

Comparison of Collagen Deposition in Regions of Pneumonia to Normal Lungs

Supplemental Figure 1. Persistent pulmonary pathology in SARS-CoV-2 infected mice out to 45 days post infection (n=2). a-d) At 45 DPI there are persistent, patchy regions of pulmonary consolidation with inflammation (arrows) in SARS-CoV-2 infected mice (a&b Ms 307; c&d Ms 314). e-h) Trichrome staining reveals pulmonary fibrosis without epithelial proliferation in regions of pulmonary consolidation, similar to lesions at 21 DPI.

а

Supplemental Figure 2a. Representative images show SARS-CoV-2 infected respiratory epithelial cells as arrows pointed. (n=1)

Supplemental Figure 2b. Heatmap to show sample to sample correlation. Two sample groups are presented—SARS CoV2 21 DPI (orange) and Naïve K18 and K18 4 DPI (green). Correlations were determined using all genes and a Pearson Correlation Coefficient (PCC). Color indicates PCC with 1 as the darkest red and 0.41 and 0.38 as the darkest blue. Figures represent linear relationship between mice. Representative heatmap for the CoV2 K18 21 DPI and K18 Naïve mice (left panel) and CoV2 K18 21 DPI and CoV2 K18 4 DPI mice (right panel).

Supplemental Figure 3. Representative images show Krt5+ pod structure in lungs of each of mice infected with sublethal Flu dose at 14 DPI.

Supplemental Figure 4. Representative image shows the colocalization of Krt-5 and Trp-63 in pulmonary krt5+ "pod" structure of Flu infected mice at 14 DPI. (a) Lung sections are stained by DAPI (White), Krt-5 (green) and Trp63 (Red). At 14 DPI, Flu infected mouse exhibits Krt5+ "pods" in the lung. The Krt-5 signals colocalize with Trp63 (the highest magnification image in lowest panel). (b) The Trp63 signals colocalize with DAPI.

Flu 14 day

Supplemental Figure 5. Representative image shows the colocalization of Krt-5 and NGFR in pulmonary krt5+ "pod" structure of Flu infected mice at 14 DPI. Lung sections are stained by DAPI (White), Krt-5 (green) and NGFR (Red). At 14 DPI, Flu infected mouse exhibits Krt5+ "pods" in the lung. The Krt-5 signals colocalize with NGFR (the highest magnification image in lowest panel).

Supplemental Figure 6. Serial sections show the presence of AT1 cells in pulmonary krt-5+ "pod" area and AT2 cells at the edge of pulmonary krt5+ pod area at 14 days post Flu infection (n=4). a-c) Representative images of Krt-5, E-cad, and pro-SPC IF staining. Similar region of lung as determined by DAPI staining. (a) Krt-5+ pod is located by Krt5 fluorescence staining. (b) AT1 cells are stained by E-cad. (c) pro-SPC staining reveals AT2 cells locate at the edge of Krt-5+ pod.

Supplemental Figure 7. Comparison of Fibrosis in Consolidated Lung versus Normal lung in Flu and COVID. Picrosirius Red staining for the comparison and quantification of fibrosis in regions of SARS-CoV-2- and Flu-associated pulmonary consolidation. Left) PSR staining in combination with polarized light microscopy identifies collagen by red staining and birefringence on merged images (brightfield and polarized, black arrows). Middle) Birefringence of collagen (white arrows) is easily seen when viewed with only polarized light and differentiates from background red staining of the merged image. **Right**) Quantification was performed with pattern recognition software trained to recognize the dual expression of red staining and birefringence (blue, black arrows). Regions of interest were drawn to exclude areas of the lung that normally contain collagen within these regions (large vessels and airways). Red = glass, green= Background.

Supplemental Figure 8: Collagen deposited in Flu mouse model and COVID mouse model. (a) Masson's trichrome staining showing collagen deposition in lungs of 1 x10⁴ TCID₅₀ SARS-CoV-2-infected SARS-CoV2 K18 mice at 7, 14 and 21 DPI and Flu infected mice at 5, 7, 10 and 14 Plu DPI. (b) Comparison of collagen deposition in regions of consolidated lung to normal lung in the same Flu-infected and COVID mice. Data are shown as mean ± SEM. Two-way analysis of variance (ANOVA) was used to compare collagen deposition level changes over time. One-tailed unpaired Student's t-test was performed to test the difference between two groups at one time point. * * * indicates p < 0.001.

