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Figure S1: Results of agglomerative clustering method, using untransformed data for
clustering. Each panel is a mirror plot showing the accuracy of a method on the three CRC
patients under different clustering resolutions: (a) for clonealign, (b) for Seurat, and (c-f) for
MaCroDNA with different preprocessing procedures on its input data. In panel (a), the input of
clonealign is the original data without the genes on X-chromosome. In panel (b), the input of Seurat
is the log-transformed data with the top 2000 genes selected. The input of MaCroDNA has four
different settings: in (c), 2000_genes_log is the same as the input of Seurat, in (d), all_genes_log
uses the same log-transformation as Seurat but all genes are kept, in (e), all _genes raw is the
original data with all genes, and in (f), noX_genes_raw is the same as the input of clonealign: the
original values without the genes on X-chromosome. In each panel, we performed the corresponding
method on each patient separately. Source data are provided as a Source Data file.
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Figure S2: clonealign results using agglomerative clustering method and the original
data for clustering. Each panel shows the accuracy of clonealign on the three CRC patients in
the form of a confusion matrix plot under the clustering resolution of six (a), seven (b), eight (c),
nine (d), 10 (e), 11 (f), and 12 (g) clusters. The input to clonealign is the original data without
the genes on X-chromosome. The data for clustering is the original untransformed data. In each
panel, we performed clonealign on each patient separately. Source data are provided as a Source

Data file
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Figure S3: Seurat results using agglomerative clustering method and the original data
for clustering. Each panel shows the accuracy of clonealign on the three CRC patients in the
form of a confusion matrix plot under the clustering resolution of six (a), seven (b), eight (c), nine
(d), 10 (e), 11 (f), and 12 (g) clusters. The input to Seurat is the log-transformed data with the
top 2000 genes having been selected. The data for clustering is the original data. In each panel,
we performed Seurat on each patient separately. Source data are provided as a Source Data file.
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Figure S4: MaCroDNA results using agglomerative clustering method and the original
data for clustering. Each panel shows the accuracy of clonealign on the three CRC patients in
the form of a confusion matrix plot under the clustering resolution of six (a), seven (b), eight (c),
nine (d), 10 (e), 11 (f), and 12 (g) clusters. The input to MaCroDNA is the same as the input for
Seurat. The input is the log-transformed data with the top 2000 genes having been selected. The
data for clustering is the original data. In each panel, we performed MaCroDNA on each patient
separately. Source data are provided as a Source Data file.
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Figure S5: MaCroDNA results using agglomerative clustering method and the original
data for clustering. Each panel shows the accuracy of clonealign on the three CRC patients in
the form of a confusion matrix plot under the clustering resolution of six (a), seven (b), eight (c),
nine (d), 10 (e), 11 (f), and 12 (g) clusters. The input to MaCroDNA is the log-transformed data,
which is the same transformation applied to the input for Seurat, with the difference being that
here, all genes are used. The data for clustering is the original data. In each panel, we performed
MaCroDNA on each patient separately. Source data are provided as a Source Data file.
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Figure S6: MaCroDNA results using agglomerative clustering method and the original
data for clustering. Each panel shows the accuracy of clonealign on the three CRC patients in
the form of a confusion matrix plot under the clustering resolution of six (a), seven (b), eight (c),
nine (d), 10 (e), 11 (f), and 12 (g) clusters. The input to MaCroDNA is the original data with all
the genes. The data for clustering is the original data. In each panel, we performed MaCroDNA
on each patient separately. Source data are provided as a Source Data file.
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Figure S7: MaCroDNA results using agglomerative clustering method and the original
data for clustering. Each panel shows the accuracy of clonealign on the three CRC patients in
the form of a confusion matrix plot under the clustering resolution of six (a), seven (b), eight (c),
nine (d), 10 (e), 11 (f), and 12 (g) clusters. The input to MaCroDNA is the original data without
the genes on X-chromosome, the same as the input for clonealign. The data for clustering is the
original data. For each panel, we performed MaCroDNA on each patient separately. Source data
are provided as a Source Data file.
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Figure S8: Results of agglomerative clustering method, using log-transformed data for
clustering. Each panel is a mirror plot showing the accuracy of a method on the three CRC
patients under different clustering resolutions: (a) for clonealign, (b) for Seurat, and (c-f) for
MaCroDNA with different preprocessing procedures on its input data. In panel (a), the input of
clonealign is the original data without the genes on X-chromosome. In panel (b), the input of
Seurat is the log-transformed data with the top 2000 genes having been selected. The input of
MaCroDNA has four different preprocessing settings: in (c), 2000_genes_log is the same as the
input of Seurat, in (d), all_genes_log uses the same log-transformation as Seurat but all genes are
used, in (e), all genes_raw is the original data with all genes, and in (f), noX_genes_raw is same
as the input of clonealign: original values without the genes on X-chromosome. For each panel,
we performed the corresponding method on each patient separately. Source data are provided as a

Source Data file.
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Figure S9: clonealign results using agglomerative clustering method and the log-
transformed data for clustering.. Each panel shows the accuracy of clonealign on the three
CRC patients in the form of a confusion matrix plot under the clustering resolution of six (a), seven
(b), eight (c), nine (d), 10 (e), 11 (f), and 12 (g) clusters. The input to clonealign is the original
data without the genes on X-chromosome. The data for clustering is the original log-transformed
data. For each panel, we performed clonealign on each patient separately. Source data are provided
as a Source Data file.
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Figure S10: Seurat results using agglomerative clustering method and the log-
transformed data for clustering. Each panel shows the accuracy of clonealign on the three
CRC patients in the form of a confusion matrix plot under the clustering resolution of six (a),
seven (b), eight (c), nine (d), 10 (e), 11 (f), and 12 (g) clusters. The input to Seurat is the
log-transformed data with the top 2000 genes having been selected. The data for clustering is the
log-transformed data. For each panel, we performed Seurat on each patient separately. Source data
are provided as a Source Data file.
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Figure S11: MaCroDNA results using agglomerative clustering method and the log-
transformed data for clustering. Each panel shows the accuracy of clonealign on the three
CRC patients in the form of a confusion matrix plot under the clustering resolution of six (a),
seven (b), eight (c), nine (d), 10 (e), 11 (f), and 12 (g) clusters. The input to MaCroDNA is the
same as the input for Seurat. The input is the log-transformed data of the original data. The top
2000 genes have been selected. The data for clustering is the log-transformed data. For each panel,
we performed MaCroDNA on each patient separately. Source data are provided as a Source Data
file.
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Figure S12: MaCroDNA results using agglomerative clustering method and the log-
transformed data for clustering. Each panel shows the accuracy of clonealign on the three
CRC patients in the form of a confusion matrix plot under the clustering resolution of six (a),
seven (b), eight (c), nine (d), 10 (e), 11 (f), and 12 (g) clusters. The input to MaCroDNA is the
log-transformed data, which is the same transformation applied to the input for Seurat, with the
difference being that here, all genes are used. The data for clustering is the log-transformed data.
For each panel, we performed MaCroDNA on each patient separately. Source data are provided as

