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APPENDIX I: SIMULATION RESULTS ON TIME-VARYING VARIANCE ESTIMATION  

The asymptotic analysis for LPR-based time-varying covariance estimation can be easily extended to 
time-varying variance estimation, which underlies the applicability of the LPR-ICI method on time-varying 
variance estimation. Here, we tested the performance of the LPR-ICI method on time-varying variance 
estimation. The simulated signals are generated as zero mean Gaussian process with time-varying variance. 
Other testing parameters are exactly the same as those in Section V-A. We first test the LPR-ICI method 
using simulated signals with jumping variance. Note that, in this simulation, the zero mean random noise is 
added to the variance and the SNR is calculated as the ratio between the power of ground-truth variance 
and the additive noise. It can be seen from Fig. A1 that the LPR-ICI method can achieve good performance 
for both slowly-varying variance and fast-varying variance by using adaptive windows. 

 

 
Fig. A1.  Estimation of time-varying variance between two signals with a model order of 1 and an SNR of 20dB.  Upper: the black 
line denotes the true variances and the red line denotes the estimated variance; Lower:  variable bandwidths used in LPR-ICI. 
 
 

We further test the performance of the LPR-ICI method on more general signals with randomly varying 
variance. Four cutoff frequencies fc: 0.005, 0.01, 0.02, and 0.05, are used to simulate different degrees of 
variations in time-varying variance. Other testing parameters are exactly the same as those in Section V-B. 
Table A-II lists the EMSE values of different methods averaged over 50 independent Monte-Carlo 
realizations. It can be seen that the LPR-ICI method can provide good estimation results, which are close to 
the best results from an “optimal” fixed bandwidth, in all testing scenarios. 
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TABLE A-I 
EMSES OF DIFFERENT COVARIANCE ESTIMATION METHODS FOR TWO SIGNALS WITH 

RANDOMLY VARYING VARIANCE (UNIT: DECIBELS) 

Methods 
fc = 0.005 

SNR = 0 SNR = 5 SNR = 10 SNR = 20 
LPR (p = 1; h = 2) -34.18  -41.30  -47.32  -57.74  
LPR (p = 1; h = 4) -36.13  -43.95  -50.32  -60.98  
LPR (p = 1; h = 8) -37.33  -45.78  -52.73  -63.41†  
LPR (p = 1; h = 16) -38.06  -46.92†  -53.94†  -59.92  
LPR (p = 1; h = 22) -38.32†  -46.07  -49.28  -50.07  

LPR-ICI (p = 0) -38.48* -46.93* -52.33  -57.93  
LPR-ICI (p = 1) -38.42  -46.90  -52.96* -62.46* 
LPR-ICI (p = 2) -35.41  -42.76  -49.07  -59.58  

LPR w. plug-in (p = 1) -37.82  -46.17  -52.43  -57.08  

Methods 
fc = 0.01 

SNR = 0 SNR = 5 SNR = 10 SNR = 20 
LPR (p = 1; h = 2) -34.40  -41.67  -47.44  -57.76  
LPR (p = 1; h = 4) -36.34  -44.24  -50.34  -60.89  
LPR (p = 1; h = 8) -37.50  -46.11  -52.62  -62.66†  
LPR (p = 1; h = 16) -38.09†  -46.97†  -52.95†  -57.44  
LPR (p = 1; h = 22) -37.97  -45.02  -47.72  -48.59  

LPR-ICI (p = 0) -38.68* -47.16* -51.95  -57.87  
LPR-ICI (p = 1) -38.37  -47.01  -52.84* -60.84* 
LPR-ICI (p = 2) -35.56  -43.17  -49.18  -59.60  

