

Figure S1. Schematics for the proposed targeting strategy at the *Alb* locus.

Figure S2. Promoterless mini-ATP7B administration to $Atp7b^{-/-}$ **mice.** 6-week-old $Atp7b^{-/-}$ mice were injected with 2.3x10¹³ gc/kg of AAV8-GFP (GFP; n=17) or AAV8-Alb-ATP7B Δ 1-4 (ATP7B Δ 1-4; n=12). $Atp7b^{+/-}$ mice (n=17) are shown as heathy controls. **A**) Total serum albumin levels. **B**) Western blot analysis on whole liver lysates using anti-ATP7B antibody. GAPDH is shown as loading control. **C**) Serum ALT levels in untreated (NT) and AAV8-GFP-injected $Atp7b^{-/-}$ mice at 14-18 weeks of age.

Figure S3. Promoterless mini-ATP7B rescues survival and ameliorates WD. 2-week-old $Atp7b^{-/-}$ mice were injected with 2.3×10^{13} gc/kg of AAV8-GFP (GFP; n=18) or AAV8-Alb-ATP7B Δ 1-4 (ATP7B Δ 1-4; n=10). $Atp7b^{+/-}$ mice (n=13) are shown as heathy controls. **A**) Survival curves. Logrank test: *p<0.05; **p<0.01. **B**) Total serum albumin levels. **C**) Serum transaminases levels. Data from animals that survived until the end of the study are shown. Two-way ANOVA plus Tukey's posthoc: *p<0.05 versus GFP. **D**) Representative images from liver Sirius Red (upper panels) and H&E (lower panels) staining. Scale bar: 200um. **E**) Copper content analysis by ICP-MS in brain.

Figure S4. Promoterless mini-ATP7B administration to $Atp7b^{tx-j}$ **mice.** 3-week-old $Atp7b^{tx-j}$ and healthy control (WT/Het) mice were injected with $1x10^{14}$ vg/kg AAV-DJ-Alb-ATP7B Δ 1-4. Tissues were harvested at 25 weeks of age. **A)** Survival curve. Serum **B)** total albumin and **C)** ALB-2A analysis. *t*-test: ***p<0.005 **D)** Linear correlation analysis of P2A staining and serum ALB-2A levels in $Atp7b^{tx-j}$ mice.

Figure S5: Molecular analysis of mouse liver samples collected over time reveals an expansion of edited hepatocytes. $Atp7b^{tx-j}$ mice were dosed 4 weeks after birth with $1x10^{14}$ vg/kg AAV-DJ-Alb-ATP7B Δ 1-4 and a subset of mice were taken down at 8, 16, and 24 weeks after dosing (n=3 per group). A) On-target genomic DNA integration analysis. B) Assessment of vector genome copy per cell. $Atp7b^{tx-j}$ and wild-type or heterozygous (WT/Het) healthy control mice were injected with $1x10^{14}$ vg/kg AAV-DJ-Alb-ATP7B Δ 1-4 3-4 weeks after birth and sacrificed at 25 or 42 weeks of age (n=4-7 per group). C) Representative images of immunohistochemical liver staining for P2A. D) Quantification of P2A-positive cells. Data are expressed as percentage over total liver cells. One- (A, B) or two-way (D) plus Tukey's post-hoc analysis: *p<0.05; **p<0.01; ****p<0.001

Figure S6. Combination of genome editing and chelator therapy ameliorates WD. 6-week-old $Atp7b^{-/-}$ mice were treated with D-penicillamine (DPA) and then injected with 2.3x10¹³ gc/kg of AAV8-GFP (GFP; n=6) or AAV8-Alb-ATP7B Δ 1-4 (ATP7B Δ 1-4; n=6). $Atp7b^{+/-}$ mice (n=13) are shown as heathy controls. **A)** Survival curve. **B)** Total serum albumin levels. **C)** Serum transaminase activities.

Figure S7. Liver damage modulates repopulation speed by ATP7B Δ **1-4-edited hepatocytes in** *Atp7b^{-/-}* **mice.** *Atp7b^{-/-}* mice were fed with high- (HiCu) or low-copper (LoCu) content chow, treated with D-penicillamine (DPA) or left untreated and injected with 2.3x10¹³ gc/kg of AAV8-Alb-ATP7B Δ 1-4 at 2 or 6 weeks of age. Serum **A**) ALT and **B**) ALB-2A fusion protein levels in all experimental groups. **C-F**) Serum ALT (left *y* axis, coloured lines) and ALB-2A (right *y* axis, black lines) in single experimental groups. Data from HiCu 6w, HiCu DPA 6w, and HiCu 2w were already presented in previous figures.