a Source Data file.
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Figure S13: MaCroDNA results using agglomerative clustering method and the log-
transformed data for clustering. Each panel shows the accuracy of clonealign on the three
CRC patients in the form of a confusion matrix plot under the clustering resolution of six (a),
seven (b), eight (c), nine (d), 10 (e), 11 (f), and 12 (g) clusters. The input to MaCroDNA is
the original data with all the genes. The data for clustering is the log-transformed data. For each
panel, we performed MaCroDNA on each patient separately. Source data are provided as a Source
Data file.
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Figure S14: MaCroDNA results using agglomerative clustering method and the log-
transformed data for clustering. Each panel shows the accuracy of clonealign on the three
CRC patients in the form of a confusion matrix plot under the clustering resolution of six (a),
seven (b), eight (c), nine (d), 10 (e), 11 (f), and 12 (g) clusters. The input to MaCroDNA is
the original data without the genes on X-chromosome, the same as the input for clonealign. The
data for clustering is the log-transformed data. For each panel, we performed MaCroDNA on each
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Figure S15: Results of intNMF clustering method, using untransformed data for clus-
tering. Each panel is a mirror plot showing the accuracy of a method on the three CRC patients:
(a) for clonealign, (b) for Seurat, and (c-f) for MaCroDNA with different preprocessing procedures
on its input data. In panel (a), the input of clonealign is the original data without the genes on
X-chromosome. In panel (b), the input of Seurat is the log-transformed data with the top 2000
genes having been selected. The input of MaCroDNA has four different preprocessing settings:
in (c), 2000_genes_log is the same as the input of Seurat, in (d), all _genes_log uses the same
log-transformation for Seurat but all genes are used, in (e), all_genes_raw is the original data
with all genes, and in (f), noX_genes raw is the same as the input of clonealign: original values
without the genes on X-chromosome. For each panel, we performed the corresponding method on
each patient separately. Source data are provided as a Source Data file.
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Figure S16: Results of intNMF clustering method, using untransformed data for clus-
tering. Each panel shows the accuracy of clonealign on the three CRC patients in the form of a
confusion matrix plot: (a) for clonealign, (b) for Seurat, and (c-f) for MaCroDNA with different
preprocessing procedures on its input data. In panel (a), the input of clonealign is the original data
without the genes on X-chromosome. In panel (b), the input of Seurat is the log-transformed data
with the top 2000 genes having been selected. The input of MaCroDNA has four different settings:
in (c), 2000_genes_log is the same as the input of Seurat, in (d), all_genes_log uses the same
log-transformation for Seurat but all genes are used, in (e), all _genes raw is the original data
with all genes, and in (f), noX_genes_raw is the same as the input of clonealign: original values
without the genes on X-chromosome. For each panel, we performed the corresponding method on
each patient separately. Source data are provided as a Source Data file.
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Figure S17: Results of intNMF clustering method, using log-transformed data for clus-
tering. FEach panel is a mirror plot showing the accuracy of a method on the three CRC patients:
(a) for clonealign, (b) for Seurat, and (c-f) for MaCroDNA with different preprocessing procedures
on its input data. In panel (a), the input of clonealign is the original data without the genes on
X-chromosome. In panel (b), the input of Seurat is the log-transformed data with the top 2000
genes having been selected. The input of MaCroDNA has four different preprocessing settings:
in (c), 2000_genes_log is the same as the input of Seurat, in (d), all _genes_log uses the same
log-transformation for Seurat but all genes are used, in (e), all_genes_raw is the original data
with all genes, and in (f), noX_genes raw is the same as the input of clonealign: original values
without the genes on X-chromosome. For each panel, we performed the corresponding method on
each patient separately. Source data are provided as a Source Data file.
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Figure S18: Results of intNMF clustering method, using log-transformed data for clus-
tering. Each panel shows the accuracy of clonealign on the three CRC patients in the form of a
confusion matrix plot: (a) for clonealign, (b) for Seurat, and (c-f) for MaCroDNA with different
preprocessing procedures on its input data. In panel (a), the input of clonealign is the original data
without the genes on X-chromosome. In panel (b), the input of Seurat is the log-transformed data
with the top 2000 genes having been selected. The input of MaCroDNA has four different settings:
in (c), 2000_genes_log is the same as the input of Seurat, in (d), all_genes_log uses the same
log-transformation for Seurat but all genes are used, in (e), all _genes raw is the original data
with all genes, and in (f), noX_genes_raw is the same as the input of clonealign: original values
without the genes on X-chromosome. For each panel, we performed the corresponding method on
each patient separately. Source data are provided as a Source Data file.
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Figure S19: Results of CCNMF using the original data. Given a particular number of
clusters by the user, CCNMF infers that number of clusters. Here, we performed two experiments,
one with two clusters being inferred for each patient, and the other with three clusters for each
patient (except for the number of clusters, the rest of CCNMF’s input parameters were set as
default). The input data are original values. The results of CCNMF with two clusters in each
patient are shown in the forms of (a) mirror and (c) confusion matrix plots. CCNMF’s results
with three clusters in each patient are shown in the forms of (b) mirror and (d) confusion matrix
plots. For each panel, we performed CCNMF on each patient separately. Source data are provided
as a Source Data file.
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Figure S20: Results of CCNMF using log-transformed data. We performed two experiments,
one with two clusters being inferred for each patient, and the other with three clusters for each
patient. The input data are log-transformed. The results of CCNMF with two clusters in each
patient are shown in the forms of (a) mirror and (c) confusion matrix plots. CCNMF’s results
with three clusters in each patient are shown in the forms of (b) mirror and (d) confusion matrix
plots. For each panel, we performed CCNMF on each patient separately. Source data are provided
as a Source Data file.
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Table S1: K* index for phylogenetic signal [1] was used to measure the contribution of genomic
mutations to transcriptomic changes. For each gene, the p-value was estimated by a one-sided
random permutation test with 999 repetitions to test K* index against the null hypothesis of the
gene expression values being randomly distributed in the phylogeny (sample size was number of
DNA cells per biopsy: n = 274 for 16 (EAC), n = 339 for 20 (HGD1), n = 117 for 14 (HGD),
n = 312 for 6 (HGD), n = 362 for 9 (NDBE), and n = 342 for 20 (CARD)). The following
table contains the list of the COSMIC genes with statistically significant phylogenetic signal (i.e.,
p-value < 0.05 and K* > 1) identified in the BE data set.

Patient ID (histology) COSMIC genes with p-value < 0.05 and K* > 1!
GNAS?, BTG1, ATP1A1, B2M, DDX5, H3F3B, MSI2, PABPCI,
16 (EAC) EIF3E, HSP90AB1, ERBB3, ERBB2, HNRNPA2B1, H3F3A,

RPL10, BTG2, MUC1, RPL5, SMARCE1, AKAP9

PTPRC, LCP1, IKZF1, COND2, MSN, PRKCB, TNFAIP3,
FLNA, LCK, RHOH, PRF1, BTK, JAKS3, PIM1, B2M, FNBP1,
20 (HGD1) NFATC2, ITK, SEPT6, MUC1, ZNF331, PRDM1, SH2BS, IKZF3,
GATA2, BLM, ERBBS3, BCL2, MYHY, IDH2, LYL1, BCL11B,
TALI, KIAA15}9, KIT, MALT1, CYLD, IL7R, CARD11

CXCR4, MUC16, SLC34A2, AXIN2, ZNRFS, SIRPA, ETV5,
HMGA2, TP53, GATA1, SMAD2, CDKN1A, PRF1, CLP1, TFES3,
TAL1, BCL2, CBFA2TS, BTK, WAS, ZNF331, PTPRT, FCGR2D,

HLF, PTPN13, LYL1, KDSR, FAS, RARA, ITK, VAV1, JAKS,
WWTR1, PIM1, SRGAP3, BRAF, PRKCB, POLD1, RMI2, FLI1,
IRF), IKZF1, RBM15, SNX29, CREB3L2, ID3, SEPT6, PRDM],

GATAS3, SMADJ, BCL11B, COL1A1, JAZF1, LZTR1, CSF1R,

MITF, ZCCHCS, LATS2, PLCG1, DDIT3, RHOH, CD28,

CARD11, FNBP1, CDKN2C, NRJAS, ZMYMS3, IL7R, HEY],
MNX1, FLNA, BAX, ELF}, MALT1, SMARCB1, SH2BS, PMS2,

TBX3, NFATC2, MSN, MAFB, BLM, APOBEC3B, CHST11,

STAT5B, ABL2, SMARCDI1, CRTCS3, SMADS, XPC, FOXO1,
KIT, FOX0/, EXT?2, ERCCY, CEPS89, CYLD, NCOA2, HOXA11,

NOTCHI1, TNFRSF1/, NTHL1, DGCRS, RABEP1, CCND3,
KMT2D, FANCE, SS18, PTPNG, NBEA, ACVR1B, NF2, PTPRC,

FIP1L1, TLX1, ATF1, CPEB3, MYCL, CCND2

ERBB2, SMARCE1, MUCY, MSI2, CD7j, KLF6, SUB1, FKBPY,

NFIB, PABPC1, MACC1, ETNK1, NACA, TMPRSS2, HIF1A,

6 (HGD) KIF5B, HMGA1, SF3B1, ALDH2, MUC1, IDHI, ARHGEF10,

KIT, HSP90AA1, LCP1, AKAP9, CTNNB1, NPM1, MECOM,
MET, EIFJA2, BRD3, CTNNA1, FNBP1, ACSL3

9 (NDBE) ERBB2, LASP1, ARID1B, SF3B1
20 (CARD) MUC1, ALDH2, NDRG1, ELF3, SDC/, KLF}, CCND1

14 (HGD)