Method of histopathologic quantification of Krt5, smooth muscle actin, and collagen deposition in regions of consolidation. Lung, influenza 14 DPI, region of consolidation. Computer software was used to quantify the deposition of collagen (a, blue), SMA (b, green), or Krt-5 (c, red) in regions of consolidation and normal lung. Detection of each was determined based on intensity of staining in brightfield (collagen) or fluorescence (SMA & Krt-5). The same region of consolidation (box, top right) is used to demonstrate the analysis results for each marker. Arrows highlight foci of marker detection in paired images. Data generated from these analysis for all normal and consolidated regions are shown in graphs below (mean \pm SEM).

Comparison of Collagen Deposition in Regions of Consolidation to Normal Lungs

Supplemental Figure 10. Representative histopathology of COVID in human patient 3.

(a) Emphysematous changes characterized by coalescing and expanded alveolar space. (b) Organizing pneumonia with fibrocollagenous aggregates ("Masson bodies") plugging the alveoli. (c) Fat embolus in a small artery.

COVID patient 2

Supplemental Figure 11. No Krt5+ progenitor cell "pod" in COVID human patient 2 and patient 3. Krt5+ cells are only found in the basal layer of airways without any evidence of proliferation.

Supplemental Figure 12. Quantification of AT2 cells in the lungs of SARS-CoV-2and Flu- infected mice. Lung sections are from naïve B6 mice (n = 3), SARS-CoV2infected *z* mice at 7 (n = 3), 14 (n = 3), 21 (n = 3) and 45 (n = 2)DPI, Flu-infected B6 mice at 7 (n = 3) and 14 (n = 4) DPI. a-c) Representative image of AT2 cells in the lung of mice at 21 days post flu infection, 21 days post SARS-COV2 infection and naïve mice respectively. (d) Quantified data for the percentage of AT2 cells among total pulmonary cells in the lung tissue. AT2 cells are counted by Halo software. Mixed-effect analysis is used for flu-SARS comparison. Two-tailed unpaired t test is performed to compare the difference at 21 DPI. ** indicates p < 0.01.

Supplementary Table 1. Mice information

Strain	Sex	Sample Size	Age/ week	Inoculum	Im Infection Dose		Application
K18-hACE2 +/-	Male and Female	3	28	N/A	N/A	0	Histology
K18-hACE2 +/-	Male	1	16	SARS-CoV- 2(WA1/2020)	1.0X 10^4/ TCID 50	3	Histology
K18-hACE2 +/-	Male and Female	3	6-10	SARS-CoV- 2(WA1/2020)	2.0X 10^5/ TCID 50	7	Body weight
K18-hACE2 +/-	Male and Female	3	12-16	SARS-CoV- 2(WA1/2020)	1.0X 10^4/ TCID 50	7	Histology
K18-hACE2 +/-	Male and Female	3	12-16	SARS-CoV- 2(WA1/2020)	1.0X 10^4/ TCID 50	14	Histology
K18-hACE2 +/-	Male and Female	3	10	SARS-CoV- 2(WA1/2020)	1.0X 10^4/ TCID 50	21	Body weight/Histology /Viral load/Bulk RNA seq
K18-hACE2 +/-	Female	2	6-10	SARS-CoV- 2(WA1/2020)	1.0X 10^4/ TCID 50	45	Histology
C57BL/6J	Male	3	6-8	H1N1 A/PR/8/34 (PR8)	50 PFU	7	Histology Staining
C57BL/6J	Male	4	6-8	H1N1 A/PR/8/34 (PR8)	50 PFU	14	Histology Staining
C57BL/6J	Male	5	6-8	H1N1 A/PR/8/34 (PR8)	50 PFU	21	Histology staining
K18-hACE2 +/-	Female	4	8	N/A	N/A	0	Bulk RNA seq
K18-hACE2 +/-	Female	3	6-10	SARS-CoV- 2(WA1/2020)	2.0X 10^5/ TCID 50	4	Bulk RNA seq
K18-hACE2 +/-	Female	3	6-10	SARS-CoV- 2(WA1/2020)	2.0X 10^5/ TCID 50	6	Bulk RNA seq
K18-hACE2 +/-	Female	3	8-10	H1N1 A/PR/8/34 (PR8)	50 PFU	4	Bulk RNA seq
K18-hACE2 +/-	Female	3	8-10	H1N1 A/PR/8/34 (PR8)	50 PFU	6	Bulk RNA seq
K18-hACE2 +/-	Female	1	12	SARS-CoV- 2(WA1/2020)	2.0X 10^5/ TCID 50	4	Single cell RNA seq
K18-hACE2 +/-	Female	2	12	H1N1 A/PR/8/34 (PR8)	50 PFU	4	Single cell RNA seq
K18-hACE2 +/-	Female	2	12	H1N1 A/PR/8/34 (PR8)	50 PFU	6	Single cell RNA seq

