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Supplementary Materials and Methods
Plasma ethanol concentration measurement

Blood samples were collected from the tail snips of AE-control and AE pregnant mice
before and 30, 60 min, and one day after intraperitoneal administration of PBS or 25%
ethanol solution in PBS on gestational days 16.5 and 17.5. Ethanol concentration was
measured by using the Ethanol Assay kit (Abcam, #ab65343). The ethanol concentration
was determined using the standard curve, after subtracting the blank value from all

standards and samples.
Open field test

The open field test was used to assess the locomotor activity and anxiety-like behavior of
the mice. Briefly, C57BL/6J mice were transported to the testing room and allowed to
acclimate for 15 min before each test. The testing room was illuminated with overhead
lighting at ~450 lux. For the testing session, each mouse was gently placed in a corner of
an open field Plexiglas clear chamber (21 cm x 21 cm x 30 cm) and allowed to move freely
for 30 min. The data were collected using the open field activity monitoring system
(AccuScan Instruments), which uses photocell emitters and receptors forming an x-y grid

of invisible infrared beams.
Accelerated rotarod test

Motor learning ability was evaluated with accelerated rotarod test (1). Mice were
acclimated with rotarod apparatus for two minutes before testing. Testing consisted of
three trials/day, with at least a fifteen-minute break between trials, for two consecutive
days (Fig. 1I). Trial was terminated if mice fell off rotarod, or made one complete rotation
without walking on rotarod, or reached maximum speed after a five-minute session.

Latency to fall from rotarod was recorded automatically by rotarod sensors.
Immunohistochemical quantification of insulin-positive cell areas and islet

Pancreatic tissues were harvested from P78 OMD-controls and OMDs, fixed overnight in
4% PFA, and paraffin-embedded. Paraffin-embedded sections were cut at a thickness of
6 um, deparaffinized, and were blocked with 5% goat serum for 30 minutes at room
temperature. We used a monoclonal rabbit anti-insulin primary antibody (Abcam,
ab181547) diluted at 1/200 for immunostaining. Sections were covered and slipped with

the prolonged antifade reagent with DAPI to label the nuclei. The entire pancreatic tissue



was scanned at 10x magnification using a fluorescence microscope (BZ-X810, KEYENCE,
JAPAN). Labelled area and tissue were quantified by using ImageJ software. The number

of islets was counted manually in each tissue section.

PBMC isolation

Blood was drawn from anesthetized mice (Isoflurane, Henry Schein) via cardiac puncture,
immediately transferred to collection tubes containing EDTA-2K, and centrifuged at 1500
rpm for five minutes at RT. The top blood plasma layer was discarded. The remnant,
containing PBMCs, was mixed with five ml of 10% FBS in DMEM/F12 and Ficoll-Paque
PLUS solution (Millipore Sigma), and centrifuged at 10009 for fifteen minutes at RT. The
middle layer, containing PBMCs, was collected, washed twice with PBS, and transferred
to ice-cold buffer for FACS analysis.

FACS

PBMCs were stained with rat monoclonal anti-mouse CD11b antibody (Cat# 101205,
Biolegend), CD19 antibody (Cat# 152407, Biolegend) and CD90.2 antibody (Cat# 105311,
Biolegend). Cells were gated based on cell size [forward scatter (FSC) versus side scatter]
and singlets (FSC versus trigger pulse width). T-cells, B-cells and monocytes were
separated by collecting CD11b*/CD19, CD197/CD90.2° and CD19/CD90.2* cell

subpopulations respectively.
Library preparation and RNA-sequencing

cDNA libraries were prepared using SMART-Seq v4 Ultra Low Input RNA Sequencing Kit
(TAKARA Bio) and Nextera XT DNA Library Prep Kit (lllumina) as per manufacturer
instructions, and assessed for their size distribution and concentration using BioAnalyzer
High Sensitivity DNA Kit (Agilent Technologies). Libraries were pooled and diluted to 3nM
with 10mM Tris-HCI, pH8.5, and denatured as per Illlumina protocol. Denatured libraries
were loaded onto an S1 flow cell on an lllumina NovaSeq 6000 (Illumina) and ran for 2 x
50 cycles. De-multiplexed sequencing reads were generated using lllumina bcl2fastq

