Electronic Supplementary Information

An Efficient Protocol for Novel Hybrid Pyrimidines Synthesis: Antiproliferative Activity, DFT Analyses, and Molecular Docking Studies

Ibrahim O. Althobaiti,¹ Mjd Saleh Morezeq Alserhani,² Wael A. A. Arafa,^{*2,3} Amira A. Ghoneim,^{2,4} Modather F. Hussein,^{2,5} Hamada Mohamed Ibrahim,³ Asmaa K. Mourad³

¹Chemistry Department, College of Science and Arts, Jouf University, Gurayat 77217, Saudi Arabia

²Chemistry Department, College of Science, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia

³Chemistry Department, Faculty of Science, Fayoum University, P.O. Box 63514, Fayoum, Egypt

⁴Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt

⁵Chemistry Department, Faculty of Science, Al-Azhar University, Asyut branch, Egypt

Table of Contents

No.	Content	Page No.
1.	Copies of NMR, MS, and HRMS	S2-S29
2.	Table S1: HOMO and LUMO of the assembled molecules	S 30
3.	Table S2: Computed electrostatic potential (ESP) surface for the assembled	S33
	molecules.	
4.	Table S3: 2D and 3D docking of the newly prepared compounds to 6ENV-MCV-7	S35
5.	Table S4. 2D and 3D docking of the newly prepared compounds to 4b3z-Lung	S41
6.	Table S5. 2D and 3D docking of the newly prepared compounds to HepG2-2JW2	S47

Figure S1: ¹H NMR (DMSO-*d*6) of 1

Figure S2: ¹³C NMR (DMSO-*d6*) of 1

Figure S3: ¹H NMR (DMSO-*d6*) of 2

Figure S4: ¹³C NMR (DMSO-*d6*) of 2

Figure S6: MS of 3

Figure S7: ¹H NMR of 4a

Figure S8: ¹³C NMR of 4a

Figure S9: HRMS of 4a

Figure S10: ¹H NMR of 4b

Figure S11: HRMS of 4b

Figure S13: MS of 6

Figure S14: ¹H NMR of 7

Figure S15: MS of 7

Figure S16: ¹H NMR of 11

Figure S17: ¹³C NMR of **11**

Figure S18: HRMS of 11

Figure S19: ¹H NMR of 13

Figure S20: HRMS of 13

Figure S21: MS of 13

Figure S22: ¹H NMR of 14

Figure S23: HRMS of 14

Figure S24: ¹H NMR of 15

Figure S25: HRMS of 15

Figure S26: MS of 15

Figure S27: ¹H NMR of 17

Figure S28: MS of 17

Figure S29: ¹H NMR of 18

Figure S31: ¹H NMR of 19

Figure S32: ¹³C NMR of **19**

Figure S33: HRMS of 19

Table S1. HOMO and LUMO of the assembled molecules and Doxorubicin.

Comp.	ESP	Comp.	ESP
1		3	
4a		4b	
6		7	

Table S2. Computed electrostatic potential (ESP) surface for the assembled molecules and Doxorubicin.

11	13	
14	17	
18	19	
Dox.		

Table S3. 2D and 3D docking of the newly prepared compounds to 6ENV-MCV-7.

with His132, Glu57, and Arg64 with binding energy score of -5.83893 kcal/mol.

Compound 7 (binding energy score = -5.94382 kcal/mol) formed one hydrogen bond with His132 aminoacid residue. Also, the phenyl moiety bended with Lys58 aminoacid residue *via* hydrophobic interaction.

The pyrimidine ring of compound **11** made hydrophobic interaction with Glu136, besides, the C \equiv N group formed hydrogen bonds with Lys58 with binding energy score = -6.13866 kcal/mol.

Comp.2D3D1Image: Complex of the second second

Table S4. Binding score of the newly prepared compounds to 4b3z-Lung.

Compound **2** formed one binding interaction *via* hydrogen bonding of cyano group with Gly82. Besides two hydrophobic interactions of thiophene motif with both Gln81 and Ser80. This derivatives recorded a binding score equal to -5.88317 kcal/mol.