DPI: Days post infection.

Supplemental Table 2. Statistically significant differentially expressed pathways between influenza and SARS-CoV-2-infected lungs at day 4 post infection.

NAME	GS follow link to MSigDB	GS DET	Set Siz	ES	Normalized_E nrichement_S	NO Mp-	FDR q-	Pv al	RANK AT	LEADIN G
		AILS	е		core	val	val	ue	MAX	EDGE
HALLMARK_INTERF	HALLMARK_INTERF	Detail	15	0.6	3.912263	0	0	0	1218	tags=75%,
ERON_GAMMA_RES	ERON_GAMMA_RES	S	1	560						list=24%,
PONSE	PONSE	D ()		53	0 700404	•	•	•		signal=96%
HALLMARK_INFA_SI	HALLMARK_INFA_SI	Detail	14	0.6	3.768104	0	0	0	1144	tags=68%,
GNALING_VIA_NFKB	GNALING_VIA_NFKB	S	6	398						list=23%,
		Detail	12	20	2 500020	0	0	0	1100	signal-00%
MATORY RESPONS	MATORY RESPONS	Detail	13 9	112	3.309029	0	0	0	1190	lays-09%,
F	F	5	0	86						signal=88%
		Detail	86	0.6	3 470372	0	0	0	904	tags=67%
FRON ALPHA RESP	FRON ALPHA RESP	s	00	421	0.110012	0	Ū	U	001	list=18%
ONSE	ONSE	0		52						signal=81%
HALLMARK IL6 JAK	HALLMARK IL6 JAK	Detail	64	0.6	3.296526	0	0	0	506	tags=56%.
STAT3 SIGNALING	STAT3 SIGNALING	s		736						list=10%,
				58						signal=62%
HALLMARK_ALLOGR	HALLMARK_ALLOGR	Detail	11	0.5	3.239597	0	0	0	1189	tags=64%,
AFT_REJECTION	AFT_REJECTION	s	2	811						list=24%,
				83						signal=82%
HALLMARK_P53_PA	HALLMARK_P53_PA	Detail	95	0.4	2.692231	0	0	0	1203	tags=54%,
THWAY	THWAY	s		927						list=24%,
				57						signal=69%
HALLMARK_IL2_STA	HALLMARK_IL2_STA	Detail	10	0.4	2.389516	0	0	0	918	tags=41%,
15_SIGNALING	15_SIGNALING	S	1	210						list=18%,
		Datall	10	67	0.004.474	0	4 40	0.0	4047	signal=49%
	HALLMARK_COMPLE	Detail	10	0.4	2.291471	0	1.43 E	0.0	1217	lags=50%
MENT	MENT	5	4	34			C-	01		1151-24%, signal-65%
HALLMARK KRAS SI	HALLMARK KRAS SI	Detail	08	04	2 256511	0	1 20	0.0	801	signal-03 //
GNALING UP	GNALING UP	s	30	0.4	2.230311	0	F-	0.0	031	list=18%
		5		36			04	01		signal=45%
HALLMARK APOPTO	HALLMARK APOPTO	Detail	80	04	2 158816	0	4 88	0.0	1387	tags=52%
SIS	SIS	S	00	105	2.100010	U U	E-	04		list=27%.
				6			04			signal=71%
HALLMARK MYC TA	HALLMARK MYC TA	Detail	30	0.4	2.103931	0	5.54	0.0	1896	tags=87%,
RGETS_V2	RGETS_V2	s		997			E-	05		list=38%,
-	-			73			04			signal=138%
HALLMARK_COAGUL	HALLMARK_COAGUL	Detail	60	0.4	2.067774	0	6.93	0.0	1395	tags=53%,
ATION	ATION	s		253			E-	07		list=28%,
				69			04			signal=73%

