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1. Validation of the machine learning potential

In Table S1, we report the composition of the dataset used for the ML potential fitting. We first checked the entire distribution
of errors on the various systems (Fig. S1). Furthermore, to assess the reliability of the potential in generating new configurations,
we compared the radial distribution function of Fe predicted by the MLP with that obtained from the DFT simulations
(Fig. S2). Then, we monitored the uncertainty of model predictions by calculating the standard deviation of an ensemble of
MLPs on the configurations generated at different temperatures (Fig. S3).

Type Formula Training Validation

AIMD Fe45 4218 744
AIMD Fe72 306 53
AIMD Fe108 1465 258
AIMD Fe45 N 1782 314
AIMD Fe45 N2 2012 354
AIMD Fe45 N4 1746 307
AIMD Fe72 N 138 24
AIMD Fe72 N2 H12 3496 616
AIMD Fe72 N4 H20 1598 282
AIMD Fe72 N6 H30 716 126
Active learning Fe45 1128 198
Active learning Fe72 336 59
Active learning Fe108 1151 202
Active learning Fe45 N 265 46
Active learning Fe45 N2 5202 917
Active learning Fe45 N4 272 48
Active learning Fe72 N2 804 141

TOTAL 26635 4689

Table S1. Dataset for MLP construction. Composition of the data set used for the fitting of the machine learning potential. A wide variety
of systems were simulated: pure iron, with one or more nitrogen molecules and with nitrogen atoms, and - though not used in this study -
also configurations with hydrogen. In all cases 5, 8, or 12 layers were simulated. Configurations were extracted every 2 or 5 fs from AIMD
depending on whether they were metadynamics or standard MD simulations. As for the active learning part candidates were extracted every 1
ps and then selected based on the uncertainty on the predictions of a model ensemble.
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Fig. S1. Accuracy of energy and force predictions. The upper figures report the histogram of the errors in the forces (left) and energies (right) in the test set (corresponding
to 5% of the final dataset used for training and validation of the ensemble of NN potentials). For the forces, the total distribution was reported along with the specific distributions
of iron and nitrogen atoms, which are remarkably close. In the lower figures, we decomposed the error distributions for each system. The violin plot represents the error
distributions on the forces (left) and energies (right) of the configurations grouped by chemical formula. The lines represent the mean value for each system.

Although the system has been optimized with data of the Fe(111) surface, we tested its ability to describe also other surfaces,
namely the (110) and (211) surfaces. The RMSE for energies are 2 and 3.4 meV/atom and 56 and 78 meV/Åfor forces for
the two surfaces respectively. These values are only slightly higher than those for (111), indicating a good description of the
different surfaces.
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Fig. S2. Fe radial distribution function. Comparison of the g(r) computed from DFT and from the machine learning potential. Two different simulations are performed, one
with the same number of atoms as the DFT simulation (108 atoms) and one with a larger system (768 atoms). To make a fair comparison with the AIMD data, simulations of 10
ps were performed also with the MLP.

Fig. S3. Uncertainty of force predictions over MD simulations. Violin plot representing the distribution of the standard deviation of the force predictions for the configurations
generated by the MLP in representative MD trajectories. The standard deviation is calculated from 4 MLPs trained on different permutations of training+validation dataset. This
is then used as proxy for the uncertainty of the predictions. The lines denote the average values at each temperature.
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2. Temperature dependence of Fe surface morphology

In Fig. S4 we further validated the quality of surface dynamics results, performing single-point calculations to make sure
that the our potential matches the underlying DFT PES. Then we further characterize the mechanism of self-diffusion of Fe
atoms. The radial distribution function (Fig. S5) shows that the BCC order is preserved also in the diffusive surface. The
scatter plot of atomic positions (Fig. S6) shows the movement of surface atoms as a function of temperature across the whole
temperature range, while the displacement distributions (Fig. S7) indicate that the diffusion happens via jumps between lattice
sites. Finally, the distribution of the environment similarity (Fig. S8) is plotted for all the temperatures studied.

The following movies are also available:

Movie S1. Surface dynamics at T=300 K vs T=700 K.

Movie S2. Surface atoms diffusion at T=700 K.
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Fig. S4. Accuracy of the potential for surface dynamics. The accuracy over a long-term simulation of the surface is assessed by extracting configurations every 50 ps
and comparing the NN predictions with single-point DFT calculations. Along all the trajectory, the NN potential describes well the energetics of the system regardless of the
dynamical movement that surface atoms undergo, as illustrated in the snapshots around the figure. The temperature is set to T = 700 K, and the system simulated has 108
atoms and 12 layers, of which the bottom two are fixed.
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Fig. S5. Radial distribution function for the ideal and diffusive surface. We compare the radial distribution function at T=700K for the ideal surface, obtained from short
simulations (DFT-108 6 ps and NN-108 10 ps) already plotted in Fig. S2, with the one extracted from the 5 ns simulation of Fig. S4. The high similarity between them, together
with the fact that the second and third neighbor shells are well distinguished, at variance with a liquid-like g(r), clearly show that the short-range order is preserved.
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Fig. S6. Scatter plot of atomic position as a function of temperature. Each row represents a temperature, while each column reports the view from different directions
according to the bottom of the figure. Same as Fig. 4 in the main text but for the whole temperature range.
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Fig. S7. Surface diffusion additional analysis. (left) Distribution of the time-lagged displacements of surface atoms with a lag time τ = 1 ns. The peaks describe a jump
diffusion between lattice sites rather than a liquid-like one. (right) Convergence of the diffusion coefficient computed from the average time-lagged displacements, as a function
of the lag-time τ .

