER2.0 to splicingdefects

giving rise to isoforms rapidly degraded by NMD, we also

compared the overlap with gene underexpression outliers

for all methods. The proportion of underexpression outliers

among its splicingoutlier calls is strikinglyhigher for FRASER

2.0 than for all othermethods (5-foldonmedianacrossGTEx

tissues, Figure S14A). In absolute numbers, LeafCutterMD

called the most splicing outliers in underexpression

outlier genes, however, proportionally those constitute

only a very minor fraction of LeafCutterMD’s total results

(Figure S14B). FRASER 2.0 also runs about a third faster

than FRASER,with a typical FRASER2.0 run (after generating

the split and non-split count matrices) on a cohort of about
e variant annotation tools VEP, MMSplice, SpliceAI, and AbSplice
issues for FRASER (blue), FRASER 2.0 (purple), LeafCutterMD (yel-
shapes.
with FRASER (blue) and FRASER 2.0 (purple).

e (y axis) called by FRASER (blue) and FRASER 2.0 (purple) for each
ility.
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Figure 3. FRASER 2.0 is less sensitive to
sequencing depth than previous methods
(A) Scatterplot of the number of splicing
outliers at the gene level against the total
mapped reads per sample on the GTEx skin
not-sun-exposed dataset for LeafCutterMD,
SPOT, FRASER, and FRASER 2.0 (facets).
Spearman correlation coefficients (rho) are
shown. All are significant (Spearman test,
p < 3 3 10�3).
(B) Box plots of the Spearman correlation
coefficients (y axis) between the mapped
reads and the number of gene-level splicing
outliers called by LeafCutterMD, SPOT,
FRASER, and FRASER 2.0 (x axis) for each
GTEx tissue (n ¼ 48). p values of Wilcoxon
tests are shown above brackets.
200 samples taking less than 2.5 h on a Rocky Linux 8.8-

based serverwith128physical coresand512GBmemoryuti-

lizing 15 cores in parallel for each run (Figure S15). Overall,

FRASER 2.0 reports less, but more relevant splicing outliers

supported by a rare variant, reproduced across tissues

and less influenced by sequencing depth than FRASER,

LeafCutterMD, and SPOT.

Application of FRASER 2.0 to rare-disease cohorts

To evaluate FRASER 2.0 in a diagnostic setting, we applied it

to 747 samples from the Undiagnosed Diseases Network28

and to the cohort composed of RNA-seq samples from 303

individuals suspected to be affected with a mitochondrial

Mendelian disorder; we refer to this cohort as the Yépez

et al. dataset.20 As with GTEx, FRASER 2.0 reported fewer
2062 The American Journal of Human Genetics 110, 2056–2067, December 7, 2023
splicing outliers than FRASER in all co-

horts (a median of 3–9.5 times fewer

outliers; Figure 4A).

Frequently in diagnostics, researchers

are not interested in testing all genes,

but only those that could cause the dis-

ease (e.g., from OMIM or curated lists

for eachdisease). Inaddition, interpreta-

tion of variants revealed by panel, wh-

ole-exome sequencing (WES), or who-

le-genome sequencing (WGS) is often

performed prior to RNA sequencing,

yielding a restricted list of candidate

genes per sample. Such prior informa-

tionhas thepotential to reduce themul-

tiple-testing burden during analysis of

splicing-outlier calls from RNA-seq. To

implement this strategy, we extended

the FDR correction step of FRASER 2.0

to allow consideration of a subset of

genes specific for each sample. Testing

OMIM36 genes on both cohorts and

OMIM genes harboring at least one

rare variant (gnomAD MAF <0.1%, in

cohort allele frequency <1%, within
the gene body except for the UTRs) called byWES in the Yé-

pez et al. dataset consistently led to fewer outliers to be

manually inspected per sample (median of 2 outliers per

sample, Figure 4A). The latter approach resulted in amedian

of 5,427 introns and 149 OMIM genes to be tested per sam-

ple, in comparison to 140,230 introns and 16,846 genes in

the transcriptome-wide setting (Figure S16).

In the Yépez et al. dataset, 26 cases with aberrant splicing

on the disease causal gene were identified by FRASER.