Supplemental Table 3. Statistically significant differentially expressed pathways between influenza and SARS-CoV-2-infected lungs at day 6 post infection

NAME	GS follow link to	GS	S	ES	Normilized_	NO	FD	FWE	RANK	LEADIN
	MSigDB	DET	IZ		Enrichment_	M p-	R q-	R p-	AT	G
		AILS	Е		Score	val	val	val	MAX	EDGE
HALLMARK_TNFA_SIG	HALLMARK_TNFA_SIG	Detai	1	0.6	3.1957	0	0	0	1332	tags=83%,
NALING VIA NFKB	NALING VIA NFKB	ls	0	062						list=30%,
			6	44						signal=116%
HALLMARK P53 PATH	HALLMARK P53 PATH	Detai	7	0.5	2.609483	0	0	0	1252	tags=65%,
WAY	WAY	ls	8	128						list=28%,
				18						signal=89%
HALLMARK KRAS SIG	HALLMARK KRAS SIG	Detai	8	0.4	2.554852	0	0	0	829	tags=54%,
NALING UP	NALING UP	ls	9	976						list=19%,
—	—			07						signal=65%
HALLMARK EPITHELIA	HALLMARK EPITHELIA	Detai	7	0.4	2.381339	0	0	0	1375	tags=66%,
L MESENCHYMAL TR	L MESENCHYMAL TR	ls	7	725						list=31%,
ANSITION	ANSITION			35						signal=94%
HALLMARK INFLAMMA	HALLMARK INFLAMMA	Detai	1	0.4	2.325041	0	0	0	756	tags=49%,
TORY RESPONSE	TORY RESPONSE	ls	0	398						list=17%,
—	—		0	1						signal=58%
HALLMARK IL6 JAK S	HALLMARK IL6 JAK S	Detai	4	0.4	2.065453	0	0	0	1159	tags=57%,
TAT3 SIGNALING	TAT3 SIGNALING	ls	2	855						list=26%.
				32						signal=77%
HALLMARK TGF BETA	HALLMARK TGF BETA	Detai	2	0.4	1.854932	0.00	0.0	0.02	1539	tags=79%.
SIGNALING	SIGNALING	ls	4	868		337	091	1		list=35%.
				25		8	94			signal=120%
HALLMARK APOPTOSI	HALLMARK APOPTOSI	Detai	6	0.3	1.584815	0.01	0.0	0.17	826	tags=42%.
s	s	ls	7	160		442	733	2		list=19%.
-	-		-	87		3	86	-		signal=51%
HALLMARK APICAL J	HALLMARK APICAL J	Detai	6	0.3	1.532568	0.00	0.0	0.23	776	tags=32%.
UNCTION	UNCTION	ls	9	086		934	926	1		list=17%.
				23		6	13			signal=38%
HALLMARK UV RESP	HALLMARK UV RESP	Detai	4	0.3	1 503433	0.03	0.1	0 27	1135	tags=49%
ONSE UP	ONSE UP	ls	7	348		589	050	6		list=25%.
			-	76		7	78	-		signal=65%
HALLMARK COMPLEM	HALLMARK COMPLEM	Detai	7	0.2	1.387579	0.02	0.1	0.48	440	tags=19%.
ENT	ENT	ls	7	751		272	936	7		list=10%.
				05		7	82	-		signal=21%

Species	Sex	Age	Weight	Inoculum	Timepoint
Chlorocebus aethiops	Male	7.35	4.2	RSV	2 WPI
Chlorocebus aethiops	Male	17.34	5.45	SHAM	4 WPI
Chlorocebus aethiops	Male	16.33	7.45	SARS-CoV-2	4 WPI
Chlorocebus aethiops	Male	16.3	6.9	SARS-CoV-2	4 WPI
Chlorocebus aethiops	Female	16.29	3.85	SARS-CoV-2	4 WPI
Chlorocebus aethiops	Female	16.28	4.25	SARS-CoV-2	2 WPI

Supplementary Table 4. Animal Information for Nonhuman Primate Comparators

WPI: Weeks post SARS-CoV-2 infection.

