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this model requires two DNA scaffolds to contact one another

Supplementary Figure 1. Alternative models for BUS activity in vitro. DnaA-1 
boxes are required to load DnaA onto DnaA-trios. The DNA scaffolds used to detect 2 
DnaA strand separation activity in solution are compatible with two models. In one, 3 
DnaAATP is loaded from DnaA-boxes onto adjacent DnaA-trios (in cis). In another, an 4 
oligomer of DnaAATP is nucleated from DnaA-boxes along the DNA scaffold, binding 5 
to the dsDNA using domain IV. This DnaAATP oligomer can subsequently engage the 6 
DnaA-trios on a second DNA scaffold, binding to the ssDNA using domain III (in 7 
trans). 8 
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Supplementary Figure 2. A dual labelled DNA scaffold shows DnaA strand 1 
separation is specific. (A) Experimental design using a DNA scaffold containing 2 
two fluorescently labelled oligonucleotides. (B) Graph of colocalized fluorescent 3 
signals representing the percentage with decreased intensity over time (ATTO565 4 
pink, ATTO647 yellow). Data shows the average and percentage standard deviation 5 
from three independent experiments (source data are provided as a Source Data 6 
file). (C) Example showing specific loss of ATTO647 fluorescence (yellow), indicating 7 
a DnaA-dependent strand separation event. 8 
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Supplementary Figure 3. Biochemistry and cryo-EM analysis of the BUS. (A) 1 
The DNA scaffold used for single particle cryo-EM structural studies. (B) Size 2 
exclusion chromatography to separate the BUS. (C) SDS-PAGE gel showing the 3 
glutaraldehyde cross-linked sample isolated for cryo-EM. (D) Representative 2D 4 
class averages of the BUS obtained using CryoSparc v3.1.237. 5 
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Supplementary Figure 4. Cryo-EM workflow. Schematic of the single particle cryo-1 
EM workflow showing the classification, refinement and sharpening steps used to 2 
obtain a composite map of the BUS nucleoprotein complex. 3 
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Supplementary Figure 5. Cryo-EM maps used in this study. (A) The cryo-EM 
maps of the BUS coloured by local resolution with each map displayed at different σ 
levels. Additional density corresponding to the central core and protein binding 
double stranded DNA can be seen emerging at higher σ levels. (B) Cryo-EM map of 
the domain III lattice coloured by local resolution contoured at 0.6σ, overlayed on the 
overall BUS map contoured at 0.1σ. (C) Cryo-EM map of the region around the 
double stranded DNA coloured by local resolution contoured at 0.27σ, overlayed on 
the overall BUS map contoured at 0.1σ. (D) Cryo-EM map of the domain IV lattice 
coloured by local resolution contoured at 0.21σ, overlayed on the overall BUS map 
contoured at 0.1σ. (E) Fourier shell correlation of the cryo-EM map for the domain III 
lattice showing an average map resolution of 3.2 Å. (F) Fourier shell correlation of 
the cryo-EM map for the region around dsDNA showing an average map resolution 
of 5.0 Å. (G) Fourier shell correlation of cryo-EM map for the domain IV lattice map 
showing an average map resolution of 5.4 Å. (H) Orientation distribution of particles 
contributing for the cryo-EM map of the domain-III lattice. (I) Orientation distribution 
of particles contributing for the cryo-EM map of the region around dsDNA. (J) 
Orientation distribution of particles contributing for the cryo-EM map of the domain-IV 
lattice. 
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Supplementary Figure 6. X-ray crystal structure of B. subtilis DnaA106-346 1 
determined at 2.38 Å. (A) Representative view of the electron density map (contour 2 
level is 1s). (B) An omit map of the bound ligand (contour level is 3s). (C) A 3 
monomer of DnaA106-346 (domain III). The AMP-PNP bound to the protein is shown in 4 
spacefill. (D) In the unit cell, five DnaA monomers are organised in a right-handed 5 
helical oligomer. (E) A topology diagram of the DnaA domain III and IV showing the 6 
respective domains and secondary structure. The ISM is highlighted. 7 
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Supplementary Figure 7. Orientation of the DnaA oligomer on ssDNA. Model of 1 
the BUS complex showing domain III bound to ssDNA of the DNA scaffold. The 2 
ssDNA, ATP, and key arginine residues (Arg264 and Arg333) interacting with ATP 3 
are highlighted. The left inset shows the ATP (with extracted density contoured at 4 
0.6s) that is stabilized by Arg264 of DnaA2 and Arg313 of DnaA3. The DnaA-trio 5 
composed of T13, A14, and G15 that engages DnaA2 and DnaA3 is also shown. The 6 
right inset shows the ATP (with density) that is stabilized by Arg264 of DnaA4 and 7 
Arg313 of DnaA5. The DnaA-trio composed of T7, A8, and A9 that engages DnaA4 8 
and DnaA5 is also shown. 9 
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Supplementary Figure 8. Movement of Domain IV in DnaA proteins bound to 1 
DnaA-boxes. (A) Structural alignment of the DnaA1 and DnaA3 showing the domain 2 
IV of DnaA1 and DnaA3 are 56° apart relative to domain III. (B) Structural alignment 3 
of the DnaA2 and DnaA3 showing the domain IV of DnaA2 and DnaA3 are 37° apart 4 
while relative to domain III.  5 
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Supplementary Figure 9. Identification of essential residues in B. subtilis 
DnaA. (A) Method for constructing the dnaA alanine substitution library. An 
integration vector (pCW23) carrying individual dnaA substitutions was used for allelic 
replacement of the native dnaA gene (using the recipient strain CW199). Selection of 
white colonies following transformation of dnaA substitutions is performed in the 
presence of kanamycin, the chromogenic substrate X-gal and xylose (to express 
DnaA from the ectopic locus). (B) Plate reader growth assays of DnaA variants in the 
absence of xylose. The black line shows the growth profile of cells harbouring wild-
type dnaA, whereas the lines coloured red show lethal substitutions (lines coloured 
grey grew similar to wild-type). Lists of the DnaA variants that revealed a lethal 
phenotype are provided below each panel. The wild-type control is CW380. Strains 
of the alanine substitution library are listed in Supplementary Table 1. (C) 
Immunoblotting reveals that some lethal alanine substitutions in the endogenous 
copy of DnaA were not well expressed (italicized and bold). The tubulin homolog 
FtsZ was used as a standard. The strain lacking dnaA at the native locus is FDS257. 
Multiple images have been spliced together to create the composite panel. 
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Supplementary Figure 10. Confirmation and mapping of essential DnaA 1 
residues. (A) Spot titre assays of lethal alanine substitutions that are expressed in 2 
vivo. The wild-type control is CW233 and the parent strain of all DnaA mutants is 3 
CW199. (B) Topology diagram of DnaA protein with the locations of lethal alanine 4 
substitutions indicated. The proposed activity of each essential residue is also 5 
indicated.  6 



