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Length of Stay
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The probability density functions implied by three methods of collecting
data on the length of stay in an institution are derived. The expected values
associated with these density functions are used to calculate unbiased estimates
of the expected length of stay. Two of the methods require an assumption
about the form of the underlying distribution of length of stay; the third
method does not. The three methods are illustrated with hypothetical data
exhibiting the Poisson distribution, and the third (distribution-independent)
method is used to estimate the length of stay in a skilled nursing facility and
in an intermediate care facility for patients enrolled in Califomia's MediCal
program.

A fundamental measure used in health services research is the
mean length of stay for a defined set of patients in a specific institution.
In many cases the mean length of stay is employed to compare different
health facilities or changes within a single facility and plays a central
role in the evaluation of utilization.

The ideal estimate of the expected length of stay is made by
selecting a set of patients from those newly admitted to an institution
and then following these patients until each of them is discharged
(i.e., complete follow-up). The amount of time these patients remain
in the institution divided by the total number of those who are followed
is an estimate of the expected length of stay. However, this type of
complete follow-up is expensive, time-consuming, and not always pos-
sible, especially in long-term institutions. If certain statistical assump-
tions are realistic, an estimate of mean length of stay can be made
from more efficient sampling patterns that do not involve following
each patient to discharge. This topic has been dealt with by other
authors from a variety of points of view [1-4].

The purpose of this article is to examine three sampling patterns
for collecting length-of-stay data and to show how, if certain assump-
tions are met, unbiased estimates of expected mean lengths of stay can
be derived from the data so collected. With two of these sampling pat-
terns, deriving unbiased estimates requires an additional assumption
about the form of the underlying theoretical distribution of lengths
of stay; with the third, however-the interval pattern, to be described
presently-no such assumption is necessary.
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schmatic representation of data collected by three sampling
patterns: top, retrpective pattern; center, partial follow-up pattern;
bottom, interval pattern. Solid lines indicate portions of stays
included m sample.
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SELVIN The three sampling patterns are the retrospective, partial follow-up,
and interval patterns. A retrospective sample is collected by identifying
a series of patients at a specific time and ascertaining the number of
completed weeks each patient has been institutionalized. The portion
of each patient's stay that would be included in data thus collected is
shown schematically in the top segment of the accompanying figure.
(The time unit could be days, weeks, months, or any other measure,
but for simplicity it will be referred to here as weeks.) Partial follow-
up sampling involves identifying a series of patients at a specific time
and observing each patient's entire stay from admission to discharge,
as shown schematically in the center segment of the figure. Interval
sampling consists of identifying a number of patients at a specific time
and following these and any newly admitted patients over a specified
period. At the end of this interval, some patients will have been
discharged and others will still be institutionalized, as shown in the
bottom segment of the figure.

Data collected by any of these three methods are "length biased."
Retrospective and interval samples contain an excess of patients re-
corded for short stays; a partial follow-up sample, on the other hand,
contains an excess of patients with long stays. The incomplete nature
of the data resulting from these three sampling methods is the reason
for the length bias in any direct computation of the mean length of
stay. This type of bias is encountered elsewhere. For example, length
bias often occurs when data are collected to estimate the duration of
disease.

The Models
If two assumptions are met, an unbiased estimate of expected

length of stay may be obtained from any of the three sampling methods;
these assumptions are (1) that the probability distribution of lengths
of stay is discrete (i.e., each patient's stay is an integral number of time
units) and (2) that the probability distribution of lengths of stay is the
same for each cohort entering the institution. That is, the distribution
associated with the institutionalized population is assumed to be
stationary with respect to time.

The data obtained by the three methods can be related to their
respective probability density functions, which permit estimation of
the expected stay without length bias. Let x denote the number of
complete weeks of stay recorded for each patient, with a mean for all
patients x; X is a random variable from the distribution of which x is
sampled and which has an associated theoretical probability density
function f(x). The variable X is the number of whole weeks of a
patient's total stay. If a patient is discharged during the fourth week,
X = 3 for each of the sampling schemes.

HEALTH Retrospective Sample
SERVICES For retrospectively collected data, the theoretical density function

f(x) reflects the probability P(X > x) that a patient's actual stay is
324 greater than or equal to x weeks; EX is the theoretical expected length



of stay, free of length bias, associated with the (as yet unspecified)
density function f(x).

