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1 SI Text

1.1 Detailed Derivation of Number of Missed Interactions

In the following, we estimate the probability p that a pair of point particles initially at a

distance r0 > rl moves to a distance rt < rc within a time t. In light of the short times

relevant here, we assume purely inertial motion. However, because of the Gaussian nature

of the propagated distribution of positions, the expressions generalize to diffusion dynamics,

with a suitable re-definition of the width σ. We note that this derivation of the missed

interactions is closely related to the estimation of the energy drift used by the GROMACS

code to define rl and nstlist.

For a Maxwell-Boltzmann distribution of velocities, the position distribution of particle

2 with mass m2 at time t in the reference frame of particle 1 with mass m1 is a 3D-Gaussian

centered at the relative position at time 0 and with squared width σ2 = kB T t2 (1/m1+1/m2).

By integrating over the angles in spherical polar coordinates, we end up with the conditional
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probability distribution of the pair distance at time t,

G(rt|r0) =
rt e

− (r0+rt)
2

2σ2

(
e

2r0rt
σ2 − 1

)
√
2πr0σ

(S1)

For simplicity, we assume that the positions of the two particles are uncorrelated and that

the simulation box can be approximated by a sphere. The radius R of the sphere is chosen

to match the volume of the simulation box, V = 4πR3/3. The probability p for the particle

pair to cross from a distance r0 > rl to a distance rt < rc is then,

p ≈
∫ rc

0

drt

∫ R

rl

dr0 4πr0
2G(rt|r0)/V (S2)

To estimate p, we first introduce reduced units x = rt/σ, y = r0/σ, X = rc/σ, and Y = rl/σ.

Then, we set the upper integration limit for y to infinity, assuming that crossings of the

buffer shell are only possible for pairs with initial distances close to rl,

p ≈ 2
√
2πσ3

V

∫ X

0

dx

∫ ∞

Y

dy x y e−(x+y)2/2
(
e2xy − 1

)
(S3)

The double integral can be evaluated analytically, resulting in

V p

σ3
≈ 2π

3

(
2X3 + (Y 3 −X3) erf

(
Y −X√

2

)
− (X3 + Y 3) erf

(
X + Y√

2

))
+
4
√
2π

3
e−(X+Y )2/2+XY

(
XY cosh (XY ) + (X2 + Y 2 − 1) sinh (XY )

)
(S4)

For Y ≫ X ≫ 1, the second error function evaluates to ≈ 1, and the hyperbolic functions

cosh and sinh can be approximated by the dominant term exp(XY )/2, and X2+XY +Y 2 ≫

1. One then arrives at

V p

σ3
≈ 2

3

(
Y 3 −X3

)(√
2π

e−(Y−X)2/2

Y −X
− π erfc

(
Y −X√

2

))
(S5)
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Using the asymptotic expansion of the complementary error function for large arguments z,

√
πez

2

erfc(z) ∼ 1

z
− 1

2z3
(S6)

we obtain
V p

σ3
≈ 2

√
2π (Y 2 +XY +X2)

3(Y −X)2
e−(Y−X)2/2 (S7)

In a system of N identical particles of mass m and density ρ = N/V , we have N(N −1)/2 ≈

N2/2 distinct pair interactions. Using the full expression, eq S4, the total expected number

of these missed pair interactions at time t after a neighbor list update is then,

nmissed = Npmissed ≈ N2p

2

≈ πNρσ3

3

(
2rc

3

σ3
+

rl
3 − rc

3

σ3
erf
(
rl − rc√

2σ

)
− rl

3 + rc
3

σ3
erf
(
rl + rc√

2σ

))
(S8)

+
2
√
2πNρσ3e−rl

2+rc2/2σ2

3

(
rcrl
σ2

cosh
(rcrl
σ2

)
+

(
rc

2 + rl
2

σ2
− 1

)
sinh

(rcrl
σ2

))

In the limit p ≪ 1, we have

nmissed ≈ Npmissed ≈ N2p

2
≈

√
2πρσ3N (rl

2 + rlrc + rc
2)

3(rl − rc)2
e−(rl−rc)2/2σ2

(S9)

with pmissed as given in eq 1 of the main text. We note that σ is a function of t. We note

further that for molecular systems such as water, the couplings arising from chemical bonds

will interfere with these estimates already at short times, e.g., because of fast water rotation.