1 The names of the genes are sorted based on their corresponding K™ values in descending order.

2 The gene names are italicized according to the organism-specific formatting guidelines for humans.
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2 Supplementary Notes 1

Based on our experiment results, clonealign’s performance was unsatisfactory when using agg-log
clones, which are clones generated using the agglomerative clustering method on log-transformed
data. When using agg-log clones, clonealign assigned all cells to a single clone. For example, all
cells from patient CRC04 were assigned to crc04_clone2. Upon further examination of the data,
as can be seen from Table S2, we discovered that in each patient, there is a copy-number-2 clone,
where the copy number for every gene is 2. This is the clone that clonealign prefers assigning all
the cells to. It is important to note that the input of clonealign is different from that of Seurat
and MaCroDNA. The input of Seurat and MaCroDNA consists of three parts: a gene expression
read count matrix, a cell copy number matrix, and the clone labels for all cells in the copy number
matrix. However, clonealign only needs a gene expression read count matrix and a clone copy
number matrix. The gene expression read count matrix is a cell-by-gene matrix containing the
gene expression read count for each gene in each RNA cell. The cell copy number matrix is also
a cell-by-gene matrix, and each entry is the copy number of one gene in one DNA cell. The clone
copy number matrix, on the other hand, is a clone-by-gene matrix, with each entry representing
the copy number of one gene in one clone. To obtain the copy number of one gene in one clone, we
calculated the median value of that gene’s copy numbers in all the cells in that clone. Even though
the copy number is not 2 for each gene for each cell in that clone, the calculation of the median
number results in the copy-number-2 clone, which serves as the input of clonealign.

After observing the results presented in Table S2, we conducted further analysis by excluding
the copy-number-2 clones from the input. The results of this analysis are summarised in Table
S3. As shown in the table, for CRC04, all the cells were still assigned to a single cluster with
100% probability, and the highest proportion of this clone is around 0.8. However, for CRC10 and
CRC11, the assignment results were more balanced and the highest proportions are less than 0.65.

Taken together, Table S2 and Table S3 suggest that clonealign tends to assign cells to a single
clone if it has a dominant copy number compared to the other clones. For simplicity, we denote a
clone where every gene has the same copy number as a uniform-copy-number clone. If this clone

has a significantly high proportion of its most common copy number, it is called a dominant-copy-
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Patient CRC04
crc04_clone0 | crc04_clonel | crc04_clone2? | crc04_clone3
Most common copy number? 2 2 2 2
(proportion)® (0.549) (0.792) (1.000) (0.502)
clonealign assignment ¢ 0 0 93 0
(probability)® (0%) (0%) (100%) (0%)
Patient CRC10
crcl0_cloneO | crcl0_clonel crc10_clone2 crcl10_clone3
Most common copy number 2 2 2 2
(proportion) (0.615) (0.639) (0.562) (1.000)
clonealign assignment 0 0 0 85
(probability) (0%) (0%) (0%) (100%)
Patient CRC11
crcll_cloneO | crcll_clonel crcll_clone2 crcll_clone3
Most common copy number 2 2 2 2
(proportion) (0.554) (0.551) (0.547) (1.000)
clonealign assignment 0 0 0 192
(probability) (0%) (0%) (0%) (100%)

Table S2: The original clonealign results on clones generated from log-transformed data and ag-
glomerative clustering method (agg-log clones).

%The columns shown in bold text indicate the clones in whose clonal copy number profiles, every gene’s copy
number is 2 (copy-number-2 clones).

’The most common copy number in the corresponding clone.

“The proportion of the most common copy number in the corresponding clone. “1” indicates that in the corre-
sponding clone, each gene has the same copy number.

YThe number of cells that clonealign assigned to the corresponding clone.

“The mean of the clonal assignment probability.

number clone. In Table S2, every patient has a copy-number-2 clone, which is also a uniform-copy-
number clone. clonealign assigned all the cells to the copy-number-2 clones. In Table S3, CRC04
has a dominant-copy-number clone and clonealign still assigns all the cells to it. To further validate
this observation, we conducted three sets of comprehensive experiments. Firstly, we evaluated
clonealign’s performance on other uniform-copy-number clones, where the copy number is not 2.
Secondly, we assessed its effectiveness on dominant-copy-number clones by changing the proportion
of the most common copy number. Lastly, we evaluated clonealign when there were two uniform-

copy-number clones.
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Patient CRC04

crc04_clone(

crc04_clonel®

crc04_clone2

crc04_clone3

Most common copy number? 2 2 -¢ 2
(proportion)? (0.549) (0.792) - (0.502)
clonealign assignment © 0 93 - 0
(probability)/ (0%) (100%) - (0%)

Patient CRC10

crcl10_clone0

crclO_clonel

crcl0_clone2

crcl0_clone3

Most common copy number 2 2 2 -
(proportion) (0.615) (0.639) (0.562) -
clonealign assignment 56 14 15 -
(probability) (65.9%) (16.5%) (17.6%) -

Patient CRC11

crcll_clone0

crcll_clonel

crcll_clone2

crcll_clone3

Most common copy number 2 2 2 -
(proportion) (0.554) (0.551) (0.547) -
clonealign assignment 115 36 41 -
(probability) (59.9%) (18.8%) (21.4%) -

Table S3: clonealign performance on agg-log clones without copy-number-2 clones

“The column in bold text indicates the dominant-copy-number clone in patient CRCO04.
’The most common copy number in the corresponding clone.
‘Denotes the exclusion of this clone in the experiment.

4The proportion of the most common copy number in the corresponding clone. “1” indicates that in the corre-
sponding clone, each gene has the same copy number.

“The number of cells that clonealign assigned to the corresponding clone.

fThe mean of the clonal assignment probability.

2.1 Experiment 1: investigating clonealign’s behavior with single uniform-copy-

number clones

In our first experiment, we aimed to determine if clonealign’s tendency to assign cells to a single
clone is specific to copy-number-2 clones, or if it occurs for any uniform-copy-number clone. We
tested both copy number duplication and deletion scenarios in this experiment. According to
the clonealign paper, the default range of copy number is from 1 to 5, so we chose 1 and 5 as
deletion and duplication values, respectively. For the copy number deletion scenario, we removed
the existing copy-number-2 clone for each patient and added a new copy-number-1 clone where the

copy number for each gene is 1. Other clones remained unchanged. For the copy number duplication

case, we similarly removed the existing copy-number-2 clone and added a new copy-number-5 clone.
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clonealign was tested on these two scenarios separately.

Our results, shown in Tables S4 and S5, indicate that clonealign tends to assign cells to any
uniform-copy-number clone regardless of the magnitude of the copy number. For CRC04 and
CRC11, clonealign assigned all the cells to the copy-number-1 clone or the copy-number-5 clone.
For CRC10, clonealign assigned all the cells to the copy-number-5 clone and most cells to the

copy-number-1 clone. Overall, these results indicate that clonealign has a strong preference for any

uniform-copy-number clone.

Patient CRC04

crc04_clone0

crc04_clonel

crc04_clone2

crc04_clone3

copy-number_1°.

Most common copy number? 2 2 - 2 1
(proportion)? (0.549) (0.792) - (0.502) (1.000)

clonealign assignment © 0 0 - 0 93
(probability ) (0%) (0%) - (0%) (100%)

Patient CRC10

crc10_clone0

crcl0_clonel

crcl0_clone2

crcl0_clone3

copy-number_1

Most common copy number 2 2 2 - 1
(proportion) (0.615) (0.639) (0.562) - (1.000)

clonealign assignment 1 0 1 - 83
(probability) (1.2%) (0%) (1.2%) - (97.6%)

Patient CRC11

crcll_cloneO

crcll_clonel

crcll_clone2

crcll_clone3

copy-number_1

Most common copy number 2 2 2 - 1
(proportion) (0.554) (0.551) (0.547) - (1.000)
clonealign assignment 0 0 0 - 192
(probability) (0%) (0%) (0%) - (100%)

Table S4: Experiment 1 clonealign performance on copy-number-1 clones

“The columns in bold text indicate the uniform-copy-number clones, with a copy number of 1 for each gene

’The most common copy number in the corresponding clone.