In collecting a retrospective sample, the number of weeks since
admission is taken from admission records for all patients present
at the time of sampling, and the longest stay is k whole weeks; thus
x = O, . . . , k. For each value of x the number of patients dischared
during week x + 1 is recorded, which allows derivation of the sample
density, f7(x), in terms of the theoretical density function f(x). For each
value of x, P(X > x) is related to f(x) as follows [5,6]:

co

P(X -> O) = f(O) + f(l) + .. * + f(k) + * * = E f(x)
co

P(X >, l) = f(l) +. . . + f(k) +. . = E f(x)
9-C I

co

P(X > k) = f(k) + . . .=E f(x)

LOS MODELS

x =O

x= I

x= k

Necessarily, the sample density function fr(x)
all values of x; i.e.,

k

X f(x)=1

and this allows f7(x) to be expressed for each
P(X > x), normalized so that Eq. 1 is fulfilled:

f,(O) = P(X > O)/E P(X > x)
k

f'(l) = P(X > l)/I P(X> x)
81=0

k

f,(k) = P(X > k)/l P(X > x)
8=0

Thus one can define f7(x) as
k

fr(x) = P(X > X)/I P(X > x) x
s=o

must sum to one over

(1)

value of x in terms of

x = O

x = I

x = k

(2)

By the properties of discrete density functions [6], it can be shown
that

k co

E P(X > x) = E (x +1) f(x)
8=0 V=o

(3)
Since the right side of Eq. 3 is equal to EX + 1 [5,6], Eq. 2 can be ex-
pressed as f7(x) = P(X > x)/(EX + 1).

From these relationships it follows that the expected mean stay
in the sample is

IC Co00x(x +1)
EX, = E xfr(x) = E xP(X > x)/(EX + 1) = E 2 f(x)/(EX + 1)
ant oyed O[=o
and this yields [6]:

EX7 = (2' + EX)/2(EX+ 1)
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sLvuiN where p2' is the second noncentral moment of the theoretical density
function f(x) and the other symbols are as defined before. To evaluate
Eq. 4 one must assume some form for f(x) so that M2 may be explicitly
expressed.

Partial Follow-up Sample
In collecting a partial follow-up sample one takes the entire stay

from admission to discharge for those patients present at the start
of sampling, using their admission records for the elapsed portion
of their stays and observing them until they are discharged. Again k
is the longest stay and x = O, . . ., k. In this situation it is convenient
to consider the probability P(X = x) that a patient's stay is equal to
x whole weeks. For x = 0, P(X = 0) is proportional to f(O); for x = 1,
P(X = 1) is proportional to 2f(1); for x = 2, P(X = 2) is proportional
to 3f(2); and so on to x = k, for which P(X = k) is proportional to
(k + 1)f(k). Thus, for all x, P(X = x) is proportional to (x + l)f(x).

As in Eq. 1, it is necessary that Yks fp(x) = 1, where fp(x) is the
sample density for the partial follow-up sample; and, as before, one
can express f,p(x) for each value of x, normalized so that the above
relation holds:

fp(o)f(OA / (x +1)f(x) x=O
kfp(°) = 2f(l)/E (X + 1) f(x) x = I

#=O

fp(k) = (k + 1) f(k)/ (x + 1) f(x) x = k
g=o

Thus the sample density function is defined as

fp(x) = (X + 1) f(W)/ (X + 1) f(x) x = O, . .., k

The expected theoretical length of stay EX is related [5,6] to the
theoretical density function as

00

E (x +l) f(x) = EX + I

and thus one may express the sample density function as

fp(x) = (x + 1)f(x)/(EX + 1)
The expected stay for the sample, EXp, is derived as

k k

EXP= x f(x) = X(x + 1)f(x)/(EX + 1)
HEALTH which yields [6]
SERVICES

RESEARCH EXp = (2'+ EX)/(EX + 1) (5)
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f(x), and, as with the retrospective sample, the form of this function LOS MODEIS
must be assumed before Eq. 5 can be evaluated.

