Plant Communications, Volume 4

Supplemental information

A synthetic light-inducible photorespiratory bypass enhances photo-

synthesis to improve rice growth and grain yield

Huawei Xu, Huihui Wang, Yanwen Zhang, Xiaoyi Yang, Shufang Lv, Dianyun Hou, Changru Mo, Misganaw Wassie, Bo Yu, and Tao Hu

A synthetic light-inducible photorespiratory bypass enhances photosynthesis to improve rice growth and grain yield

Huawei Xu^{1,} *, Huihui Wang¹, Yanwen Zhang¹, Xiaoyi Yang¹, Shufang Lv¹, Dianyun Hou¹, Changru Mo², Misganaw Wassie², Bo Yu³, Tao Hu^{4, 2, *}

¹College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China

² CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China

³ Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China

⁴ State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China

*Correspondence: <u>xhwcyn@163.com (HW. X.); hut@lzu.edu.cn</u> (T. H.)

Supplemental Figure 1 The level of Fv/Fm in GMA and WT plants at the seedling stage in greenhouse

Supplemental Figure 2 The protein level of GLO1-S during the daytime and nighttime.

Supplemental Figure 3 A synthetic light-dependent GMA bypass increases tiller number and grain yield without affecting the seed setting rate in the field of Wuhan.

Supplemental Figure 4 Accumulation of starch around great vascular bundle in stems.

A Round I: pYL322d1-GLO1

Supplemental Figure 5 Physical maps of the photorespiratory bypass genes in the donor vectors. (A) *OsGLO1* expression cassette in pYL322d1. (B) *CmMS* expression cassette in pYL322d2. (C) *OsAPX7* expression cassette in pYL322d1.

Primers name	Description	Sequence (5'-3')
T35s-SalI-F	Amplification of T35s for	CATA <u>GTCGAC</u> GTCCGCAAAAATCACCAG
T35s-HindIII-R	pYL322d1-GLO1	CCGG <u>AAGCTT</u> GTCACTGGATTTTGGTTT
PrbcS-R147-NotI-F	Amplification of Prbcs for	TTCT <u>GCGGCCGC</u> CGGGGATCGAATTCTGGTGT
PrbcS-R147-SacI-R	pYL322d1-GLO1	TATA <u>GAGCTC</u> CTGCATGCACCTGATCCTGC
GlO1-KpnI-F	Amplification of GLO1 for	CGCG <u>GGTACC</u> AATGGGGGGAGATCACCAATGTCA
	pYL322d1-GLO1	TGG
GlO1-SpeI-R		ACTT <u>ACTAGT</u> CTAATGGTGATGGTGATGATGGCG
		GGCGAGGCGGTCGGCGT
PE35S-XhoI-F	Amplification of <i>PE35S</i> for	ACAT <u>CTCGAG</u> GTGGAGCACGACACACTT
PE35S-EcoRI-R	pYL322d2-MS	TGCA <u>GAATTC</u> CTATCGTTCGTAAATGGT
T35S-SalI-F	Amplification of T35S for	ACTA <u>GTCGAC</u> GTCCGCAAAAATCACCAG
T35S-HindIII-R	pYL322d2-MS	CCGC <u>AAGCTT</u> GTCACTGGATTTTGGTTT
CTP-MS-PstI-F	Amplification of CTP for	GATG <u>CTGCAG</u> ATGGCCCCCTCCGTGATG
CTP-MS-KpnI-R	pYL322d2-MS	ATCG <u>GGTACC</u> CATGCACCTGATCCTGCC
MS-KpnI-F	Amplification of MS for	GTAC <u>GGTACC</u> TCGCTGGGAATGTATTCT
MS-SalI-R	pYL322d2-MS	GGAC <u>GTCGAC</u> TTAATGGTGATGGTGATGATGCC
		TGGGATGATGTATGACTA
Tnos-SalI-F	Amplification of Tnos for	GTAC <u>GTCGAC</u> GTTTCTTAAGATTGAATCCT
Tnos-HindIII-R	pYL322d1-APX7	GCGC <u>AAGCTT</u> CCCGATCTAGTAACATAGAT
Pubi-NotI-F	Amplification of Pubi for	TGAC <u>GCGGCCGC</u> GAATTCGTCGTGCCCCTCTC
Pubi-PstI-R	pYL322d1-APX7	TACG <u>CTGCAG</u> AAGTAACACCAAACAACAGG
APX7-KpnI-F	Amplification of APX7 for	GTAC <u>GGTACC</u> ATGGCGGCCCAGCGACTCGC
APX7-SpeI-R	pYL322d1-APX7	CTAG <u>ACTAGT</u> TTAATGATGATGATGATGATGACC
		GTCCAACGTGAATCCCT
HPT-F	PCR detection of gDNA for	CTGAACTCACCGCGACGTCTGTC
HPT-R	НРТ	TAGCGCGTCTGCTGCTCCATACA

Supplemental Table 3 List of primers used in this study.

GLO1-F	PCR detection of gDNA for	CTTCGGCAACGTCAGCAATG
GLO1-R	GLO1	AGGCGACCTCCTCAACACTT
MS-F	PCR detection of gDNA for	CTGAATCGGCAGTAAGGAAGAAA
MS-R	MS	AGCTCCAGAATTGAGTGCGTTGA
APX-F	PCR detection of gDNA for	ACCCTGTTGTTTGGTGTTACTT
APX-R	APX7	CTCGTTGTGGCCACTCTTTA
GLO1-sq-F	Semi-quantitative RT-PCR	TCCAGGGGCTCAAGTC
GLO1-sq-R	analysis of <i>GLO1</i>	CCAGAGGCGTAGTAGTCG
MS-sq-F	Semi-quantitative RT-PCR	TTCGGCAACGTCAGCAATG
MS-sq-R	analysis of MS	GCTCCAGAATTGAGTGCGTTGA
APX7-sq-F	Semi-quantitative RT-PCR	TTGATGTGGGTTTTACTGATGC
APX7-sq-R	analysis of <i>APX7</i>	GAGGAGCCGAGAAGGTGC
ACT-sq-F	Internal control for semi-	CCTCGTCTCGACCTTGCTGGG
ACT-sq-R	quantitative RT-PCR	GAGAACAAGCAGGAGGACGGC
GLO1-S-q-F	qPCR analysis of <i>GLO1-S</i>	GCAACGTCAGCAATGG
GLO1-S-q-R		CCAGAGGCGTAGTAGTCG
GLO1-T-q-F	qPCR analysis of GLO1-T	TCGTTCTGCCACCATACTTG
GLO1-T-q-R		GCCACTTCACATCCTTCCAG
SHMT1-q-F	qPCR analysis of SHMT1	CAAGCAAGGCAAAGAGGTTATG
SHMT1-q-F		CAGCTAAGCCAGTAATGGTATGA
HPR1-q-F	qPCR analysis of <i>HPR1</i>	GCAACACTTGCTGCTCTAAAC
HPR1-q-R		CTTGAGAAATGGCTCCACTAGAT
ACT-q-F	Internal control for	TTATGGTTGGGATGGGACA
ACT-q-R	quantitative RT-PCR	AGCACGGCTTGAATAGCG