LPR w. plug-in (p = 1) -38.03  -46.51  -52.55  -60.22  

Methods 
fc = 0.02 

SNR = 0 SNR = 5 SNR = 10 SNR = 20 
LPR (p = 1; h = 2) -18.56  -25.52  -31.32  -41.71  
LPR (p = 1; h = 4) -20.58  -28.11  -34.31  -44.07†  
LPR (p = 1; h = 8) -21.72  -29.51†  -34.84†  -38.58  
LPR (p = 1; h = 16) -21.77†  -27.39  -29.18  -29.66  
LPR (p = 1; h = 22) -20.96  -24.27  -24.88  -24.96  

LPR-ICI (p = 0) -22.14  -28.66  -32.36  -36.12  
LPR-ICI (p = 1) -22.18* -28.98* -33.44* -40.31  
LPR-ICI (p = 2) -19.71  -26.93  -32.91  -43.23* 

LPR w. plug-in (p = 1) -21.66  -29.07  -34.76  -43.28  

Methods 
fc = 0.05 

SNR = 0 SNR = 5 SNR = 10 SNR = 20 
LPR (p = 1; h = 2) -12.53  -19.44  -25.53  -34.86†  
LPR (p = 1; h = 4) -14.45  -21.31†  -25.87†  -28.69  
LPR (p = 1; h = 8) -14.61†  -18.86  -20.07  -20.40  
LPR (p = 1; h = 16) -13.74  -16.27  -16.71  -16.80  
LPR (p = 1; h = 22) -13.13  -15.17  -15.49  -15.55  

LPR-ICI (p = 0) -14.11  -17.62  -19.43  -20.81  
LPR-ICI (p = 1) -14.25* -18.30  -21.26  -25.38  
LPR-ICI (p = 2) -13.46  -20.25* -25.73* -30.99* 

LPR w. plug-in (p = 1) -14.20  -20.62  -26.08  -34.24  
The minimum EMSE of LPR over all fixed bandwidths under one certain SNR 

is marked with †. The minimum EMSE of LPR-ICI over all model orders under one 
certain SMR is marked with *. 

 
 

APPENDIX II:  COMPARISON OF ELAPSED TIME BETWEEN DIFFERENT METHODS 

The elapsed time of different methods is compared in this appendix. The testing signals (two signals with 
randomly varying covariance) are from Section V-B of the manuscript and the elapsed time is listed in 
Table A-I is averaged over 50 independent Monte-Carlo realizations. The configuration of the computer 
used in the simulation is: Intel Core 5-2400 CPU @ 3.10GHz, 4GB RAM. It can be seen from this table 
that: (1) the elapsed time of the LPR method is increased with the bandwidth used; (2) the elapsed time of 
the LPR-ICI method is generally increased with the model order (although this relationship doesn’t always 
hold because the adaptive bandwidths selected under different model orders are different); (3) the LPR-ICI 
method has a higher complexity than LPR with a fixed window size; (4) the plug-in method ([A1] and [A2]) 
has a significantly longer computational time than the ICI method. 
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TABLE A-II 
ELAPSED TIME OF DIFFERENT COVARIANCE ESTIMATION METHODS FOR TWO 

SIGNALS WITH RANDOMLY VARYING COVARIANCE (UNIT: SECOND) 

Methods 
fc = 0.005 

SNR = 0 SNR = 5 SNR = 10 SNR = 20 
LPR (p = 1; h = 2) 29.79 28.25 29.12 29.47 
LPR (p = 1; h = 4) 30.69 28.77 29.96 30.15 
LPR (p = 1; h = 8) 31.53 30.80 30.75 31.45 
LPR (p = 1; h = 16) 33.84 31.55 32.29 33.61 
LPR (p = 1; h = 22) 45.44 43.54 44.80 43.08 

LPR-ICI (p = 0) 91.94 89.68 89.59 88.24 
LPR-ICI (p = 1) 96.12 94.56 95.69 93.50 
LPR-ICI (p = 2) 96.01 93.34 93.74 93.53 