(v2.18.0.12) allowing no mismatches in index read.
RNA-seq analysis

Low quality reads were removed via FastQC (sickle with default setting) (2). A HISAT2
index was built for mm10 genome assembly using HISAT2 v2.1.0(3). RNA-sequencing
reads of each sample were mapped using HISAT2 or STAR v2.5.4a (4) supplied with



Ensembl annotation file; GRCm38.78.gtf. For count call, HTseqg-count v0.10.0 (5) or

featurecounts (6) was used.
MDS analysis

MDS analysis of TMM-normalized RNA-sequencing data was performed using IDEAMEX
(7).
AS analysis

BAM (binary alignment map) files were used by rMATS (v4.0.2) (8) python script to perform
splicing analysis; Number of threads (--nthread 48), Gene Transfer File (--gtf
Mus_musculus.GRCm38.78_ERCC92.gtf), type of read (-t paired), the length of each read
(--readLength 50), the cutoff splicing difference (--cstat 0.001), and library type (--libType

fr-unstranded) were used as parameters.

For differential splicing analysis with Leafcutter (9), BAM files were first converted
into JUNC (i.e., junction) files. Regtools software was used with these parameters; anchor
length (-a 8), minimum length (-m 50), maximum length (-M 500000). List of junc files was
generated into juncfiles.txt. Then, intron clustering was performed with default parameters
using leafcutter_cluster_regtools.py python script. Files were then grouped into two
datasets for differential splicing analysis (groups_file.txt). Then leafcutter_ds.R script was
used to generate two @ files; leafcutter_ds_cluster_significance.txt  and
leafcutter_ds_effect_sizes.txt. Lastly spliced junctions were plotted using ds_plots.R

script.
Quantitative real-time PCR

Quantitative real-time PCR was performed to verify altered expression of spliced
transcripts. Test samples were derived from a random subset of samples on which RNA

sequencing was performed. The primers and the PCR product length are as follows:
Ets1: Forward - 5’ - AAAAGAACAGCAGCGACTGG - 3

Reverse - 5 — TGGGTAGGTAGGGTTGGCTC - 3’

Product length = 280 bp
Tvp23b: Forward - 5" - AGAGCCACTGGGTGTTTGAG - 3

Reverse - 5 — CTGCCCACTTTACACCGGAT - 3

Product length = 232 bp



GO analysis

GO terms were derived using Enrichr (10). Significant GO terms were analyzed for their
semantic similarity, based on their precomputed information content (11), using MDS
analysis with REVIGO (12). REVIGO then uses MSDJ, a JAVA library for MDS (v0.2), for
MDS analysis (13). Semantic similarity coordinates for each GO term were plotted as
scatter plots in Tableau (14) (v2019).

Protein structure prediction and rendering

Three-dimensional structure of proteins were predicted using AlphaFold2 algorithm
(Deepmind, Google) (15, 16) along with predicted Local Distance Difference Test (pLDDT)
plots and Predicted Aligned Error plots. The predicted protein structures were surface-
rendered and annotated with Polyview-3D (17).

Superimposition of protein structures

Three-dimensional protein structures were superimposed using a pairwise structural
alignment algorithm, FATCAT (18). RMSD (root mean square distance) for a pair of
superimposed structures computes root mean square deviation of aligned Ca atoms of
input structures, with one input structure rearranged if flexibility is detected (by introducing

twists in the alignment).
RBP binding site density analysis

Chromosome coordinates of regions important for AS of significantly upregulated (+Apsi)
and downregulated (-Apsi) exons in SE AS, in PAE and OMD, in B-cells and T-cells, were
identified via rMAPS2 (19). These coordinates were then used to determine RBP binding
site density in these regions via RBPmap (20).

Data presentation resources and tools

Venn diagrams were generated with Biovinci (v2.8.3) (21). Circos plots were generated
using R (v3.6) circlize package (v0.4.11) (22). Volcano plots, scatter plots, GO MDS plots,
and horizontal bar charts (Fig. 7J-K) were generated with Tableau (v2019) (14).

Tornado plot (Fig. 6A) and LSTM deep-learning model performance plots (Fig. 4B-
J, Fig. 5) were generated with Matplotlib (v3.1.0) (23) and Seaborn (v0.10.1) (24) Python
libraries. Hierarchical clustering of data into heatmaps with dendrograms was performed
with Morpheus (25).