FRASER 2.0 reported 22 out of those 26 diagnosed cases

with the default cutoffs (Figure 4B; Table S1). Two missing

cases were exon truncations caused by synonymous vari-

ants and showed a large deviation from canonical splicing

(DJ ¼ �0.55 and DJ ¼ �0.39), which was reflected in low

nominal p values (1.08 3 10�4 and 1.87 3 10�5), but due
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Figure 4. Application of FRASER 2.0 to rare-disease cohorts
(A) Distribution of the splicing outliers per sample at the gene level on the UDN (n¼ 391, n¼ 252, n¼ 104 for fibroblasts, blood poly(A),
and blood total RNA, respectively) and the Yépez et al. dataset (n ¼ 303) for FRASER (blue) and FRASER 2.0 applied to three gene sets
considered for FDR correction: expressed genes (dark purple), expressed OMIM genes (light purple), and expressed OMIM genes with
a rare variant (violet red; see material and methods).
(B) Number of events (bars) in all non-empty intersections (linked dots) between four splicing outlier sets from the Yépez et al. dataset: (1)
the 26 originally reported pathogenic events, (2) the transcriptome-wide significant FRASER 2.0 calls, (3) the significant FRASER 2.0 calls
when only OMIM genes with a rare variant are considered, and (4) the transcriptome-wide significant FRASER calls. Intersections with
the set of pathogenic events are highlighted in red.
(C) Fraction of recovered pathogenic splicing outliers from the Yépez et al. dataset (y axis, total n ¼ 26) when subsampling to different
sample sizes (x axis) was performed. Each sample size was randomly sampled five times. RV: rare variant.
to the multiple-testing burden from testing all expressed

introns and genes, the resulting FDR was 1 in both cases.

Another case missed by FRASER 2.0 is caused by a hetero-

zygous 6.5 Kbp deletion that results in the skipping of mul-

tiple exons. This splicing defect is hard to detect because it

triggers nonsense-mediated decay (NMD), resulting in the

aberrant expression of this gene (�74% expression reduc-

tion computed by OUTRIDER37). In this case, the novel

intron does not pass our default intron filter settings in

FRASER 2.0; only 7 split reads map to it. The last missed

case is a case in which a deletion results in exon creation

and truncation. Although FRASER 2.0 detects a large devi-

ation from canonical splicing for this case (DJ ¼ 0.69), it

also fits a high value for the beta-binomial overdispersion

parameter of this intron (r ¼ 0.80). This gives a nominal

p value of 0.00294, which results in an FDR of 1 after mul-

tiple-testing correction.

Testing only OMIM genes with rare variants during multi-

ple-testing correction recovered two of these four cases at
The American Jour
10% FDR (FDR ¼ 0.087 and 0.094). However, six other cases

could not be detected with this approach because the gene

affected by the splice defect was not in the list of tested genes.

Inonecase, thecausalvarianthadagnomAD33MAFof0.96%,

which is above the 0.1% cutoff we adopted here, and in the

other five cases, the disease-causing variants were either dele-

tions or intronic variants missed by WES (Figure 4B). Calling

variants from WGS could help to overcome this issue and

further improve the usefulness of this feature.

Finally, we investigated the sensitivity of FRASER 2.0 to

sample size because the number of samples is often limited

in rare-disease cohorts. We used the Yépez et al. dataset and

the 26 known pathogenic splicing events to estimate the

dataset size required for reaching significance for most of

the clinically relevant events. As expected, the percentage

of recovered pathogenic events dropped with reduced sam-

ple size (Figures 4C and S17). With already 50 samples, we

recovered 69% of cases (18 out of 26, on average). Addi-

tionally, we investigated the effect of combining the small
nal of Human Genetics 110, 2056–2067, December 7, 2023 2063



subset of samples with pathogenic events with samples

from an external dataset. We used samples from the UDN

dataset for this analysis. There was, however, no difference

in the sample size required for recovering the pathogenic

events, although the total number of outlier calls per sam-

ple was on median 1.47 times higher when the samples

were combined with external samples (Figure S18).

Altogether, these results show the general applicability

of FRASER 2.0 to various RNA-seq cohorts and show

that it reports considerably fewer outliers than FRASER.