“Denotes the exclusion of this clone in the experiment.

4The proportion of the most common copy number in the corresponding clone. “1” indicates that in the corre-
sponding clone, each gene has the same copy number.)

®The number of cells that clonealign assigned to the corresponding clone.

fThe mean of the clonal assignment probability.

2.2 Experiment 2: investigating clonealign’s behavior with dominant-copy-number

clones

In this experiment, we aimed to investigate clonealign’s behavior when dealing with dominant-

copy-number clones. A dominant-copy-number clone is defined as a clone that has a significantly
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Patient CRC04

crc04_clone(

crc04_clonel

crc04_clone2

crc04_clone3

copy-number_5°.

Most common copy number” 2 2 -¢ 2 1
(proportion)? (0.549) (0.792) - (0.502) (1.000)

clonealign assignment °© 0 0 - 0 93
(probability )/ (0%) (0%) - (0%) (100%)

Patient CRC10

crcl0_clone(

crcl0_clonel

crcl0_clone?2

crcl0_clone3

copy_number_5

Most common copy number 2 2 2 - 1
(proportion) (0.615) (0.639) (0.562) - (1.000)

clonealign assignment 0 0 0 - 85
(probability) (0%) (0%) (0%) - (100%)

Patient CRC11

crcll_cloneO

crcll_clonel

crcll_clone?2

crcll_clone3

copy_number_5

Most common copy number 2 2 2 - 1
(proportion) (0.554) (0.551) (0.547) - (1.000)
clonealign assignment 0 0 0 - 192
(probability) (0%) (0%) (0%) - (100%)

Table S5: Experiment 1 clonealign performance on copy-number-5 clones

“The columns in bold text indicate the uniform-copy-number clones, with a copy number of 5 for each gene

*The most common copy number in the corresponding clone.

“Denotes the exclusion of this clone in the experiment.

4The proportion of the most common copy number in the corresponding clone. “1” indicates that in the corre-
sponding clone, each gene has the same copy number.)

®The number of cells that clonealign assigned to the corresponding clone.

fThe mean of the clonal assignment probability.

high proportion of its most common copy number. This differs from a uniform-copy-number clone,
where all genes have the same copy number. To investigate clonealign’s behavior with dominant-
copy-number clones, we created three tests using dominant-copy-number clones with different pro-
portions. We chose proportions of 0.9, 0.8 and 0.7 to represent high, moderate, and low levels of
dominance, respectively. In both tests, the existing copy-number-2 clones were excluded, and a
new clone with 2 as the dominant copy number was added. In the first test, we randomly selected
0.9 of the genes and gave them copy number 2. For the rest of the genes, the copy number was
randomly selected from 1,3,4,5. For the second test, we reduced the proportion to 0.8 and for the
third test to 0.7, following the same procedure as in the first test. We then ran clonealign on these
tests.

Our results indicate that clonealign’s preference for dominant-copy-number clones decreases

as the dominance level decreases. Table S6 shows the results of our first test, where we used a
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proportion of 0.9. In this test, clonealign assigned almost all the cells to the dominant-copy-number
clones for patients CRC10 and CRC11. For patient CRC04, there are two dominant-copy-number
clones, and clonealign assigned more cells to the clone with a higher proportion. Table S7 shows the
results of our second test, where we reduced the proportion to 0.8. For patient CRC04, clonealign
assigned all the cells to the two dominant-copy-number clones. For patient CRC10, the assignment
is more balanced. For patient CRC11, the dominant clone has the most cells. Table S8 shows the
results of our third test, where we further reduced the proportion to 0.7. For patient CRC04, most
cells were assigned to the dominant-copy-number clone with moderate dominance. For patient
CRC11, although the dominance level is low for the dominant-copy-number clone, about half of the
cells were assigned to it. For patient CRC10, the dominant-copy-number clone loses its dominant
place.

In summary, these findings suggest that clonealign’s performance with dominant-copy-number
clones is influenced by the level of dominance and that it has a strong preference for dominant-

copy-number clones with high or moderate levels of dominance.

2.3 Experiment 3: investigating clonealign’s behavior with multiple uniform-

copy-number clones

In addition to the above experiments, we also investigated what will happen if there are two uniform-
copy-number clones. This differs from our first experiment, where we investigated clonealign’s
behavior with a single uniform-copy-number clone. To conduct this experiment, we added a copy-
number-5 clone on top of the original clone and ran clonealign three times with different random
seeds to see if the results would change.

As shown in Table S9, clonealign only assigned cells to the two uniform-copy-number clones, with
one of these clones taking up the majority of the cells. Furthermore, we observed that clonealign
performed inconsistently across multiple tests, with its choice between the uniform-copy-number
clones appearing to be random.

These findings suggest that when there are multiple uniform-copy-number clones, clonealign

may choose one of these clones to assign the majority of cells and assign the rest of the cells to the
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Patient CRC04

crc04_clone(

crc04_clonel?

crc04_clone2

crc04_clone3

proportion_0.9

b

Most common copy number 2 2 - 2 2
(proportion)? (0.549) (0.792) - (0.502) (0.900)

clonealign assignment °© 0 23 - 0 70
(probability )/ (0%) (24.7%) - (0%) (75.3%)

Patient CRC10

crcl0_clone(

crcl0_clonel

crcl0_clone2

crcl0_clone3

proportion_0.9

Most common copy number 2 2 2 - 2
(proportion) (0.615) (0.639) (0.562) - (0.900)

clonealign assignment 2 1 2 - 80
(probability) (2.4%) (1.2%) (2.4%) - (94.1%)

Patient CRC11

crcll_cloneO

crcll_clonel

crcll_clone2

crcll_clone3

proportion_0.9

Most common copy number 2 2 2 - 2
(proportion) (0.554) (0.551) (0.547) - (0.900)
clonealign assignment 2 0 0 - 190
(probability) (1.0%) (0%) (0%) - (99.0%)

Table S6: Experiment 2 clonealign performance on dominant-copy-number clones with proportion

0.9

“The columns in bold text indicate the dominant-copy-number clones.

*The most common copy number in the corresponding clone.

“Denotes the exclusion of this clone in the experiment.

4The proportion of the most common copy number in the corresponding clone. “1” indicates that in the corre-
sponding clone, each gene has the same copy number.)

®The number of cells that clonealign assigned to the corresponding clone.

fThe mean of the clonal assignment probability.

other uniform-copy-number clone. However, its choice between these clones may be inconsistent

and unpredictable.

2.4 Investigation of the cause of clonealign’s performance

After observing clonealign’s strong preference for uniform-copy-number clones and dominant-copy-
number clones, we decided to investigate the reason for its performance. clonealign applies mean-
field variational Bayes to obtain the variational approximation. After running the code line by
line, we found out that clonealign assigns all cells to the uniform-copy-number clones at the first
iteration. However, due to a lack of detailed ELBO for the variational approximation, we were
unable to determine why this happens.

Despite these challenges, our investigation provided valuable insights into clonealign’s behavior

29



Patient CRC04

crc04_clone0

crc04_clonel?

crc04_clone2

crc04_clone3

proportion_0.8

Most common copy number” 2 2 -¢ 2 2
(proportion)? (0.549) (0.792) - (0.502) (0.800)

clonealign assignment °© 0 80 - 0 13
(probability )/ (0%) (86.0%) - (0%) (14.0%)

Patient CRC10

crcl0_cloneO

crcl0_clonel

crcl0_clone2

crcl0_clone3

proportion_0.8

Most common copy number 2 2 2 - 2
(proportion) (0.615) (0.639) (0.562) - (0.800)

clonealign assignment 30 11 12 - 32
(probability) (35.3%) (12.9%) (14.1%) - (37.6%)

Patient CRC11

crcll_clone0

crcll_clonel

crcll_clone2

crcll_clone3

proportion_0.8

Most common copy number 2 2 2 - 2
(proportion) (0.554) (0.551) (0.547) - (0.800)
clonealign assignment 6 7 5 - 174
(probability) (3.1%) (3.6%) (2.6%) - (90.6%)

Table S7: Experiment 2 clonealign performance on dominant-copy-number clones with proportion

0.8

“The columns in bold text indicate the clones to which clonealign assigned the majority of the cells.
*The most common copy number in the corresponding clone.
“Denotes the exclusion of this clone in the experiment.