Statistics



Unless otherwise stated, quantitative data is presented as mean with standard error. For
data that passed D'Agostino & Pearson normality test, we performed two-tailed Student’s
t-test, one-way or two-way (repeated measures) analysis of variance (ANOVA) followed
by post-hoc test (either Holm-Sidak’s or Tukey multiple comparison test), as indicated.
When statistically significant interaction between independent variables in two-way
ANOVA was found, simple main effects were reported. Kruskal-Wallis test was used for
nonparametric one-way ANOVA and multiple comparisons. Mann-Whitney U test was
used for two-group comparisons of not normally distributed data. GraphPad Prism (v7)
was used for statistical analysis. P-values < 0.05 (0.01 for GO analysis) were considered

significant.



Supplementary Figs:
Fig. S1
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Fig. S1. Dynamics of blood alcohol concentration post administration to pregnant
female. AE mice showed higher blood ethanol concentrations at 30 and 60 minutes after
receiving ethanol solutions. Treatment x Time interaction: F (6, 36) = 23.92, p < 0.0001 by
two-way repeated measures ANOVA. Sample sizes (# mice): AE-control = 3 mice, AE =5

mice. Horizontal lines show mean = SEM. **** p < 0.0001 by simple main effect test.



Fig. S2
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Fig. S2. Normal histology in pancreas from 11-week-old OMD mice. (A) Ratio of
insulin-positive cell area against entire pancreatic tissue area in OMD-control, OMD, and
CF-OMD mice. F (2, 41) =0.7975, p = 0.4573 by one-way ANOVA. (B) No sex-dimerphism
was observed in this measure [OMD-control male vs OMD-control female, p = 0.2182 by
two-tailed Student’s t-test; OMD male vs OMD female, p = 0.7376 by two-tailed Student’s
t-test; CF-OMD male vs CF-OMD female, p = 0.1019 by Mann-Whitney U test. (C) The
number of Islet cells is similar between these three groups (Kruskal-Wallis statistic =
6.664], and (D) between gender-divided sub-groups (MD-control male vs OMD-control
female, p = 0.4886; OMD male vs OMD female, p = 0.8943; CF-OMD male vs CF-OMD
female, p = 0.7846 by two-tailed Student’s t-test). Sample sizes: (A-D) OMD-control = 12
mice (6 males), OMD = 13 (7), CF-OMD = 19 (8). Horizontal lines represent mean + SEM.



Fig. S3
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Fig. S3. OMD exhibit anxiety-like behavior while maintaining normal locomotion in
the open field test. (A-F) There was no difference in total distance (A, B), horizontal
activity (C, D), or vertical activity (E, F) between the OMD and the OMD-control group (A,
C, E) [A; Treatment: F (1, 55) = 0.09975, p =0.7533, Days: F (2, 110) =43.77, p < 0.0001,
Interaction: F (2, 110) = 1.527, p = 0.2218. C; Treatment: F (1, 55) = 0.09666, p = 0.7571,
Days: F (2, 110) = 113.4, p < 0.0001, Interaction: F (2, 110) = 0.4602, p = 0.6324. E;
Treatment: F (1, 55) =0.1532, p =0.6979, Days: F (2, 110) = 26.48, p < 0.0001, Interaction:
F (2, 110) = 0.5591, p = 0.5733.] or between gender separated sub-groups (B, D, F) [B;



Treatment: F (3, 53) =0.4345, p=0.9878, Days: F (2, 106) =42.41, p < 0.0001, Interaction:
F (6, 106) = 1.387, p = 0.2265. D; Treatment: F (3, 53) = 0.1879, p = 0.9042, Days: F (2,
106) = 108.5, p < 0.0001, Interaction: F (6, 106) = 0.2801, p = 0.9452. F; Treatment: F (3,
53) = 0.9083, p = 0.4433, Days: F (2, 106) = 26.30, p < 0.0001, Interaction: F (6, 106) =
0.8003, p = 0.5718.]. No significant difference in comparisons at each time point by two-
tailed Student’s t-test. (G, H) OMD group (G), especially OMD males (H), spent
significantly more time in the center area compared to control group [G; Treatment: F (1,
55) = 7.109, p = 0.01000, Days: F (2, 110) = 0.2864, p = 0.2864, Interaction: F (2, 110) =
1.625, p = 0.2015. H; Treatment x Days interaction: F (6, 106) = 2.530, p = 0.02500.].
Statistical tests: (A, C, E, G) two-way repeated measures ANOVA followed by Holm-
Sidak's multiple comparisons test. (B, D, F) two-way repeated measures ANOVA followed
by Tukey’s multiple comparisons test. (H) Two-way repeated measures ANOVA, followed
by simple main effect test. OMD-control male = 18 mice, OMD male = 13, OMD-control
female = 14, OMD female = 12. Graphs show mean + SEM. * p < 0.05. *** p < 0.001.