LPR w. plug-in (p = 1) 1370.92 1248.77 1154.41 1054.69 

Methods 
fc = 0.01 

SNR = 0 SNR = 5 SNR = 10 SNR = 20 
LPR (p = 1; h = 2) 29.65 28.98 29.36 29.06 
LPR (p = 1; h = 4) 30.49 29.86 29.47 29.41 
LPR (p = 1; h = 8) 31.19 30.60 30.31 31.03 
LPR (p = 1; h = 16) 32.87 32.34 32.03 33.17 
LPR (p = 1; h = 22) 43.42 46.08 39.21 46.89 

LPR-ICI (p = 0) 94.03 89.05 90.74 88.58 
LPR-ICI (p = 1) 98.37 95.88 94.42 90.63 
LPR-ICI (p = 2) 94.18 92.74 95.05 94.07 

LPR w. plug-in (p = 1) 1268.51 1163.88 1052.02 974.70 

Methods 
fc = 0.02 

SNR = 0 SNR = 5 SNR = 10 SNR = 20 
LPR (p = 1; h = 2) 29.62 29.24 30.07 29.73 
LPR (p = 1; h = 4) 30.33 30.23 30.43 29.99 
LPR (p = 1; h = 8) 31.09 32.25 31.01 30.85 
LPR (p = 1; h = 16) 32.51 32.57 33.59 33.03 
LPR (p = 1; h = 22) 44.16 44.00 42.81 43.60 

LPR-ICI (p = 0) 91.39 89.20 88.69 87.36 
LPR-ICI (p = 1) 96.17 99.81 92.83  89.42 
LPR-ICI (p = 2) 95.62 94.27 97.30 97.23 

LPR w. plug-in (p = 1) 1209.02 1148.31 1077.56 1051.12 

Methods 
fc = 0.05 

SNR = 0 SNR = 5 SNR = 10 SNR = 20 
LPR (p = 1; h = 2) 30.15 29.73 32.40 30.11 
LPR (p = 1; h = 4) 31.27 30.97 33.62 30.45 
LPR (p = 1; h = 8) 33.21 31.46 34.03 31.32 
LPR (p = 1; h = 16) 34.28 33.38 36.16 33.26 
LPR (p = 1; h = 22) 48.81 43.67 42.57 42.49 

LPR-ICI (p = 0) 94.53 92.06 88.69 94.23 
LPR-ICI (p = 1) 96.51 95.24 91.38  89.31 
LPR-ICI (p = 2) 94.13 97.25 99.12 93.70 

LPR w. plug-in (p = 1) 1283.32 1187.12 1004.42 940.86 

 
We now explain why the plug-in rule is computationally demanding. The plug-in rule is based on the 

asymptotic expression of the optimal bandwidth and it consists of two steps: estimation of global 
bandwidth and estimation of local bandwidth. Since there are many unknown quantities to be estimated in 
the asymptotic expression of the optimal bandwidth, both global estimation and local estimation are 
executed iteratively (usually 6-8 iterations in global estimation and 2 iterations in local estimation) to 
ensure the accuracy and convergence of the estimation of optimal bandwidth. In the plug-in rule, the 
computational complexity of each iteration for global estimation is )(NO , where N  is the number of 

samples of the whole period and the computational complexity of each iteration for local estimation is 
)( )(i

LNO , where )(i
LN  is the number of samples determined by the bandwidth calculated by the previous 

iteration step. Suppose there are   global iterations and   local iterations in the plug-in rule, then the 

total computational complexity of the plug-in rule is 
 

 1

)( )(}{
i

i
LNONO . On the other hand, the ICI 

rule used in this manuscript has a computational complexity of }{}{
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KNO  is the total complexity to calculate LPR with each bandwidth  in the bandwidth set H

~
 and  

}{ opt
KNO  is the complexity to calculate LPR with the optimal bandwidth opt

kĥ . Considering that both )(
KN  

and opt
KN  should be much smaller than N  and   is usually around 4-5, we can conclude that the plug-in 

method is more computationally expensive than the ICI method for adaptive bandwidth selection, which is 
clearly shown in Table A-I. 
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