In addition, the new functionality of testing a preselected

number of genes per sample can further help to reduce

the search space. FRASER 2.0 is publicly available at gi-

thub.com/gagneurlab/fraser and integrated into the work-

flow DROP.30
Discussion

Herewe introduced FRASER2.0, amethod for detecting aber-

rant splicing via an intron-centric splice metric, the intron

Jaccard index. Ina singlemetric, the intron Jaccard indexcap-

tures former metrics of splicing efficiency as well as alterna-

tive donor and acceptor site choice. Theuse of a singlemetric

in FRASER 2.0 translates into easier interpretation of results,

as well as reduced runtime, computational resources, and

storage. Benchmarks on assumed-healthy samples of the

multi-tissue dataset GTEx showed that FRASER 2.0 decreases

the number of reported splicing outliers by one order of

magnitude, recovers splicing outliers associated with candi-

date splice-disrupting rare variants more accurately than

competitor methods and is more robust to variations in

sequencing depth. Application to two unrelated rare disease

cohorts further confirmed the relative advantage of FRASER

2.0 over its predecessors. These results are relevant because

in a diagnostic research setting, the vast reduction of splicing

outliers per sample andofnoise that FRASER2.0provideswill

substantially minimize the amount of manual inspection

required to evaluate candidate splice defects and streamline

the analysis of results. Often, obtaining a highnumber of po-

tential candidates from an analysis providing additional

evidence, such as aberrant splicing detection, can be amajor

barrier to a more widespread implementation of these app-

roaches in practice.

Motivated by applications with various collaborators, we

have here introduced the option to filter genes on the basis

of prior information during multiple-testing correction. In

practice, it is often thecase thatRNAsequencing isperformed

after an inconclusiveWESorWGS,whichmighthaveyielded

variants of unknown significance for which RNA-seq consti-

tutes the needed functional assay. The possibility of focusing

on candidate genes and variants in such a ‘‘DNA-first, RNA-

second’’ mode of operation can be valuable, as we have

shownfor themitochondrial rare-diseasedataset application.

Initially, we introduced the intron Jaccard index to focus

on more functionally relevant outliers than the original

three splicing metrics of FRASER could identify. However,
2064 The American Journal of Human Genetics 110, 2056–2067, Dec
our benchmarks are based on candidate splice-disrupting

variants without consideration for canonical splice-iso-

form abundance. Perhaps these benchmarks, along with

a stronger robustness to sequencing depth, show that the

main advantage of the intron Jaccard index ismerely statis-

tical. An explanation for this could be that the intron Jac-

card index might be more stable because, compared to the

denominators of the three splicing metrics of FRASER, its

denominator accounts for a larger set of reads.

One concern with moving from the original splicing

metrics of FRASER to the intron Jaccard index is that

some genuinely pathogenic isoforms can turn out to repre-

sent a minor fraction of the expressed splice isoforms and

therefore could now be discarded. This includes rapidly

degraded splice isoforms. To capture those, we recommend

additionally using an expression outlier caller such as

OUTRIDER.37 Our analysis here, however, suggests that

FRASER 2.0 does not lose sensitivity to detect such cases

in comparison to the previous version. Moreover, it is

possible to experimentally inhibit NMD, for instance by

using the translation inhibitor cycloheximide, in case of

a suspected NMD-introducing splicing defect to allow

detection of splice defects otherwise undergoing NMD.38

Generally, however, NMD-introducing splicing defects

pose a general problem of detection for all methods based

on RNA-seq samples not treated by a translation inhibitor,

not just for FRASER 2.0. Other examples that could benefit

from the use of FRASER’s splice-site-centric metrics are

aberrant isoforms leading to gain of function and aberrant

splicing on dosage-sensitive genes. In our results, however,

the noise reduction achieved by moving to the intron Jac-

card index outweighs the benefit of detecting such minor

aberrant isoforms. Nonetheless, the software of FRASER

2.0 still supports calling outliers with FRASER’s splice met-

rics, if the user wishes to include them. One limitation of

FRASER 2.0 and other methods designed to detect outliers

is that a sufficiently large cohort is needed. In the rare-dis-

ease field, attaining these minimal requirements can be

especially challenging. Integrating unaffected samples or

samples from individuals suffering from other disorders

can help to overcome this. In addition, count matrices

are provided for a variety of tissues in DROP, and these

can be downloaded and integrated with the local samples.

In any case, the aggregated samples should have been

probed from the tissue and sequenced with a similar pro-

tocol. Another limitation of calling aberrant splicing in

RNA-seq data is that the gene might not be sufficiently ex-

pressed in the probed tissue, and the choice of tissue is usu-

ally limited to clinically accessible ones (e.g., blood or

skin). One could consider using FRASER 2.0 output, how-

ever, as an input on the recently developed AbSplice-RNA

method12 to predict aberrant splicing in multiple tissues.