Fig. S4
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Fig. S4. Gender-Based Analysis of Motor Learning. (A) Learning index is not different
between male and female in each experimental group [PAE-control male vs PAE-control
female, p = 0.3211; PAE male vs PAE female, p = 0.7718; OMD-control male vs OMD-
control female, p = 0.9032; OMD male vs OMD female, p = 0.4384]. Graph presents mean
+ SEM. (B) Changes in terminal speed from trial 1 to 6 are similar between male and
female in each experimental group [PAE-control male vs PAE-control female, p = 0.3206;
PAE male vs PAE female, p = 0.7718; OMD-control male vs OMD-control female, p =
0.2118; OMD male vs OMD female, p = 0.4384]. Dense lines show mean value. Two-tailed



Student’s t-test. (A, B) PAE-control male = 9 mice, PAE male = 8, PAE-control female =
14, PAE female = 15, OMD-control male = 13, OMD male = 16, OMD-control female = 17,
OMD female = 10.



Fig. S5
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Fig. S5. Cross-fostering neither changes mothers’ metabolic profiles post STZ
treatment or motor skill learning in OMD mice. (A, B) There was no difference in body
weight between mother with diabetes (MD) and cross-fostering mother with diabetes (CF-
MD), and between MD-control (mother injected with CB instead of STZ) and cross
fostering control mother (CF-MD-control) at indicated days post injection of STZ (or CB,
for control mice) (A) [MD vs CF-MD; Cross-fostering: F (1, 5) = 6.129, p = 0.0561, Days:
F (4, 20) = 0.9635, p = 0.4490, Interaction: F (4, 20) = 0.6158, p = 0.6563, MD-control vs
CF-MD-control; Cross-fostering: F (1, 3) = 0.02424, p = 0.8862, Days: F (4, 12) = 5.077,