In the following, we introduce an approximate formula for σ2 aimed to interpolate between

short-time and long-time rigid-body motion.
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1.2 Rigid-Rotor Model for Missed Interactions in Systems with

Rigid or Near-Rigid Molecules

So far, we estimated the probability of missed interactions by considering an ideal gas of

point particles moving freely with velocities following a Maxwell-Boltzmann distribution.

The distribution of displacement vectors for a particle of mass m in time t is then a 3D

Gaussian with variance σ2 = kB T t2/m. For rigid or near-rigid molecules, the situation is

more complicated because both rotation and translation contribute to the motion. The free

rotation of an anisotropic rigid body, while tractable analytically,S1 is sufficiently involved to

preclude the simple treatment of cutoff violations in the preceding section. However, at very

short times each atom moves in effect freely, and at very long times we only have to consider

the Gaussian displacement of the center of mass combined with a random distribution of each

site on spherical shells about the center of mass. In the following, we describe a rigid-rotor

model interpolating between the two limits.

For a site i of mass mi in a molecule of total mass mT , with a root-mean-squared distance

di−C = ⟨|ri−rC |2⟩1/2 between site i and the center of mass, we define a linear rotor of length

di−C mT/(mT − mi) with point masses mi and mT − mi at the two ends. The moment of

inertia of the rotor is Ii = mimTdi−C
2/(mT − mi). For angular velocities with a Maxwell-

Boltzmann distribution, the distribution of the polar angle θ(t) travelled in time t with

respect to the starting orientation is then a Gaussian with variance t2kBT/Ii. It is thus

tempting to approximate the distribution of site i about the starting point as a 3D Gaussian

with width

σi
2 =

kBT t2

mT

+ di−C
2
(
1− e−t2/τi

2
)

(S10)

where τi
2 = Ii/(kBT ) defines the square of a characteristic time for rotational motion. At

short times, t2 → 0, we then recover the free motion of mass i, σi ≈ kBT t2/mi, as can be

shown in a Taylor series expansion. At long times, t ≫ τi, the exponential term vanishes

so that σi
2 is given by the sum of the free translational motion of the entire mass mT plus
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the mean-squared distance of site i from the center of mass. To estimate the missed pair

interactions between sites i and j, we set

σ2 = σi
2 + σj

2 (S11)

in eq 1 of the main text and in eq S8. The number density ρ is, without loss of generality, that

of sites j, and N in eq S8 is then the number of sites i. This Gaussian model should provide

at least a rough approximation to assess the probability of missed particle interactions.

For TIP3P water, and similar water models with three massive sites, the distances of the

hydrogen and oxygen atoms to the center of mass are dH-C =

√(
dOH

mO
mW

)2
+ dHH

2

4

(
1− mO2

mW2

)
and dO-C = 2mHdO-HH/mW with dO-HH =

√
dOH

2 − dHH
2/4 and mW = mO + 2mH. For the

hydrogen site, the rotor has masses mH and mH +mO, and for the oxygen site mO and 2mH,

with lengths of dH-C mW/(mO +mH) and dO-C mW/(2mH), respectively. For simulations of

TIP3P water, we use σHH
2 = 2σH

2, σOH
2 = σO

2+σH
2, and σOO

2 = 2σO
2 in conjunction with

eq S8 to estimate the number of HH, OH, and OO interactions, respectively, missed because

of infrequent neighbor list updates.