Another limitation of this study is that we used the GTEx

dataset for tuning FRASER 2.0’s parameters as well as

comparing it to competitor methods. However, even

the version of FRASER 2.0 without optimized parameters

clearly outperformed previous methods (Figure 1D).
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Moreover, as a result of insufficient available data, we have

not assessed in other datasets whether the parameters

fitted on GTEx remain optimal. As we share our analysis

pipeline, users with a large enough cohort could reconduct

the parameter optimization on their own dataset.

Long-read sequencing shall eventually lead tomore direct

measurements of isoform expression and to more accurate

quantifications of the expressed isoforms, especially at com-

plex loci.39 Suchdirect estimationsof theabundanceof func-

tional splice isoforms on every locus hold the promise of ad-

vantageous replacement of local splicing metrics, including

the intronic Jaccard index. However, because of the higher

cost and limited sequencing depth of long-read sequencing,

which is particularly limiting for RNA-seq as a result of the

high dynamic range of gene expression, short-read-based

methods such as FRASER 2.0 will probably remain relevant

for rare-disease diagnostics in the coming years.

In conclusion, FRASER 2.0 can be readily used in the

context of rare-disease diagnostics because it has the same

sensitivity as FRASER and reports fewer, but more relevant,

outliers and thus facilitates manual candidate gene inspec-

tion. We anticipate that the option to include prior knowl-

edge and allow the restriction of the FDR correction to sets

of candidate genes will be especially useful in diagnostic

strategies where DNA sequencing is routinely done as a first

step and RNA-seq is used as a follow-up. As splicing-based

therapeutics are on the rise,3,40 we hope FRASER 2.0 will

be a useful tool for the identification of the exact aberrant

splicing event for these new targeted therapies.
Data and code availability

This study did not generate new data. For a description of

the used datasets, refer to the materials and methods.

FRASER 2.0 is an open-source R/Bioconductor41,42 package

available in the GitHub repository https://github.com/

gagneurlab/fraser (version 1.99.0 and above). It is also inte-

grated into the workflowDROP30 (version 1.3.0 and above)

available at https://github.com/gagneurlab/drop. The code

to reproduce the figures in this manuscript can be found at

https://github.com/gagneurlab/FRASER-2.0-analysis.
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Supplemental Figures

Figure S1. Schematic overview of the differences between FRASER 2.0 and FRASER.
Schematic overview highlighting the improvements of FRASER 2.0 (purple boxes) in comparison to
the workflow of FRASER 1.0 (blue boxes). FRASER 2.0 uses the Intron Jaccard Index as its splice
metric (top left), whereas FRASER 1.0 uses the metrics 𝜓3, 𝜓5 and 𝜃. Additionally, FRASER 2.0
introduces an option to integrate prior information during multiple testing correction and optimized
parameters affecting the intron filtering, the modeling and outlier detection steps (bottom left). The
benefits of these improvements are described on the right.





Figure S2. Intron Jaccard Index increases recall of splice-disrupting candidate variants over
FRASER’s splice metrics on several GTEx tissues.
Same as Fig. 1D), but for the FRASER adaption using Intron Jaccard Index (purple) compared to
individual and combined metrics of FRASER (𝜓3, 𝜓5, 𝜃) on several GTEx tissues (rows) and four
different sets of rare splice-disrupting candidate variants (columns).





Figure S3. Identification of optimal FRASER 2.0 parameters pseudocount, Δ jaccard cutoff and
filtering settings. (A) Recall of rare splice-disrupting candidate variants as defined by AbSplice
versus the rank of nominal P-values from FRASER with the Intron Jaccard Index metric using different
values of the pseudocount on the GTEx skin not-sun-exposed dataset. Nominal P-value cutoffs are
indicated with shapes. (B) Boxplots of the recall of rare splice-disrupting candidate variants at the rank
corresponding to a value of 20 outliers per sample for different values of the pseudocount across 48
GTEx tissues. Facets indicate different tools to define the set of candidate splice-disrupting variants:
VEP (annotated as splice donor/acceptor or splice region), MMSplice (absolute MMSplice Δlogit 𝛹 ≥
2), SpliceAI (SpliceAI score ≥ 0.5) and AbSplice (max. AbSplice score ≥ 0.05). (C) Same as (A) but
comparing different cutoff values on the predicted Δ Intron Jaccard Index for FRASER with the Intron
Jaccard Index metric with pseudocount set to 0.1. (D) Same as (B) but comparing different cutoff
values on the predicted Δ Intron Jaccard Index for FRASER with the Intron Jaccard Index metric with
pseudocount set to 0.1. (E) Same as (B) but comparing different filtering settings. Facets indicate the
quantile and x-axis indicate the minimal value of N at this quantile to pass the filter. (F) Boxplots of the
number of introns (top row) and genes (bottom row) after applying the respective filtering setting
defined by the quantile (columns) and the minimal value of N at this quantile (x-axis). Boxplots: center
line = median; box limits = first and third quartiles; whiskers span all data within 1.5 interquartile ranges
of the lower and upper quartiles (applicable here and in all the following figures).