Interval Sample
For an interval sample one specifies a period of k weeks over

which the sample will be observed; portions of any stay that extend
before or after this period are ignored. For each value of x = O, . .. , k
one records the number of patients who are discharged after staying
through x whole weeks of the observation period. In this situation the
probability P(X = x) that a patient's total stay is x whole weeks is
proportional to the theoretical density function f(x) plus the proba-
bility P(X > x) that his total stay will be equal to or longer than x
weeks. Thus for x = 0, P(X = 0) is proportional to 2P(X > 0) + (k - 2).
f(O); for x = 1, P(X = 1) is proportional to 2P(X > 1) + (k - 3) f(1); for
X = 2, P(X = 2) is proportional to 2P(X > 2) + (k - 4) f(2); for x = k -2,
P(X = k-2) is proportional to 2P(X > k - 2); and for x = k -1, P(X =
k -1) is proportional to z P(X > x).

Reasoning on lines similar to those in the two previous situations,
one can show that the sum of these terms defines the relation between
the expected length of stay recorded during the sampling interval and
the theoretical density function:

k-2 oo

[2P(X >x)+(k-2-x)f(x)]+ E P(X >x)=EX+k
410 X-k1

Since Eq. 1 holds also for fi(x), the probability density function may
be written as:

f,(x)= [2%P(X >- X) + (k-2-x)]/(EX + k) X = O,. , k-2
00

f (x)= P(X >x)/(EX+k) x=k-1

Then the expected stay EXi may be derived as
k-1

EXi = Xf4(x)

From these relationships it can be shown that
k-2 co

E x[2P(X > x)+(k-2-x)f(x)]+(k-1) £P(X a,x)
EX$.-. EX + k

and (by a long process) this equation can be simplified to

EX1 = (k - I)EX/(EX + k) (6)

This case differs from the previous two since EXi is directly related
to EX. Therefore an estimate of EX can be made without knowledge
of 42', which would require at least partial knowledge of the form of
the distribution f(x). Instead, one can estimate EX by substituting for
EX, in Eq. 6 the sample mean x, from the interval data, which gives FALL
an estimated length of stay for the sample as 1977

PX = kx,/(k-I- ,) (7) 327



SELVIN As the number of weeks k becomes large in comparison to Ri, the
value of AX approaches EX. Another way of viewing this relationship
is that as k becomes large f(x) approaches a continuous distribution.
For large values of k, the mean length of stay for the sample is an
almost unbiased estimate of the expected length of stay EX. The
magnitude of the bias will vary directly with (1 + xj)/k, so it can be
easily investigated for any specific situation.

Examples
To estimate the mean length of stay for the retrospective and

partial follow-up cases, a parametric assumption is necessary. The
Poisson distribution is often assumed to represent the distribution of
hospital stays; for the present purpose it will provide a convenient
illustration. The Poisson density function is

f(x) = eAA/x
where A represents the expected length of stay; that is, A = EX. The
second moment of f(x) is p2' = x2 + A [5]. When the Poisson density
function describes the underlying probability density of a sample of
retrospectively collected data, then, from Eq. 4,

EX,= (X2+2A)/2(X+1)

An estimate A' of A, the unbiased expected length of stay, is obtained
by replacing EX, by the observed mean value x, and solving for A,
which yields

AIrI = (xf- + (j2 + I)i (8)

Similarly, if the Poisson density function is assumed, one can
derive the estimated length of stay for partial follow-up data by
substituting A for EX and R. for EX, in Eq. 5, which gives

Ap = [x -2 + (X 2 + 4)1]/2 (9)

When lengths of stay are collected by interval sampling over an
interval of length k, a parametric assumption is not necessary, as was
mentioned. Given the assumption of the Poisson distribution, how-
ever, A,,' = AX in Eq. 6 and the estimated length of stay is

Xi' = kx,l(k -1- X$) (10)

Table 1 presents a set of illustrative (fictional) data: values of f(x),
fr(x), fp(x), and fi(x) (for k = 5) that would result from the three sam-
pling patterns applied to a group of patients whose stays follow a
Poisson distribution with a true mean of A = 2.

Application of the Interval Sampling Method
Data collected from Alameda County (CA) over the period from

HEALTH July 1, 1972 to April 3, 1974 were used to estimate the length of stay

REEARCH for two types of patients enrolled in the MediCal insurance program.
The two groups are patients in a skilled nursing facility and patients

328 in an intermediate care facility as defined by the Medicare guidelines.