4The proportion of the most common copy number in the corresponding clone. “1” indicates that in the corre-
sponding clone, each gene has the same copy number.)
®The number of cells that clonealign assigned to the corresponding clone.
fThe mean of the clonal assignment probability.

and highlighted the need for further research to fully understand its performance with uniform-

copy-number clones and dominant-copy-number clones.

2.5 Investigating clonealign’s accuracy by adding pseudo-count values to the

inputs

To further investigate the effect of data preprocessing on the accuracy of clonealign, when preparing
the input data (which we denoted as noX_genes raw), instead of removing the genes with zero
absolute copy number in at least one cell, we added pseudo-count value of 1 to all absolute copy
number values. Next, we performed clonealign on the new data to compare the results with that of
the main preprocessing scheme. Fig. S21 illustrates the accuracy of clonealign for both preprocessing

procedures, the results from the removal of genes with at least one zero copy number value are
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Patient CRC04

crc04_clone0

crc04_clonel?

crc04_clone2

crc04_clone3

proportion_0.7

Most common copy number” 2 2 -¢ 2 2
(proportion)? (0.549) (0.792) - (0.502) (0.700)

clonealign assignment °© 0 91 - 0 2
(probability )/ (0%) (97.8%) - (0%) (2.2%)

Patient CRC10

crcl0_cloneO

crcl0_clonel

crcl0_clone2

crcl0_clone3

proportion_0.7

Most common copy number 2 2 2 - 2
(proportion) (0.615) (0.639) (0.562) - (0.700)

clonealign assignment 43 19 16 - 7
(probability) (50.6%) (22.4%) (18.8%) - (8.2%)

Patient CRC11

crcll_clone0

crcll_clonel

crcll_clone2

crcll_clone3

proportion_0.7

Most common copy number 2 2 2 - 2
(proportion) (0.554) (0.551) (0.547) - (0.700)
clonealign assignment 36 23 22 - 111
(probability) (18.7%) (12.0%) (11.5%) - (57.8%)

Table S8: Experiment 2 clonealign performance on dominant-copy-number clones with proportion

0.7

“The columns in bold text indicate the clone to which clonealign assigned the majority of the cells.

*The most common copy number in the corresponding clone.

“Denotes the exclusion of this clone in the experiment.

4The proportion of the most common copy number in the corresponding clone. “1” indicates that in the corre-
sponding clone, each gene has the same copy number.)

®The number of cells that clonealign assigned to the corresponding clone.

fThe mean of the clonal assignment probability.

denoted by clonealign rm0, and those from the addition of the pseudo-count value of 1 to all

entries are denoted by clonealign addl. As shown in Fig. S21, adding the pseudo-count values

did not improve the accuracy of clonealign and therefore, we decided to present the results of

clonealign from the removal of the genes with at least one zero copy number value as the main

results of clonealign.
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Figure S21: clonealign’s clonal assignment accuracy with two preprocessing procedures,
along with the accuracy of the other methods. Each panel displays the methods’ accuracy
across the three patients when the clustering algorithm and the input data to the clustering algo-
rithm were (a) the agglomerative clustering, and the original data, (b) the agglomerative clustering
and the log-transformed data, (c) the intNMF clustering and the original data, and (d) intNMF
and the log-transformed data. clonealign’s results when removing the genes with at least one zero
copy number are tagged with clonealign rmO, and those with adding pseudo-count values of 1 to
all copy number values are tagged with clonealign addl. Our results show that the removal of
genes with at least one zero copy number yields better results compared to adding pseudo-count
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values. Source data are provided as a Source Data file.
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3 Supplementary Notes 2

3.1 Investigating the effect of imbalance in clonal proportions across modalities

in CRC patients

Since our method is based on the assumption that the proportion of clones across the two modal-
ities is similar to each other, we investigated the effect of deviation from this assumption on the
performance of MaCroDNA on the CRC data set. In particular, for each CRC patient, we per-
formed two experiments that involved resampling the original data sets, resulting in variations in
clonal proportions between scDNA-seq and scRNA-seq data. To achieve this goal, we used the two

following techniques:

e Random removal: we randomly selected a limited number of scDNA-seq cells with joint
DNA-RNA information and removed them from the DNA data as we inputted the RNA and
DNA data to MaCroDNA.

e Clonal proportion resampling: we drew new proportions for the DNA clones and resam-

pled the scDNA-seq cells with replacement to achieve the randomly drawn clonal proportions.

In the following, we elaborate on the details of these experiments.

3.1.1 Random removal of scDNA-seq cells from DNA data

In this experiment, for each CRC patient, we performed the following test:

1. From the scDNA-seq cells whose joint RNA information is available, randomly select 10 cells

and remove them from the original DNA data.

2. Run MaCroDNA on the new data set and measure the accuracy of clonal assignments only
for the scRNA-seq cells whose actual scDNA-seq pairs were removed from the DNA data in

the previous step.

In this scenario, a scRNA-seq cell whose true pair is removed from the DNA data is correctly

assigned to a clone if the clone ID is the same as the clone ID of its scDNA-seq pair. We repeated the
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above test 10,000 times on the preprocessed CRC data named all_genes_log with different clustering
settings. For each clustering setting, we used the highest clustering resolution available, that is,
four clusters per patient when using agglomerative clustering and the optimal number of clusters
when using the intNMF clustering algorithm. First, we looked into the accuracy of the scRNA-seq
cells’ clonal assignment in the presence and absence of their true scDNA-seq pairs. Fig. S22 displays
the accuracy measurements under these two conditions for all patients and clustering techniques.
The box plots show that the accuracy of clonal assignments decreases when the true scDNA-seq
cells are absent in the DNA data.

Furthermore, we aimed to measure the extent to which the accuracy changed due to the removal
of ten randomly sampled scDNA-seq cells in each repetition of the random removal test. To achieve
this, for each test, we subtracted the accuracy of clonal assignments in the absence of true pairs from
that in their presence. Fig. S23 shows this change in accuracy for all CRC patients under different
clustering techniques. As shown in the figure, in most cases, the median of changes ranged between
0% to 10%, i.e., zero or one more wrong assignment occurred as the consequence of the removal
of the true pairs. Interestingly, we observed negative values in the lower tail of the distributions

meaning the clonal assignment accuracy increased in some rare cases.

3.1.2 Resampling clonal proportions in DNNA data

The previous experiment by removal of scDNA-seq cells does not provide insights into the behavior
of MaCroDNA under extreme conditions where the proportions of clones deviate from the original
ones significantly. To address this, we designed another experiment on the CRC patients, in which
we randomly drew the clonal proportions in the DNA data and resampled the scDNA-seq cells with
replacement within each clone to achieve the drawn proportions. Assuming there are K clones in a

2 K ],

CRC patient named P, and their corresponding proportions are denoted by Ilp = [7?113, Ty, Tp

we performed the following steps:

1. Draw K new proportion for all the DNA clones from the following Dirichlet-multinomial
distribution,

[7}1133 aﬁ-g] ~ DirMUIt(NP7aP)a (1)
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Figure S22: Accuracy of clonal assignments before and after the random removal of
scDNA-seq cells from the DNA data. For each group of ten randomly selected scDNA-seq
cells that we removed from the DNA data, we measured the accuracy of clonal assignments of
their true scRNA-seq pairs before and after the removal of those selected scDNA-seq cells. These
box plots compare the accuracies under these two conditions for all the patients when the cluster-
ing algorithms and their input data were (a) agglomerative clustering and the original data, (b)
agglomerative clustering and log-transformed data, (c) intNMF clustering and original data, and
(d) intNMF clustering and log-transformed data (10,000 random repetitions for each configuration
of patient, clustering algorithm, and input data). The results belonging to before and after the
removal of sScDNA-seq cells are shown in blue and orange boxes, respectively. Each box represents
the data points between the 25" and 75" percentiles (Q1 and @3, respectively). The whiskers
extend to Q1 — 1.5(Q3 — Q1) and Q3 + 1.5(Q3 — Q1). Every data outside of this range is counted
as an outlier. Source data are provided as a Source Data file.

where ﬁfp represents the new proportion of clone 7 in patient P, Np denotes the total number
of scDNA-seq cells in patient P (number of trials for the Dirichlet-multinomial distribution)
and ap = [ak,---,alf] is an all-ones vector of length K containing the parameters of the

Dirichlet prior. Here we used a symmetric Dirichlet prior with a concentration parameter of
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Figure S23: Effect of the removal of scDNA-seq cells from the DN A input on the clonal
assignment accuracy. For each random removal repetition, we subtracted the clonal assignment
accuracy of the ten randomly selected scRNA-seq cells whose true DNA pairs were removed, after
the removal, from their clonal assignment accuracy before the removal. Each box plot shows
these measures for all the patients when the clustering algorithms and their input data were (a)
agglomerative clustering and the original data, (b) agglomerative clustering and log-transformed
data, (c) intNMF clustering and original data, and (d) intNMF clustering and log-transformed
data (10,000 random repetitions for each configuration of patient, clustering algorithm, and input
data). The boxes are colored based on their corresponding patient labels. Each box represents the
data points between the 25" and 75" percentiles (Q1 and @3, respectively). The whiskers extend
to Q1 — 1.5(Q3 — Q1) and Q3 + 1.5(Q3 — Q1). Every data outside of this range is counted as an
outlier. The negative values show that, in some cases, the removal of scDNA-seq pairs improved
the clonal assignment of their RNA pairs. Source data are provided as a Source Data file.