Figure S4. Combined parameter optimization results for different combinations of ΔJ and
filtering cutoffs.
Boxplots of the recall of rare splice-disrupting candidate variants as predicted with SpliceAI at the rank
corresponding to a value of 20 outliers per sample for different values of the ΔJ cutoff across 48 GTEx
tissues. Facets indicate different intron filtering settings, defined by the minimal required n (columns)
in at least q% of the samples (rows).



Figure S5. Goodness-of-fit cutoff does not improve splicing outlier calls. (A) Recall of rare (MAF
< 0.001) splice-disrupting candidate variants as defined by AbSplice versus the rank of nominal
P-values for FRASER with the Intron Jaccard Index metric and pseudocount of 0.1 for different values
of the goodness-of-fit cutoff on 𝜌 (overdispersion parameter of the beta-binomial distribution, shown in
shades of green). Nominal P-value cutoffs are indicated with shapes. (B) Boxplots of the recall of rare
splice-disrupting candidate variants at the rank corresponding to a value of 20 outliers per sample for
different values of the goodness-of-fit cutoff across 48 GTEx tissues. Facets indicate different tools to
define the set of candidate splice-disrupting variants: VEP (annotated as splice donor/acceptor or
splice region), MMSplice (absolute MMSplice Δlogit 𝛹 ≥ 2), SpliceAI (SpliceAI score ≥ 0.5) and
AbSplice (max. AbSplice score ≥ 0.05). (C) Intron counts (y-axis) against the denominator of the
jaccard metric (x-axis) of intron chr1:1485839-1486109:+ affected by a sQTL loci in cis across
samples in GTEx skin (suprapubic). (D) Predicted against observed Intron Jaccard Index values for
the intron shown in (C). (E) Empirical cumulative density function of 𝜌 on GTEx suprapubic skin tissue
with the Intron Jaccard Index metric and pseudocount of 0.1.





Figure S6. Sample correlation heatmaps. Heatmaps of sample-sample correlations of Intron
Jaccard Index metric before (A, C, E) and after (B, D, F) FRASER 2.0’s autoencoder correction on
three GTEx tissues: muscle skeletal (A, B, N=782), not sun-exposed suprapubic skin (C, D, N=582)
and whole blood (E, F, N=735). A dendrogram of the sample clustering is shown on top of each
heatmap alongside sample metadata: RNA integrity number (RIN), age, gender, and cause of death
(Hardy scale classification, DTHHRDY).



Figure S7. Comparison of Intron Jaccard Index values to FRASER’s 𝜓5 and 𝜓3 metrics of
FRASER outliers.
Scatterplot with density of 𝜓5 values of FRASER 𝜓5 outliers against Intron Jaccard Index values
across GTEx tissues for introns that are also reported as outliers by FRASER 2.0 (A) and introns that
are not outliers in FRASER 2.0 (B). (C, D) Same as (A, B), but for 𝜓3 values. Outliers that are found
both by FRASER and FRASER 2.0 (A, C) tend to lie alongside the diagonal, whereas most FRASER
outliers that are not reported by FRASER 2.0 (B, D) have small values in the Intron Jaccard Index
metric while having 𝜓5 or 𝜓3 close to 1.





Figure S8. Quantile-quantile plots of FRASER 2.0 P-values. Quantile-quantile plots of expected
against observed P-values obtained using the 3 splice metrics from FRASER (different shades of
blue) and the Intron Jaccard Index of FRASER 2.0 (purple) on 15 GTEx tissues (A-O). Under the null
hypothesis, the data are expected to lie along the diagonal (red, 95% confidence bands in gray).



Figure S9. Recall of rare variants in the splice site vicinity as defined by VEP.
Recall of rare splice-disrupting candidate variants as defined by the variant annotation tool VEP
versus the rank of nominal P-values combined across GTEx tissues for FRASER (blue), FRASER 2.0
(purple), LeafCutterMD (yellow), and SPOT (green). Nominal P-value cutoffs are indicated with
shapes.



