Chronic exposure to environmental temperature attenuates the thermal sensitivity of salmonids

Alexia M. González-Ferreras^{1,2*}, Jose Barquín¹, Penelope S.A. Blyth^{3,4}, Jack

Hawksley³, Hugh Kinsella^{2,5}, Rasmus Lauridsen^{6,7}, Olivia F. Morris³, Francisco J.

Peñas¹, Gareth E. Thomas^{2,8}, Guy Woodward³, Lei Zhao⁹, & Eoin J. O'Gorman²

¹ IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria. C/Isabel Torres 15, 39011 Santander, Spain

² School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK

³ Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial

College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK

⁴ School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK

⁵ Trinity College Dublin, Ireland

⁶ Game & Wildlife Conservation Trust, Salmon and Trout Research Centre, BH20 6BB, UK

⁷ Six Rivers Iceland, Reykjavik, 101, Iceland

⁸ Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK

⁹ Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193 China

*Corresponding author: gferrerasam@unican.es

Table S1: Number of fish individuals captured by electrofishing including in the field respirometry per experimental context and per specie. Mean weight (in g) and standard deviation are also indicated.

Specie	Experimental	Ninitial	Mean Weight (g)	SD
	context			
Brown trout	SW Iceland_AC	83	19.827	13.037
Brown rout	SW Iceland_CH	90	51.416	51.777
Brown trout	UK_CH	188	8.23	3.208
Brown trout	Spain_ _{CH}	93	22.47	26.244
Salmon	Spain_ _{CH}	22	9.995	9.715
Salmon	NE Iceland_CH	35	11.486	4.678

Table S2: Parameter estimates in our previous workfor the bioenergetics model

used in the Hengill streams.

Parameter	Lower 95% CI	Estimate	Upper 95% CI
A_{G2}	3.158	4.097	4.385
A_{G3}	7.079	7.079	7.079
A_{H2}	-7.241	-7.241	-7.241
A_{H3}	2.332	8.995	10.354
C_{G2}	-1.056	-0.453	-0.327
C_{G3}	1.002	1.002	1.002
C_{H2}	-1.002	-1.002	-1.002
C_{H3}	-2.985	-0.210	0.538
A_K	17.491	18.082	18.657
E_K	-0.468	-0.304	0.200

Table S3: Statistical output of multiple linear regression model describing the relationship between routine metabolic rate $[\ln(I)$ in mg O2 h⁻¹] as the response variable and fish body mass $[\ln(M)$ in mg], standardised Arrhenius temperature (T_A in K), and the source stream that the fish were collected from (S; with 3 levels: IS1, IS12 and IS5) as explanatory variables.

Effects	DF	Sum of squares	Mean square	F value	p value
$\ln(M)$	1	17.060	17.060	61.999	< 0.001
T_A	1	5.631	5.631	20.463	< 0.001
S	2	0.689	0.344	1.252	0.292
Residuals	74	20.362	0.275		

Figure S1: Length-weight relationship used to obtained individual weights (g) of brown trout (Hengill system- SW Iceland_Ac) and Atlantic salmon (NE Iceland_CH). a) Linear regression y = 3.02x - 5.00, $F_{1,457} = 2.76 \times 10^4$, p < 0.001, $r^2 = 0.98$, and b) Linear regression y = 2.69x - 4.40, $F_{1,62} = 1448$, p < 0.001, $r^2 = 0.96$. Note that the relationships were constructed from empirical length and weight data collected at the very same sites.

Figure S2: Photographs taken during field sampling for illustrative purposes. a) Control chamber, b) fish respiration chamber, c) top view of chambers and d) frontal view of chambers placed into the water with rock on the top. See methods in the main text for more information.

References

1. O'Gorman, E. J. *et al.* Unexpected changes in community size structure in a natural warming experiment. *Nat Clim Chang* **7**, 659–663 (2017).