Compound **3** modeling configuration with 4b3z-Lung protein shows hydrogen bonding interaction of Glu353 and Gln81 with amino and carbonyl groups, respectively. The recorded binding energy score is -5.50277 kcal/mol.

Compound **4a** modeling configuration with 4b3z-Lung shows five hydrogen bonding interteractions with Gln81, Glu353, 2Pro79, and Tyr174 and recorded a binding energy score of -5.40306 kcal/mol.

Compound **4b** modeling configuration with 4b3z-Lung shows six hydrogen bonding interteractions with Gln81, Glu353, 2Pro79, Tyr168, and Tyr174 and recorded a binding energy score of -5.42736 kcal/mol.

Compound **6** modeling configuration with 4b3z-Lung shows four hydrogen bonding interteractions with 2Gln81, Pro79, and Tyr174, and recorded a binding energy score of -5.69825 kcal/mol.

Compound 7 formed four hydrogen bonds with 2Gly82, 2Glu111 aminoacid residue. Also, the phenyl and pyrimidine moieties bended with Glu111 and Pro79 aminoacid residues, respectively *via* hydrophobic interactions. The binding energy score = -6.17619 kcal/mol.

Compound **11** formed three hydrogen bonds with Glu353, Thr349, and Gln81 with binding energy score of - 5.80001 kcal/mol.

In compound **13**, five hydrogen bonds were formed as follows: i) Tyr170 and Lys171 with thione moiety, Glu353 with the amino group, Ser80 with thiophene-S, and ii) Gln81 with carbonyl group. The binding energy score = -6.03983 kcal/mol.

hydrophobic interaction of thiophene ring with Ser80.

Table S5. Binding score of the newly prepared compounds to HepG2-2JW2

Compound **3** modeling configuration with HepG2-2JW2 protein shows hydrogen bonding interactions of Thr73, Gln17, Ser16 and Asn72 with NH, NH₂ and C=O groups, respectively. The recorded binding energy score is -5.5669 kcal/mol.

Compound **4b** modeling configuration with HepG2-2JW2 shows two hydrogen bonding interteractions with Gln17 and Thr73. Besdies, on hydrophobic interaction with Pro13. It recorded a binding energy score of - 5.11563 kcal/mol.

Compound **6** modeling configuration with HepG2-2JW2 shows three hydrogen bonding interteractions with Thr73, Gln17, and Sr16. In addition, it exhibited two hydrophobic interactions with Thr73 and Pro13 and recorded a binding energy score of -5.14694 kcal/mol.

Compound **7** formed four hydrogen bonds with Ser16, Asn72, Arg69 aminoacid residue. Also, the pyrimidine moiety bended with Thr73 aminoacid residue *via* hydrophobic interactions. The binding energy score = -5.43515 kcal/mol.

Compound **11** formed three hydrogen bonds with Arg69, Gln17, and Lys76, as well as on hydrophobic interaction with Lys76 and recorded a binding energy score of 5.29499 kcal/mol.

In compound **13**, two hydrogen bonds were formed as follows: Arg69 with thiophene-S and Glu17 with pyrimidine-N. Also, compound **13** formed one hydrophobic interaction with Lys76 *via* its pyrimidine ring. The binding energy score = -5.4955kcal/mol.

Compound **14** formed three hydrogen bonds through the interaction of C=N and C=O groups with Gln17, Thr73, and Val12. This compound recorded binding energy score -5.43210 kcal/mol.

Compound **15** modeling configuration with HepG2-2JW2 shows two hydrogen bonds with Thr73 and Asn72. This compound recorded binding energy score of -5.59437 kcal/mol.

Compound **17** modelling configuration with HepG2-2JW2 protein possessed binding value of -5.59266 kcal/mol. This derivative (**17**) formed two binding interactions *via* hydrogen bonds of the cyano group that bended with both Gln17 and Thr73.