1 (ap = 1).

2. Given the randomly drawn clonal proportions from step 1, for each clone 7, sample fr}; scDNA-

seq cells within that clone using replacement.

3. For patient P, aggregate all randomly sampled scDNA-seq cells and, along with the original
RNA data, pass them as input to MaCroDNA.
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4. Measure the accuracy of clonal assignments of the scRNA-seq cells with joint RNA-DNA
information by counting the number of scRNA-seq cells that are assigned to the same clones

that their true scDNA-seq pairs belong to.
5. Repeat steps 1 to 3, 10,000 times.

We performed the above experiment on all patients and all clustering settings with the highest
clustering resolution available (four clusters per patient for agglomerative clustering, and the op-
timal number of clusters for intNMF clustering). Fig. S24 shows the clonal assignment accuracy
measurements for all the repetitions, patients, and clustering settings. Although this figure shows
that the accuracy of clonal assignments decreases with the randomly drawn clonal proportions,
we observed that the variation in the average accuracy was dependent on the choice of clustering
technique: while the average accuracy across the tests and patients with agglomerative clustering
ranged approximately from 30% to 50% (Fig. S24a and b), the results with intNMF clustering
showed higher average accuracy between 60% to 80% (Fig. S24c and d).

To better understand the impact of the difference between the clonal proportions in the two
modalities on the clonal assignment accuracy, we calculated the Earth mover’s distance (EMD)
between the original clonal proportions and the sampled ones for each random test using Python’s
Scipy package v1.5.2. Next, we calculated the Spearman correlation between the EMDs and the
corresponding accuracy values for each patient and clustering setting. Figs. S25, S26, and S27
illustrate the scatter plots of the accuracy measures against the EMD values for patients CRC04,
CRC10, and CRC11, respectively. We observed strong negative Spearman correlation coefficients
with zero p-values in almost all patients and clustering settings, indicating that the accuracy drops
as the clonal proportions deviate from the original ones. The only exception was observed in
the data under intNMF clustering in patient CRC04, which demonstrated a moderate negative
correlation (see Fig. S25c and d). This is due to the presence of some interesting cases where the

accuracy increased with the increase in the EMD.
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Figure S24: Accuracy of clonal assignment for different randomly sampled clonal pro-
portions. Each violin plot shows the accuracy distributions of clonal assignments for scRNA-seq
cells with both RNA and DNA information in each patient when the clustering algorithms and their
input data were (a) agglomerative clustering and the original data, (b) agglomerative clustering
and log-transformed data, (c) intNMF clustering and original data, and (d) intNMF clustering
and log-transformed data (10,000 random repetitions for each configuration of patient, clustering
algorithm, and input data). The violins are colored based on their patient labels. On each violin,
the white dot represents the median. The thick black bar in the center of the violin shows the in-
terquartile range (data between the 25" and 75 percentiles, Q1 and @3, respectively. The black
lines stretched from the interquartile bar extend to Q1 — 1.5(Q3 — Q1) and @3 + 1.5(Q3 — Q1),
minimum and maximum, respectively. Source data are provided as a Source Data file.

3.2 Random assignment test for BE biopsies

Since the ground truth information of the paired scDNA-seq and scRNA-seq cells was not provided
for the BE biopsies, and we could not evaluate the correctness of the scRNA-seq cells’ assignments,
obtaining the confidence scores for the scRNA-seq cells’ assignments was necessary and useful for
the analysis. As a simple way of determining the confidence scores, for each biopsy, we compared
the result of MaCroDNA with those of a large number of random assignments replicates. To

randomly assign scRNA-seq cells to scDNA-seq ones, we used the same rules for the maximum
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Figure S25: Correlation between the clonal assignment accuracy and EMD of the ran-
domly sampled and the original clonal proportions in patient CRC04. Each dot in the
scatter plots illustrates the clonal assignment accuracy against the EMD of the sampled and original
clonal proportions in a single random sampling. The four panels correspond to the clustering algo-
rithms and their input data: (a) agglomerative clustering and the original data, (b) agglomerative
clustering and log-transformed data, (c) intNMF clustering and original data, and (d) intNMF
clustering and log-transformed data. We performed 10,000 random repetitions for each configura-
tion of patient, clustering algorithm, and input data (n = 93 DNA cells in CRC04 patient). In each
panel, the Spearman correlation coefficient and its p-value are shown in the corner of the panel. The
p-values are estimated by a two-sided hypothesis test whose null hypothesis is that accuracy and
Farth mover’s distance have no correlation. The null distribution was a Student t-distribution with
v = 9,998 degree of freedom for 10,000 random repetitions. Under the agglomerative clustering
setting, we observed a strong negative correlation indicating that the accuracy significantly drops
as the clonal proportions deviate from the original ones. Although the data under the intNMF
clustering displayed an overall decreasing trend, they demonstrated a moderate negative correla-
tion, due to the presence of some cases where the accuracy increases with the EMD. Source data
are provided as a Source Data file.

number of scRNA-seq cells assigned to each scDNA-seq cell: if Ng and N¢ denote the number of
scRNA-seq and scDNA-seq cells, respectively, then each scDNA-seq cell is allowed to be selected by

at most [%—g] scRNA-seq cells. Following this rule, we repeated this random assignment for each
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Figure S26: Correlation between the clonal assignment accuracy and EMD of the ran-
domly sampled and the original clonal proportions in patient CRC10. Each dot in
the scatter plots illustrates the clonal assignment accuracy against the EMD of the sampled and
original clonal proportions in a single random sampling. The four panels correspond to the clus-
tering algorithms and their input data: (a) agglomerative clustering and the original data, (b)
agglomerative clustering and log-transformed data, (c) intNMF clustering and original data, and
(d) intNMF clustering and log-transformed data. We performed 10,000 random repetitions for
each configuration of patient, clustering algorithm, and input data (n = 123 DNA cells in CRC10
patient). In each panel, the Spearman correlation coefficient and its p-value are shown in the corner
of the panel. The p-values are estimated by a two-sided hypothesis test whose null hypothesis is
that accuracy and Earth mover’s distance have no correlation. The null distribution was a Student
t-distribution with v = 9,998 degree of freedom for 10,000 random repetitions. In the patient
CRC10, we observed a strong negative correlation indicating that the accuracy significantly drops

as the clonal proportions deviate from the original ones. Source data are provided as a Source Data
file.

biopsy, 100 million times. For both the random assignments and MaCroDNA, we used the sum
of the Pearson correlation coefficients between the assigned cells as the score of the assignment.
Next, for each biopsy, we calculated the p-value of MaCroDNA’s assignments as the proportion of

random assignment scores that were greater than MaCroDNA’s score, divided by the total number
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Figure S27: Correlation between the clonal assignment accuracy and EMD of the ran-
domly sampled and the original clonal proportions in patient CRC11. Each dot in the
scatter plots illustrates the clonal assignment accuracy against the EMD of the sampled and original
clonal proportions in a single random sampling. The four panels correspond to the clustering algo-
rithms and their input data: (a) agglomerative clustering and the original data, (b) agglomerative
clustering and log-transformed data, (c) intNMF clustering and original data, and (d) intNMF
clustering and log-transformed data. We performed 10,000 random repetitions for each configura-
tion of patient, clustering algorithm, and input data (n = 249 DNA cells in CRC11 patient). In
each panel, the Spearman correlation coefficient and its p-value are shown in the corner of the panel.
The p-values are estimated by a two-sided hypothesis test whose null hypothesis is that accuracy
and Earth mover’s distance have no correlation. The null distribution was a Student ¢-distribution
with v = 9,998 degree of freedom for 10,000 random repetitions. Similar to patient CRC10, in
patient CRC11, we observed a strong negative correlation indicating that the accuracy significantly
drops as the clonal proportions deviate from the original ones. Source data are provided as a Source
Data file.