Fig. S8. Environment Similarity distribution. The histogram is calculated for the atoms in the surface for the equilibrated system (filled curves) and for the ideal surface
accounting only for thermal fluctuations (calculated from the first 10 ps of the trajectory, checking that no diffusion of the surface atoms is observed). The threshold to decide
whether or not a site is χ7 is chosen to be equal to 0.8 (dotted vertical line), based on the minima of the ideal dashed curves.
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3. Nitrogen adsorption and dissociation mechanism

Fig. S9 shows the free energy surfaces as a function of the charge transferred q and the distance of the N2 molecule from the
surface, to highlight the adsorption mechanism between the different sites. In Fig. S10 we report the free energy of dissociative
chemisorption as a function of the N-N distance d and the charge q across the whole temperature range. Fig. S11 reports the
same FES for two representative temperatures but where the surface is fixed, to highlight the effect of surface dynamics on the
destabilization of the α′ adsorption state. Fig.S12 shows an analysis of the collective variables used in the OPES simulations.
Fig. S13 reports the free energy profiles computed along the distance and the charge transfer with a block average analysis.
S14-S15 show the minimum free energy pathways in the d − q space and the 1D projection in units of kBT .

The following movie is also available: Movie S3. N2 decomposition at T=300 K and T=700 K.

Fig. S9. Adsorption mechanism vs temperature. Free energy profile of N2 adsorption as a function of N2 partial charge and the distance between N2 center of mass and
surface. To remove thermal fluctuations and to account for the roughening of the surface a two-step procedure is used to compute the distance between the surface and the
moleucule. First, the trajectory is smoothed with a running average of the atomic positions of the Fe atoms. Then, a surface mesh is constructed with the Alpha-Shape method,
and the distance from the center of mass of N2 to the surface mesh. The two states around q=0.3 with different heights from the surface correspond to the N2 molecule being
adsorbed vertically on top of the first or the second layer (γ and δ sites).
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Fig. S10. N2 decomposition mechanism. The free energy surface is computed as a function of N-N distance and N2 charge for all the temperatures investigated. White
dashed lines denote the minimum free energy pathway.

Fig. S11. N2 decomposition mechanism on a static surface. Free energies as a function of N-N distance and N2 at T=300 K and T=700 K from OPES simulations in which
all the surface atoms are fixed. In this case no qualitative change between the low and high-temperature regimes are observed, except for a change of the relative stability of
the different metastable states. Notably, at high temperature the alpha’ precursor state is not destabilized but on the contrary is more stabilized. This is additional evidence that
the observed results are caused by the major dynamic changes taking place at the surface, which therefore need to be fully accounted for.
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Fig. S12. Collective variables analysis. Time evolution of the CVs used and scatter plots of the explored space during the OPES simulations at the T=300 K (left panels)
and T=700 K (right panels). (a-b) Time evolution of the N-N distance. (c-d) Time evolution of the N-Fe coordination number. (e-f) Scatter plot of the distance d and N-Fe
coordination number. (g-h) Scatter plot of the N-Fe coordination and the charge transferred to the N2 molecule. In panels e-h lines represent the isolines of the free energy
surfaces, plotted every 4 kBT (for T=300) and 2 kBT (for T=700) with colors ranging from black to white.
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Fig. S13. Free energy profiles and uncertainties. FES as a function of distance N-N (left) and charge N2 (right) are calculated using a block-weighted average citeIn-
vernizzi2019 using three blocks of 5 ns each (the first 5 ns of the trajectory were discarded). Standard deviations are displayed with shaded curves. For 500 and 600 K
temperatures, the maximum uncertainty on FES is 0.02 eV, while for all others it is always below 0.01 eV.
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Fig. S14. Decomposition pathways versus temperature. The dashed lines represent the minimum free energy pathways calculated in the N-N distance and the q(N2)
plane (dashed lines in Fig. S10), superimposed on the free energy at T=300K.

Fig. S15. Adsorption and decomposition free energy profile. Free energy along the minimum free energy pathways, as in Fig.6 in the manuscript, here rescaled by thermal
energies kBT .
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4. Transition state characterization

Fig. S16. Transition state ensemble. Distribution of the N2 charge (left) and environment similarity between the environment of the Iron below (right) for the transition state
ensemble configurations selected from the committor analysis. The distributions are normalized such that their integral sums to 1.
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Fig. S17. Transition state snapshots. Configurations from the transition state ensemble at T=700K representative of the two peaks in Fig.7b. Snapshots of configurations with
low similarity (top row) and high similarity (bottom) between the environment of the Fe atom on which N2 is located and the reference site χ7. The top row contains samples of
the disordered active sites created by the dynamical roughening of the surface. Within each group, the snapshots are ordered by increasing similarity measures.
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5. Temperature dependence of chemical reactivity

Fig. S18. Reaction rates and low-temperature extrapolation. The reaction rates computed with the Eyring-Polanyi equation are contrasted with an extrapolation from the
low-temperature regime. This has been obtained by inserting in the Eyring-Polanyi formula the value of ∆G† estimated from the simulation at T=300 K (which is also close to
previous T=0 K DFT calculations). This estimate obviously neglects any change in entropy. This extrapolation reproduces our data only up to T≲ 500 K, while it overestimates
the rates at higher temperatures, reflecting the existence of the two different regimes discussed in the paper. Above 500 K this temperature diffusion sets in and entropic
contributions become important and must be taken explicitly into account. This is done automatically in our approach as the estimates of the free energy barriers from MD
simulations already include entropy.
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