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Supplementary Note 1, Symmetry analysis of AHE for rutile RuO2:
The Hall vector σHall = (σyz, σzx, σxy), is defined as in reference 14. The RuO2 with

the Néel vector along the [001] direction has a magnetic space group (MSG) of

P42’/mnm’. The P42’/mnm’ has t1/2C2x and t1/2C2y symmetry operations, where C2x (C2y)

is an operation of rotating 180° along the x (y) axis and t1/2 denotes a translation (a/2,

b/2, c/2), which correspond to C2x and C2y in the magnetic point group (MPG).

Furthermore, C2x(σyz, σzx, σxy) = (σyz, -σzx, -σxy) and C2y(σyz, σzx, σxy) = (-σyz, σzx,
-σxy), demonstrate σHall = 0; i.e., σyz, σzx,and σxy are all prohibited. In contrast, when

the Néel vector is along [100] and [110], the MSG is Pnn’m’ and Cmm’m’,

respectively. The MPG symmetry operations in Pnn’m’ include TC2x, C2y and TC2z,

where T represents the time-reversal operation; i.e., TC2x(σyz, σzx, σxy) = (-σyz, σzx, σxy)

and TC2z(σyz, σzx, σxy) = (σyz, σzx, -σxy). Thus, only σzx can be allowed. Given the fact

that Pnn’m’ and Cmm’m’ consider different principal axes, one can conclude that the

Hall vector is finite and directed along [010] (when the Néel vector || [100]) and [110]

(when the Néel vector || [110]).

Supplementary Note 2, Curie-Weiss law fitting and calculation of effective

moment:

According to the Curie-Weiss law, the magnetic order can be checked utilizing the

relationship of magnetic susceptibility (χ) and absolute temperature (T) at the

temperature regions above the magnetic ordering transitions, by:29,30

χ = C / (T-θW) (1)

where C is the Curie constant and θW is often referred to as the Weiss temperature (or

Weiss constant). The fittings of Equation (1) with a positive, negative, and zero of θW
indicate the ferromagnetic, antiferromagnetic, and paramagnetic phases, respectively.

Furthermore, the constant C can be given by:
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C = NA·μ0·μeff 2 / (3kB) (2)

where the μeff 2= gJ·(J+1)J·μB2, kB is Boltzmann's constant, NA the Avogadro constant,

gJ the Landé g-factor, μB the Bohr magneton, J the angular momentum quantum

number.

The Equation (2) calculated with the Gaussian units can give a: 29

μeff = (8C)1/2 μB [cgs] (3)
The χ-1~ T curves were fitted to obtain the C constants, and then the μeff were
calculated.

Supplementary Note 3, Distinguish the side-jump and intrinsic anomalous Hall

conductivity:

We try to distinguish the side-jump and intrinsic contributions of the σxyM in the

high conductivity region, which is generally considered through the following

equation: 36-39

σxyAHE= -(α σxx0-1+β σxx0-2)M σxx(T)2+b M (4)

Where, the M is the magnetization, [α σxx0-1M σxx(T)2], [β σxx0-2 M σxx(T)2], and (b M )

correspond to the anomalous anomalous Hall conductivity due to skew scattering,

side-jump, and intrinsic mechanisms, respectively. The skew scattering in such a

regime is negligible (α ≈ 0). We then carried out the fitting of σxyM ~ σxx(T)2 for the 10

nm, 20 nm, and 40 nm films respectively, as shown in Supplementary Fig. 9.

Considering the M does not decrease too much with temperature increasing, the data

of 3 K to 20 K were used. Note that the conductivity does not change too much within

such a temperature region, and we can only obtain an estimation with the fitting by

Equation (4), and an intrinsic anomalous Hall conductivity (σxyint) of ~14 S/cm is

obtained.

Supplementary Table 1, Spin order and moments of Ru0.75Cr0.25O2 calculated

with DFT with the b-axis doubled cell.

Cr at Ru-1 site Cr at Ru-2 site

Cr-1 1.8456 (μB) Ru-1 0.1912 (μB)

Ru-2 -0.1911 Cr-2 -1.8456

Ru-1 0.0642 Ru-1 0.1912

Ru-2 -0.1911 Ru-2 -0.0642
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Supplementary Table 2, Spin order and moments calculated with DFT for

Ru0.5Cr0.5O2.