LOS MODELSTable 1. Values of Probability Density Functions
from Three Sampling Patterns Applied to
Hypothetical Patients with Poisson-distributed
Lengths of Stay

Weeks Poisson Retro- Partial interval
completed, density, spective, follow-up, (k = 5), f,(x)

x f(x) f,.(x) f,(x)
0 ......... 0.135 0.333 0.045 0.344
1 ......... 0.271 0.288 0.180 0.325
2 ......... 0.271 0.198 0.271 0.208
3 ......... 0.180 0.108 0.240 0.092
4 ......... 0.090 0.048 0.150 0.031
5 ......... 0.036 0.018 0.072
6 ......... 0.012 0.006 0.028
7 .......... 0.004 0.002 0.011 ...

8-o ......... 0.001 0.000 0.003

Observed
mean, x ... 2.00 1.33 2.67 1.14

Estimated*
mean, x' ... 2.0 2.0 2.0 2.0

* From Eqs. 8, 9, and 10, respectively.

The data collection period was divided into four 24-week intervals;
k = 24. Table 2 shows the number of patents discharged each week,
the total number of patients, the total number of patient weeks com-
pleted, the length-biased mean stay ij, and the estimated length of
stay AX calculated from Eq. 7. The direct computation of x, yields a
fairly consistent three-week underestimate as compared with AX. For
both types of facilities, the average pattern of stays is similar: dis-
charges rise for the first three weeks and then decrease through the
rest of the period, even though the number of patients in the skilled
nursing facility increases markedly.

Discussion
As with all statistical models, the validity of any application

depends on how well the underlying assumptions are met. Parametric
assumptions about f(x), required by retrospective and partial follow-up
sampling, will depend on a variety of conditions. For example, the
type of institution, the type of service within the institution, and
perhaps the type of patient receiving a particular service are conditions
that will affect the choice of any probability density function to describe
the pattern of length of stay.

In many situations the interval sampling pattern may be feasible,
and in such cases the only assumptions necessary are that the lengths of
stay are discrete and that the underlying probability density is stable.
Estimates derived as described from interval data may be called F977
distribution-independent, and from this point of view the interval
method is clearly superior to the retrospective and partial follow-up 329



SELVIN Table 2. Number of Patients Completing x Weeks of Stay
During 24-week Intervals in Two Facilities

Weeks Skilled nursing*completed, facility; interv*
x 1 2 3 4

0 . ... 86 82 75

1 .69 80 75

2 .73 122 81
3 .63 73 75
4 .100 45 51
5 .27 29 42

6 .19 38 30
7 .15 15 11

8 .26 17 22
9 .6 6 10

10 .8 12 9

11 .3 6 7

12 .12 12 13
13 .3 8 7
14 .3 5 6
15 .4 1 3
16 .4 4 6
17 .6 6 6
18 .5 1 3
19 .1 10 3
20 .1 2 2
21 .5 4 2

22 .3 2 0
23 .1 4 2

24-o.75 78 89

Total patients. 618 662 630

Total weeks
completed 4107 4416 4515

x, 6.64 6.67 7.17

X. 9.25 9.80 10.87

162
119
102
78
107
27
53
30
35
20
139
13
11

106
4
1
0

0

0

0

0

0

0

0

3

1010

5294

5.24

7.08

Intermediate care
Interediate care
facility; interval

1 2 3

10 21 15
14 8 5
12 13 9
7 6 10
24 4 9
9 5 4
9 6 5
1 3 3
6 1 6
0 1 4
1 0 1
1 2 2
0 1 0
1 0 2
0 5 0
1 0 0
1 0 0
2 1 1
0 1 0
3 2 0
1 0 0
0 3 1
0 0 0

0 0 0

6 12 16

109 95 93

4

11
12
5
8
10
1
4
0

6
1

28
1
4
15
0

0

1
0

0

0

0

0

0

0

0

107

629 695 724 722

5.77 7.32 7.78 6.75

8.03 11.19 12.27 9.96
* Interval 1 = 7/1/72 to 12/15/72; 2 = 12/16/72 to 6/1/73; 3 = 6/2/73 to 11/16/73;

4 = 11/17/73 to 5/3/74.

methods. In some situations the interval method will be more efficient
than complete follow-up sampling.
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