of random assignment replicates. The histograms of the scores for all BE biopsies, along with
the calculated p-values of MaCroDNA'’s scores, are shown in Fig. S28. As shown, all p-values for
MaCroDNA’s scores are zero, indicating the non-triviality of the MaCroDNA’s results compared

to the random assignments.
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Since the sum of Pearson correlation coefficients might be affected by the outlier values, we
further used the median of Pearson correlation values among the paired cells as the score of an
assignment (for both MaCroDNA and random assignments). Fig. S29 illustrates the histograms
of medians for all the BE biopsies. We used the same random seed to reproduce the random
assignments that are shown in Fig. S28. Similar to the previous experiment, the p-value for
the MaCroDNA median was calculated as the proportion of random assignments’ medians that
were greater than MaCroDNA’s median, divided by the total number of random assignment repli-
cates. As illustrated, the median of Pearson correlation coefficients inferred by MaCroDNA is still
higher than those of the random assignments and the zero p-values in all BE biopsies imply that
MaCroDNA’s results are statistically significant.

The visual inspection of Figs. S28 and S29 suggested that using median instead of sum, did
not change the ranking of BE biopsies in terms of their random assignment scores, i.e., the healthy
and non-dysplastic BE biopsies had relatively lower scores than the higher-degree biopsies, based
on both the sum and the median of Pearson correlation values. To quantify this observation,
we drew the regression plot between the two scores and calculated the Spearman and Pearson
correlation values between them. Specifically, for each BE biopsy, we measured the median of
random assignments’ scores for each of the two metrics including the median and sum of Pearson
correlation values, as the summary scores of that BE biopsy. Fig. S30 shows that the median
of randomly drawn scores (sum and median) are highly correlated with significant p-values (the
correlation values and their corresponding p-values are shown at the top of the figure). This implies
that the original distributions of Pearson correlation values in the random assignments were not
skewed.

More importantly, Fig. S30 shows that, overall, random assignment of cells on healthy and non-
dysplastic BE biopsies obtained lower correlation values compared to the high-degree and cancer
biopsies. This implies that two randomly drawn cells, one with gene expression data and the other
with copy number information from a healthy or non-dysplastic biopsy, tend to demonstrate less
correlation compared to two randomly drawn cells from high-degree or cancer biopsies. Although

the level of heterogeneity in these biopsies seems to be a contributing factor (we discuss the effect
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of heterogeneity on the performance of MaCroDNA in Sections Stability analysis of MaCroDNA’s
assignments for BE biopsies and Retrieval of BE biopsy labels), here, heterogeneity does not affect
a random assignment scheme as this scheme does not prioritize the assignment of cells with higher
correlation. To have a higher correlation in random assignments, there must be copy number
changes shared by a large portion of DNA cells that drive differential gene expressions (such CNAs
might have occurred at the early stages of clonal expansion and disease development). Under this
scenario, random assignments show high correlations even if the biopsy is homogeneous. Therefore,
we speculate that the presence of (or lack thereof) gene-expression-influencing copy number changes
present in major DNA clones might be the key factor (see clone-specific CNAs in high-degree and
cancer biopsies in Figures 2 and 3 of the original study [2]). Of course, our hypothesis requires

more investigation and we leave it as future direction.
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Figure S28: Histograms of random assignment scores for the BE biopsies. Each panel
illustrates the histogram of the 100 million random assignment scores for a BE biopsy: (a-b)
for healthy biopsies, 20 (CARD) and 20 (ESO); (c-e) for non-dysplastic biopsies, 9 (NDBE), 14
(NDBE), and 16 (NDBE); (f—g) for low-grade biopsies, 6 (LGD) and 19 (LGD); (h-j) for high-
grade biopsies, 6 (HGD), 14 (HGD), and 20 (HGD1); and (k) for cancer biopsy 16 (EAC). The
x-axis represents the scores, and the y-axis represents the corresponding counts. In each panel,
a red vertical line is plotted to MaCroDNA’s score. Additionally, the p-value of MaCroDNA’s
score is displayed on each biopsy panel. For each biopsy, the p-value of MaCroDNA’s assignments
was estimated by a one-sided permutation test as the proportion of random assignment scores that
were greater than MaCroDNA’s score, divided by the total number of random assignment replicates
(sample sizes were the total number of DNA and RNA cells per biopsy: n = 591 for 20 (CARD),
n = 520 for 20 (ESO), n = 522 for 9 (NDBE), n = 459 for 14 (NDBE), n = 464 for 16 (NDBE),
n = 574 for 6 (LGD), n = 671 for 19 (LGD), n = 501 for 6 (HGD), n = 289 for 14 (HGD), n = 572
for 20 (HGD), and n = 461 for 20 (EAC)). The presence of a large gap between the random and
MaCroDNA’s scores, along with all p-values being zero, indicates that MaCroDNA’s assignments
are non-trivial. Source data are provided as a Source Data file.
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Figure S29: Histograms of median of Pearson correlation coefficients among all paired
cells for each random assignment in each BE biopsy. Each panel illustrates the histogram of
the medians for the 100 million random assignments performed for each BE biopsy (the same trials
as in Fig. S28): (a-b) for healthy biopsies, 20 (CARD) and 20 (ESO); (c-e) for non-dysplastic biop-
sies, 9 (NDBE), 14 (NDBE), and 16 (NDBE); (f-g) for low-grade biopsies, 6 (LGD) and 19 (LGD);
(h-j) for high-grade biopsies, 6 (HGD), 14 (HGD), and 20 (HGD1); and (k) for cancer biopsy
16 (EAC). The x-axis represents the median values, and the y-axis represents the corresponding
counts. In each panel, a red vertical line is plotted to show MaCroDNA’s median. Additionally,
the p-value of MaCroDNA’s median is displayed on each biopsy panel. For each biopsy, the p-value
of MaCroDNA’s assignments was estimated by a one-sided permutation test as the proportion of
random assignment scores that were greater than MaCroDNA'’s score, divided by the total number
of random assignment replicates (sample sizes were the same as in Fig. S28). The presence of a large
gap between the random and MaCroDNA’s medians, along with all p-values being zero, indicates
that MaCroDNA’s assignments are non-trivial. Source data are provided as a Source Data file.
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Figure S30: Regression plot between the median of random assignments’ scores (the
sum and median of Pearson correlation values) for all BE biopsies. Each dot represents
a BE biopsy. For each biopsy, we measured the median of random assignments’ scores for the two
metrics including the median of Pearson correlation values (y-axis), and sum of Pearson correlation
values (x-axis). The regression line is in blue, and the 95% confidence interval is shown in light
blue shaded area. The Pearson and Spearman correlation coefficients, along with their p-values
are shown at the top of this figure. For both Pearson and Spearman correlations, the p-values are
estimated by a two-sided hypothesis test whose null hypothesis is that two scores have no correlation
(n = 11 patients). The null distribution was a Student ¢-distribution with v = 9 degree of freedom
for eleven patients. The strong and significant correlation between the two scores indicates that
the original distributions of Pearson correlation values in the random assignments were not skewed.
Moreover, one can observe that the healthy and non-dysplastic biopsies demonstrate lower scores
compared to the higher-degree biopsies according to both scores. Source data are provided as a
Source Data file.
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3.3 Stability analysis of MaCroDNA’s assignments for BE biopsies

The BE data set contains biopsies from healthy, diseased, and cancer tissues. It is reasonable to
assume that as the level of heterogeneity in the scDNA-seq data of a biopsy decreases, and the
copy number profiles become more identical, selecting the best match for each scRNA-seq cell in
the RNA data becomes less definitive. To study this hypothesis, we defined two measures; one for
the stability and definitiveness of the scRNA-seq assignments named assignment instability index
(AII), and the other for measuring the level of heterogeneity of a biopsy, based on the pairwise
Ll-norm distances between its scDNA-seq cells’ copy number profiles. Finally, we investigated the
correlation between the two measures. In the following sections, first, we describe the AIl and our
comparison between the biopsies in terms of this index, and next, the definition of the heterogeneity

score and its relationship with the AIL

3.3.1 Assignment instability index

To measure the stability of scRNA-seq cells’ assignments in the BE biopsies, we designed a leave-
one-out experiment that involved introducing a small perturbation into the input data by leaving
out one of the scRNA-seq cells. Specifically, for each scRNA-seq cell g;, in a biopsy, we performed

the following:

1. Remove g; from the RNA input. Run MaCroDNA on the rest of the RNA data and the entire

DNA data in the biopsy.