Figure S10. Improved precision of FRASER 2.0 at FDR cutoff. Precision-recall plot on candidate
rare splice-disrupting variants as defined by the variant annotation tools VEP, MMSplice, SpliceAI, and
AbSplice (facets) on nominal P-values combined across GTEx tissues for FRASER (blue), FRASER
2.0 (purple), LeafcutterMD (yellow), and SPOT (green) for significant results at FDR ≤ 0.1. The FDR
cutoff is indicated with a circle.



Figure S11. Recall of splice-disrupting candidate variants by regions of the Venn diagram for
FRASER and FRASER 2.0. Recall of rare splice-disrupting candidate variants as defined by SpliceAI
score 0.5 versus the rank of nominal P-values combined across GTEx tissues for different regions of
the Venn diagram between FRASER (middle blue) and FRASER 2.0 (dark purple) with FRASER-only
outliers in light blue, FRASER 2.0 only outliers in light purple and both FRASER and FRASER 2.0
outliers in green. Different nominal P-value cutoffs are indicated with shapes.



Figure S12. Reproducibility of splicing outlier calls across GTEx tissues.
(A) Barplot of the number of gene-level splicing outliers (y-axis) against their reproducibility (x-axis)
across GTEx tissues. The reproducibility is defined as the number of tissues an event is observed at a
nominal P-value < 10−3 given it was observed at least once at a nominal P-value < 10−5. Data is
stratified by associated variant status (defined by VEP) and grouped by method. (B) Same as (A) but
plotted as the proportion (y-axis) of reproducible gene-level splicing outlier calls in GTEx tissues.
(C-D) Same as (B) but with at least one call at a nominal P-value < 10−7 (C) and nominal P-value <
10−9 (D).



Figure S13. Splicing outliers per sample comparison with sample size.
For the skeletal muscle dataset in GTEx (N=782), the median of splicing outliers across all samples
using FRASER 2.0 (y-axis) is plotted against the simulated sample size (x-axis) for different cutoffs on
the effect size ΔJ. The lines connect the average per sample size and effect size ΔJ. Each sample
size was sampled 5 times.



Figure S14. Gene underexpression outliers among splicing outliers. Proportion (A) and total
number (B) of gene underexpression outliers (FDR < 0.05) per GTEx tissue detected with OUTRIDER
among all splicing outliers reported by different aberrant splicing detection methods. The distribution
of the number of outliers called by OUTRIDER is also shown for reference (rightmost box).



Figure S15. Runtime comparison of FRASER 2.0 and FRASER. Runtime in hours on the GTEx
tissues Liver (N=203), Heart left ventricle (N=386) and Skin not sun exposed suprapubic (N=582) for
different computational steps of FRASER (blue) and FRASER 2.0 (purple).



Figure S16. Tested features per sample on the OMIM + rare variant subset. Distribution of the
total number of tested genes (A) and introns (B) per sample on the Yépez et al. dataset when
including only OMIM genes harboring a rare variant. The red line denotes the median across samples:
genes=149 and introns=5,427.



Figure S17. Power analysis of FRASER 2.0 on the Yépez et al. dataset (N=303). (A) The median
of splicing outliers across all samples using default cutoffs (y-axis) is plotted against the taken sample
size (x-axis). Each sample size was sampled 5 times. (B) The negative log10 P-value for all known
disease-causing splicing outliers (y-axis) is plotted against the taken sample size (x-axis). The violin
depicts the density of the data points.



Figure S18. Power analysis of FRASER 2.0 on the solved cases of the Yépez et al. dataset
combined with external samples from UDN. (A) Fraction of recovered pathogenic splicing outliers
from the Yépez et al. dataset (y-axis, total N=26) when subsampling to different sample sizes (x-axis),
either combining with samples from the same dataset (red) or with external samples (blue). Each
sample size was randomly sampled 5 times. (B) FRASER 2.0 outlier calls per sample at the
gene-level for the 26 samples with validated pathogenic splicing defects from Yépez et al., when
combined either with 274 samples from Yépez et al. (x-axis), or with 274 samples from UDN (y-axis,
median across 5 runs for each). The dotted line indicates the diagonal. (C) (D) Same as Fig. S17A,B,
but for the dataset combining the cases with pathogenic events from the Yépez et al. dataset with the
external UDN samples.



Supplemental Tables

Table S1: FRASER 2.0 results for the 26 validated pathogenic splice defects from Yépez et al.
This table contains information about the 26 pathogenic splice defects identified in the Yépez et al.
study, annotated with the results of FRASER 2.0 for these samples.
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