1.3 Power Spectral Density of Pressure Fluctuations in TIP3P Wa-

ter

Figure S5 shows the power spectral density (PSD) of the scalar pressure in MD simulations

of TIP3P water in the NVT ensemble. The system was coupled to a v-rescaleS2 thermostat,

as described in the Methods section. We fixed nstlist = 20. For rl = 1.25 nm, the PSD

shows distinct spikes at frequencies corresponding to integer multiples of 1/(nstlist×∆t),

consistent with the results for Martini water shown in Figure 5. For rl = 1.5 nm, the spikes

vanished. We conclude, first, that the PSD of the scalar pressure helps to identify issues

with short outer cutoffs rl and, second, that these issues can arise also in atomistic MD

simulations.
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2 Supplementary Figures

Time

50ns 150ns 250ns

LZ = 79.0 nm LZ = 79.6 nm LZ = 80.3 nm LZ = 80.9 nm

650ns

…

LZ = 88.6 nm

350ns

Berendsen

Figure S1: The large Martini POPC bilayer crumples in MD simulations with default simu-
lation parameters (VBT = 0.005 kJ·mol−1·ps−1; rl = 1.27 nm and nstlist = 25) and semi-
isotropic coupling to a Berendsen barostat. Simulation details can be found in the Methods
section. Snapshots of the lipid bilayer (phosphate groups in gold) in MD simulation at time
points 50, 150, 250, 350, and 650 ns (left to right). Simulation boxes are indicated as blue
lines and box heights are listed.

Figure S2: The shape of the average pressure tensor between neighbor list updates depends
on the update frequencies of the inner and outer list. The average lateral pressure P∥ =
(Pxx + Pyy)/2 (orange curves) and normal pressure P⊥ = Pzz (blue curves) are shown as
function of the time step j after an update of the outer neighbor list. Results are shown for
the NVT Martini water system with the default cutoff setting (VBT = 0.005 kJ·mol−1·ps−1;
rl = 1.28 nm and nstlist = 25) and with outer and inner neighbor list update intervals
of 25 and 5, respectively. Simulation details can be found in the Methods section. Dashed
horizontal lines of matching color denote the corresponding overall averages.
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(B) TIP3P water (NVT) ∆𝑃 and 𝑛!"! for nstlist = 100

(A) TIP3P water (NVT) ∆𝑃 and 𝑛!"! for nstlist = 10

Figure S3: Difference ∆P in the pressure just before and right after a neighbor list update
in the NVT TIP3P solvent system. ∆P for lateral (orange) and normal pressures (blue)
is shown as function of rl for (A) nstlist = 10 and (B) nstlist = 100. Dual pair list
was disabled and standard deviations are shown as error bars. Also shown (right scale) are
the expected number of missed hydrogen-hydrogen (nH−H), oxygen-hydrogen (nO−H) and
oxygen-oxygen (nO−O) interactions (black lines), evaluated using eqs S4 and S11. For small
buffers rl − rc and long time intervals between the neighbor list updates nstlist×∆t, the
assumptions leading to eq S4 may no longer hold, resulting in non-monotonic dependence of
∆P on rl for rl ≲ 1.23 nm in (A) and rl ≲ 1.28 nm in (B).
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Figure S4: In a simulation of the large Martini membrane system with
nstpcouple = nstlist = 25, the unphysical box distortion is greatly suppressed.
The snapshot shows the membrane after a 1 µs production run. The vertical dimension of
the box is 78.2 nm. However, despite the improvements the undulations of the membrane
are noticeably more pronounced than with the more conservative nstlist = 1, which also
resulted in a slightly shorter Lz = 77.9 nm (Figure 1B).

×100

Figure S5: Power spectral density (PSD) of the pressure fluctuations in MD simulations of
TIP3P water in the NVT ensemble with nstlist = 20. The peaks in the PSD at integer
multiples of 1/(nstlist×∆t) for rl = 1.25 nm (orange; scaled by 100 for clarity) disappear
for rl = 1.5 nm (blue). The system was coupled to a v-rescale thermostat.
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Figure S6: Probability pmissed of missed interactions (grey line) as
function of the VBT parameter in GROMACS for the NVT Mar-
tini water system. Martini water was simulated with VBT ∈
{0.0001, 0.00025, 0.0005, 0.00075, 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009}.
The probability pmissed was then obtained from eq 1 for the respective values of rl and
nstlist listed in the output log files. For 0 < VBT < 0.005 kJ·mol−1·ps−1, the dependence
is nearly linear. The default value VBT = 0.005 kJ·mol−1·ps−1 is indicated by the magenta
circle, and the recommended value of 0.0002 kJ·mol−1·ps−1 by the green circle. The latter
VBT value results in rl = 1.35 nm and nstlist = 20.
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