2. Assign g; to the scDNA-seq cell to which less than [%—g] scRNA-seq cells are already assigned,
and it has the highest Pearson correlation coefficient with g;. Here, Ng and N¢ denote the

total number of scRNA-seq and scDNA-seq cells in the biopsy, respectively.

Such perturbation in the RNA inputs might change the assignment of not only the left-out scRNA-
seq cell but also the remaining scRNA-seq cells. Therefore, for each scRNA-seq cell, we aggregated
the scDNA-seq cells’ IDs assigned to it across all the leave-one-out trials. Next, for each scRNA-
seq cell, we collected the scDNA-seq cell IDs that were different from the assigned scDNA-seq cell
ID when running MaCroDNA on the entire RNA data and defined the AII as the number of such
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different scDNA-seq cell IDs. The higher the AII, the more unstable and indefinitive the assignment
of a scRNA-seq is in the presence of perturbation. As illustrated in Fig. S31, the distribution of
assignment instability indices across all biopsies is almost identical. However, they differ in the

outliers.
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Figure S31: Box plots of the assignment instability indices for the BE biopsies. The
biopsy labels are shown on the y-axis, and the x-axis shows the assignment instability index values
observed for all the scRNA-seq cells in the biopsy across all leave-one-out trials. The distributions
are almost identical except for the outliers. Each box represents the data points between the 25"
and 75" percentiles (Q1 and @3, respectively). The whiskers extend to Q1 — 1.5(Q3 — Q1) and
Q3 + 1.5(Q3 — Q1). Every data outside of this range is counted as an outlier. Source data are
provided as a Source Data file.
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3.3.2 Maximum assignment instability indices are highly correlated with heterogene-

ity scores

To investigate the potential relationship between the stability of the assignments with the level of
copy number heterogeneity in the BE biopsies, we needed to define a heterogeneity measurement.
First, for each biopsy, we calculated the pairwise L1-norm distances between all scDNA-seq cells;
then, to avoid the effect of outliers, instead of the mean, we used the median of the distribution
of the pairwise distances as the heterogeneity score. As mentioned in the previous section, we
hypothesized that the outliers might be the differentiating features between the distributions of
Alls across the BE biopsies. Therefore, we summarized each biopsy’s All distribution with its
range of values (difference between maximum and minimum values). Since the minimum AIT in
all biopsies was zero, the maximum AII became the representative of the biopsies’ AIl values.
Calculating the Pearson and Spearman correlation coefficients showed a strong negative correlation
between the maximum Alls and the heterogeneity scores, suggesting that more similarity between
the copy number profiles makes the assignment of scRNA-seq cells more indefinitive and conversely,

more heterogeneous biopsies demonstrate more stable and definitive assignments (Fig. S32).

3.4 Retrieval of BE biopsy labels

As demonstrated in the previous experiment, the level of heterogeneity in the BE biopsies affects
the definitiveness of the assignments. Having this observation, we sought to investigate the defini-
tiveness of the assignments, this time, across the biopsies by aggregating all the scDNA-seq and
scRNA-seq cells from all biopsies and running MaCroDNA on the pooled data without providing
the cells’ biopsy labels to the method. This way, we allowed the scRNA-seq cells to be assigned
to any biopsy’s scDNA-seq cell. Having the true biopsy labels, we measured the accuracy of as-
signments per biopsy, as the number of the scRNA-seq cells that are assigned to a scDNA-seq cell
from the same biopsy divided by the total number of scRNA-seq cells in the biopsy. Table S10
shows the accuracy of each biopsy in this experiment. Among the BE biopsies, all healthy and non-
dysplastic biopsies displayed very low accuracy while one of the low-grade, two of the high-grade,

and the cancer biopsies demonstrated high accuracy values (see the green rows of Table. S10). This

50



PAT14 PAT19
(HGD) (LGD)

9 @@ @ rATi6

— PAT14  (NDBE)
c E
() 8

X
Es
oc 7/ @ o
‘" - PAT20 PAT20 PAT16
? > (CARD) (HGD1) o (E:C)
= 3 PAT20
= S 5 (ESO)

7))
ET
x - —
© 4
=

3

3500 4000 4500 5000 5500
Heterogeneity score

Pearson corr. coeff.: -0.779, p-value: 0.005

Spearman corr. coeff.: -0.868, p-value: 0.001

Figure S32: Regression plot between the maximum assignment instability indices and
heterogeneity scores of the BE biopsies. Each dot represents a biopsy. The heterogeneity
scores and assignment instability indices are shown on the x-axis and y-axis, respectively. The
regression line is in red, and the 95% confidence interval is shown by the brown shaded area. The
Pearson and Spearman correlation coefficients, along with their p-values, are shown in the green
box at the bottom of this figure. For both Pearson and Spearman correlations, the p-values are
estimated by a two-sided hypothesis test whose null hypothesis is that two scores have no correlation
(n = 11 patients). The null distribution was a Student ¢-distribution with v = 9 degree of freedom
for eleven patients. The correlation coefficients imply that lower heterogeneity in a biopsy makes
the scRNA-seq assignments more indefinitive. Source data are provided as a Source Data file.

clearly suggests that the definitiveness and confidence of the assignments increases with the level

of heterogeneity in the biopsies.

Additionally, we looked into the distribution of each biopsy’s scRNA-seq cells’ assignments to
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Biopsy Accuracy (%)
PAT20 (CARD) 12.85
PAT20 (ESO) 2651
PAT9 (NDBE) 13.12
PAT14 (NDBE) 10.42
PAT16 (NDBE) 23.20
PATG6 (LGD) 7737
PAT19 (LGD) 14.63
PATG (HGD) 76.19
PAT14 (HGD) 57.90
PAT20 (HGD1) 88.41
PAT16 (EAC) 80.21

Table S10: Accuracy of biopsies’ label retrieval. The high accuracy values are observed in one
of the low-grade (PAT6 (LGD)), two of the high-grade (PAT6 (HGD) and PAT20 (HGD1)), and
the cancer (PAT16 (EAC)) biopsies, while all healthy and non-dysplastic biopsies displayed very
low accuracy. Source data are provided as a Source Data file.

the same biopsy and the others. As shown in Fig. S33, starting from the healthy and non-dysplastic
biopsies, the distribution of assignment counts to all biopsies deviate from uniformity and become
more concentrated around the same biopsy; this means more scRNA-seq cells were assigned to
the same biopsies as the biopsies become more heterogeneous. Moreover, we observed the same
relationship between heterogeneity and the assignment accuracy of the biopsies; the biopsies with
less accuracy displayed a more uniform distribution, and inversely, the biopsies with more accuracy

had a distribution more concentrated around their own label.
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Figure S33: Distribution of scRINA-seq cells’ assignments to all biopsies. Each panel
corresponds to a BE biopsy and illustrates the number of the biopsy’s scRNA-seq cells that were
assigned to scDNA-seq cells from the same or the other biopsies. The biopsy s assignment accuracy
is shown on top of each panel. The y-axis shows the number of assigned scRNA-seq cells, and the
x-axis shows the biopsy labels of the scDNA-seq cells that the scRNA-seq cells were assigned to.
Moving from the healthy and non-dysplastic biopsies (a-e) to low-grade, high-grade, and cancer
biopsies (f-k), the distributions deviate from uniformity and become more concentrated around
the same biopsy implying that MaCroDNA could assign more scRNA-seq cells to the same biopsy.
Source data are provided as a Source Data file.
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