Cr at Ru-1 site Cr at Ru-2 site

Cr-1 1.8434 (μB) Ru-1 0.4031 (μB)

Ru-2 -0.4023 Cr-2 -1.8436

Supplementary Fig. 1, AHE in RuO2 films grown on TiO2. Magnetic field

dependent Hall resistances (Ryx) of the RuO2 films grown on TiO2 with c axis along

[100], [110], and [101] at 3 K.

Supplementary Fig. 2, DFT+U calculations on the anisotropy of pure RuO2. a,

Calculated energy (E) and net moment (M) in pure RuO2with U = 3 eV depending on

the initial orientation of the Néel vector. The state with Néel vector along [001]

exhibits the lowest energy and no spontaneous moment. The states with Néel vector

along [100] or [110] show about 5 meV higher energy, while the [100] case generates

a spontaneous moment of 0.08 μB / unit cell. b, Calculated energy difference,

E[110]-E[001], in pure RuO2 depending on the Fermi level. Data are obtained from

reference 19.
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Supplementary Fig. 3, Calculated results for Ru1-xCrxO2. a, Crystal structure of

one unit cell of RuO2, where the two Ru sites are labeled as Ru-1 and Ru-2. b,

DFT+DMFT result of the spin polarization (Sp=nup-ndown) of RuO2, plotted against the

onsite Coulomb interaction U. For a small U (< 1 eV), Sp is almost negligible while it

increases distinctly around U=2-3 eV. c, Average Ru moment with respect to the Cr

doping level x in Ru1-xCrxO2, calculated with DFT.

Supplementary Fig. 4, Structure characteristics and surface morphology of the

Ru1-xCrxO2 films. a, XRD 2θ-ω curves of Ru1-xCrxO2 with x = 0.1, 0.2 and 0.3,

measured around the TiO2 (110). b, 2θ-ω curve of the Ru0.8Cr0.2O2 film grown on

TiO2 (200). The diffraction peaks of the films are indicated by the d lines. c, surface

morphology of the Ru0.8Cr0.2O2 (110) film measured by atomic force microscopy

(AFM).
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Supplementary Fig. 5, Transport properties in Ru1-xCrxO2 (110) and the x = 0.2

film with current along different directions. a, Temperature-dependent resistivities

(RT) curves in Ru1-xCrxO2 films grown on TiO2 (110). b, RT curves in Ru0.8Cr0.2O2

measured with current along two orientations. c, σxywith magnetic field sweeping at 3

K in two current directions. The inset shows the configuration of the Hall

measurements. S2, Sample No. 2 of the Ru0.8Cr0.2O2 film.

Supplementary Fig. 6, Magnetization measurements in a Ru0.8Cr0.2O2 (110) film.

a, b, Raw data for magnetization in the Ru0.8Cr0.2O2/TiO2 sample and a pure TiO2

substrate with magnetic field (a) and temperature (b) dependence. The inset in (A)

illustrates the crystal orientation of the film. The film thickness is 55 nm.
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Supplementary Fig. 7, Magnetic-field dependent Hall conductivity at various

temperatures. σxy with magnetic field dependence measured at a series of

temperatures for Ru0.8Cr0.2O2 films grown along the (110) and (100) orientations.

Supplementary Fig. 8, Scaling of σxyM ~ σxx in the Ru0.8Cr0.2O2 (110) films.

Evolution of anomalous Hall conductivity with the longitudinal conductivity from an

itinerant metal to a localized state in Ru0.8Cr0.2O2. a, RT curves of the Ru0.8Cr0.2O2

films with thickness changing. b-e, Fittings of the σxyAHE - M curves at high field

regions to obtain the σxyM and σxyAF components for the films with a thickness of 40

nm (b), 20 nm (c), 10 nm (d), and 3 nm (e). f, Evolution of σxyM and σxyAF with the

changing of σxx0. σxx0 are set by the conductivity at 3 K. Dash lines denoting the

boundaries of two regions, are given by reference 37. g, Linear fitting of the
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normalized σxyM - σxx(T)2 with the data of 3 K - 20 K used for the 10 nm, 20 nm, and

40 nm films, respectively. The intercept denotes the intrinsic term of anomalous Hall

conductivity. Inset, a zoom-in of the data.

Supplementary Fig. 9, Magnetoresistivity (MR) measured for the Ru0.8Cr0.2O2

(110) film. Out-of-plane (OOP) MR curves were measured at a series of temperatures

and compared to the in-plane (IP) MR at 3 K. The IP field was along [001]. The

current was along for all measurements.