Supplementary Table 5. Human Case Information

Patient No.	1	2	3
Patient ID	UMAU20-00028	TMC-20-1(A14-20-1)	TMC-21-3
Age	78 years	58 years	86 years
Gender	female	male	male
Comorbidities	end-stage renal disease, type 2 diabetes and obesity	hypertension, type 2 diabetes mellitus, hepatitis C virus and chronic kidney disease	bilateral sacral fracture, atrial fibrillation, heart failure, hypertension, hyperlipidemia, stage 3 chronic kidney disease, cerebrovascular disease, peripheral artery disease, esophageal dilation, Parkinson disease, benign prostatic hyperplasia, and smoking
duration after test postive	2 day	32 days	17 days
histology changes	Her lungs exhibited early changes of COVID-19 disease and thrombosis. These included focal hemorrhage and severe alveolar edema with early hyaline membrane formation. She had numerous clots in the pulmonary vessels and severely elevated d-dimer levels (10,020 ng/ml; normal <250 ng/ml). The edema and hyaline membranes are early changes associated with diffuse alveolar damage. Case report can be found in [1].	extensive acute bronchopneumonia with focal bacteria colonies of cocci, multifocal organizing pneumonia with predominantly fibrosing and focally fibrinous features, which were consistent with a background COVID-19 infection.Additional significant findings included hypertrophic cardiomegaly, severe calcific atherosclerosis of the coronary arteries, centrilobular and midzonal necrosis of the liver consist with severe ischemic necrosis, glomerulosclerosis and arteriosclerosis of the kidneys, and diffuse mediastinal, hilar and mesenteric reactive lymphadenopathy. Case report can be found in [1].	aspiration pneumonia, emphysema, bone marrow, fat emboli, hypertensive hypertrophic cardiomyopathy, acute peritonitis, necrosis of the distal esophagus, glomerulosclerosis, and acute tubular necrosis. (Figures are attached as Supplemental Figure 10)

complications	cardiac arrest	end-stage renal failure requiring dialysis, and anoxic brain injury secondary to hypoxia	a right thigh hematoma and drop in hemoglobin, coffee ground emesis, pneumatosis of the stomach, pneumoperitoneum,necrosis of the distal esophagus, continued intraabdominal abscess, and bleeding from the spleen
progenitor cell staining description	Scatttered krt-5 positive cells are found in SARS-CoV2 deposit area. No "pod" structure.	Scatttered krt-5 positive cells are found in fibrosis area. No "pod" structure.	Very few krt-5 positive cells are found in fibrosis area. No "pod" structure.

Reference:

1. Liu, F., et al., *SARS-CoV-2 Infects Endothelial Cells In Vivo and In Vitro*. Front Cell Infect Microbiol, 2021. **11**: p. 701278.

Supplementary Table 6. Antibody Information

Anti-SARS	Anti-SARS-CoV	1: 1000	BEI Resources	# NR-10361
Anti-CD206	Anti-mouse	1: 50	R&D	# AF2535
Anti-SMA	Anti-mouse	1: 100	Abcam	# ab5694-100
Anti-Krt-5	Anti-mouse	1: 1000	BioLegend	# 905901
Anti-SMA	Anti-human	1: 100	Agilent	# M085129-2
Anti-Krt-5	Anti-human	1: 50	Abcam	# ab17130
Anti-pro SPC	Anti-mouse	1: 500	Seven Hills	# WRAB-9337
			Bioreagents	
Anti-trp63	Anti-mouse	1: 200	Cell Signaling	# 13109
			Technology	
Anti-NGFR	Anti-mouse	1: 100	Abcam	# ab52987