K222

F189

I190

I193

R206

R202

E228

R264
R313
E316

E228

F189

R379

H414

T416

R412

R412

T416F185

S263

L269
G268

F128

G317

T186

R321

N187

Interface 

Buried 

ssDNA interacting 

Distal ATP interacting residues

Proximal ATP interacting residues

dsDNA interacting residues



Supplementary Figure 11. Mapping essential residues onto the model of DnaA. 1 
Top left, the overall BUS complex model shown in grey, with DnaA1 and DnaA2 2 
highlighted in blue and green, respectively. Top right inset shows the interface 3 
between DnaA1 and DnaA2 with the ssDNA interacting residues shown in brown and 4 
proximal ATP interacting residues shown in yellow. Bottom left inset show the 5 
interface between DnaA1 and DnaA2 highlighting key residues required for 6 
oligomerisation. Bottom right inset shows the domain IV of DnaA1, DnaA2 and DnaA3 7 
with the residues involved in dsDNA interaction highlighted in orange. 8 



Supplementary Figure 12. Essential hydrophobic residues flank flipped bases. 1 
Hydrophobic side chains within the ISM (residues Ile190 and Ile193) are inserted 2 
between the two flipped bases (G18, A17) and the non-flipped base (T16). The 3 
extracted density around the bases are contoured at 0.6s. 4 
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Supplementary Figure 13. Primary domain organisation and sequence 1 
conservation of DnaA proteins. Alignments of residues around the DnaA ISM 2 
involved in binding DnaA-trios (numbering refers to B. subtilis). Red dots indicate 3 
that alanine substitution in B. subtilis is lethal. (A) DnaA homologs from the multidrug 4 
resistance ESKAPE pathogens. (B) DnaA homologs from commonly used model 5 
organisms. 6 
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Supplementary Figure 14. The dinucleotide 3′-GA-5′ is preferred to 3′-AA-5′ 1 
within DnaA-trios. (A) Spot titre analysis with strains that have replaced DnaA-trio3 2 
3′-AAT-5′ with either 3′-GAT-5′, 3′-CAT-5′ or 3′-TAT-5′ and a strain harbouring 3 
adenine in the first position of each DnaA-trio. The presence or absence of IPTG 4 
indicates the induction state of the repN/oriN system. Wild-type (FS682), ΔincC 5 
(FS404), DnaA-trio3 first position: AàG (FDS1029), AàC (FDS1031), AàT 6 
(FDS1035), all DnaA-trios first position A (FDS1037). (B) Marker frequency analysis 7 
of strains shown in panel A. Data shows the average and individual data points from 8 
two independent experiments (source data are provided as a Source Data file).  9 
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Supplementary Table 1. 
X-ray data collection and refinement statistics



Supplementary Table 2.
Cryo-EM data collection, processing, and model refinement statistics
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