p = 0.0125, Interaction: F (4, 12) = 0.8191, p = 0.5373], and post conception (B) [MD vs
CF-MD; Cross-fostering: F (1, 5) = 3.271, p = 0.1303, Days: F (4, 20) = 94.19, p < 0.0001,
Interaction: F (4, 20) = 2.588, p = 0.0681, MD-control vs CF-MD-control; Cross-fostering:
F (1, 3) =0.5219, p = 0.5223, Days: F (4, 12) = 72.97, p < 0.0001, Interaction: F (4, 12) =
0.1912, p = 0.9384]. (C, D) There was no difference in blood glucose levels between MD
and CF-MD mice, and between MD-control and CF-MD-control mice at indicated days post
injection of STZ (or CB, for control mice). (C) [MD vs CF-MD; Cross-fostering: F (1, 5) =
0.4828, p = 0.5181, Days: F (4, 20) = 7.327, p = 0.0008, Interaction: F (4, 20) = 0.07534,
p = 0.9889, MD-control vs CF-MD-control; Cross-fostering: F (1, 3) = 2.003, p = 0.2519,
Days: F (4, 12) = 0.6055, p = 0.6662, Interaction: F (4, 12) = 1.32, p = 0.3178] and sampling
at random intervals (D) [MD vs CF-MD; Cross-fostering: F (1, 5) = 0.8174, p = 0.4074,
Days: F (4, 20) = 0.4421, p = 0.7768, Interaction: F (4, 20) = 0.4421, p = 0.7768, MD-
control vs CF-MD-control; Cross-fostering: F (1, 3) = 6.568, p = 0.0830, Days: F (4, 12) =
8.113, p = 0.0005, Interaction: F (4, 12) = 0.512, p = 0.7284]. (E, F) There was no
difference in blood glucose level between MD and CF-MD mice, and between MD-control
and CF-MD-control mice at the indicated days post conception. (E) [MD vs CF-MD; Cross-
fostering: F (1, 5) = 0.8109, p = 0.4091, Days: F (4, 20) = 2.786, p = 0.0546, Interaction: F
(4, 20) = 1.347, p = 0.2874, MD-control vs CF-MD-control; Cross-fostering: F (1, 3) =
0.002431, p = 0.9638, Days: F (4, 12) = 10.39, p = 0.0007, Interaction: F (4, 12) =6.27, p
= 0.0058] and sampling time (F) [MD vs CF-MD; Cross-fostering: F (1, 5) = 2.872, p =
0.1509, Days: F (4, 20) = 7.842, p = 0.0006, Interaction: F (4, 20) = 0.1697, p = 0.9513,
MD-control vs CF-MD-control; Cross-fostering: F (1, 3) = 0.06531, p = 0.8148, Days: F (4,
12) =7.912, p = 0.0023, Interaction: F (4, 12) = 1.788, p = 0.1960]. (G, H) Similar to OMD
mice, cross-fostered OMD (CF-OMD) mice lower performance in the accelerated rotarod
motor test (G) [F (3, 79) = 4.569, p = 0.0050] and had a significantly lower learning index
than OMD-control mice (H) [F (3, 79) = 4.405, p = 0.0064 by one-way ANOVA. *p < 0.05
by Holm-Sidak's multiple comparisons test]. Statistical tests: (A-F) Two-way repeated
measures ANOVA. (G, H) One-way ANOVA, followed by Tukey’s (G) or Holm-Sidak's
multiple comparisons test (H). Fasting blood glucose was determined by collecting blood
post 6 hours fasting. (A-F) MD = 4 mice, MD-control = 3, CF-MD-control = 2, CF-MD = 3.
(G, H) OMD-control = 30 mice, OMD = 26, CF-OMD-control = 15, CF-OMD = 12. Graphs
present mean £ SEM. *p < 0.05.
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Fig. S6. The proportion of T-cells, B-cells and monocytes in peripheral blood
mononuclear cells. (A, C, E) The proportions of T-cells (A), B-cells (C), and monocytes
(E) are similar between the respective groups of PAE, OMD, and their control groups; (A)
[F (3, 35) =2.927, p = 0.0472], (C) [F (3, 39) = 5.072, p = 0.0046], (E) [F (3, 38) =1.132.
p = 0.3485]. (B, D, F) The proportions of T-cells (B) and monocytes (F) are not different
between male and female in each experimental group. OMD-control female shows a
decrease in the proportion of B-cells compared to male. No differences were observed
between males and females in all other comparisons. (B) [PAE-control male vs PAE-
control female, p = 0.5168; PAE male vs PAE female, p = 0.3987; OMD-control male vs
OMD-control female, p = 0.5395; OMD male vs OMD female, p = 0.6211], (D) [PAE-control
male vs PAE-control female, p > 0.9999; PAE male vs PAE female, p = 0.1646; OMD-
control male vs OMD-control female, p = 0.0452; OMD male vs OMD female, p = 0.1078],



(F) [PAE-control male vs PAE-control female, p = 0.4000; PAE male vs PAE female, p =
0.7345; OMD-control male vs OMD-control female, p = 0.2067; OMD male vs OMD
female, p = 0.4721]. Statistical tests: (A, C, E) One-way ANOVA, followed by Tukey’s test.
(B) two-tailed Student’s t-test. (D, F) PAE-control male vs PAE-control female; Mann-
Whitney U test, followed by Dunn's multiple comparisons test, PAE male vs PAE female,
OMD-control male vs OMD-control female, OMD male vs OMD female; two-tailed
Student’s t-test. (A) PAE-control = 6 mice, PAE = 11, OMD-control = 13, OMD = 9. (B)
Males: PAE-control =3 mice, PAE =5, OMD-control = 4, OMD = 5, Females: PAE-control
=3 mice, PAE = 6, OMD-control =9, OMD = 4. (C) PAE-control = 8 mice, PAE = 11, OMD-
control = 13, OMD = 9. (D) Males: PAE-control = 4 mice, PAE =5, OMD-control =5, OMD
= 6. Females: PAE-control = 4 mice, PAE = 6, OMD-control = 8, OMD = 5 mice. (E) PAE-
control = 8 mice, PAE = 11, OMD-control = 13, OMD = 10. (F) Males: PAE-control = 4
mice, PAE =5, OMD-control = 5, OMD = 6 mice. Females: PAE-control = 4 mice, PAE =
6, OMD-control = 5, OMD = 4. Graphs represent mean + SEM. *p < 0.05.
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Fig. S7. Quality control evaluations and differential gene expression analysis of

RNA sequencing raw data from peripheral immune cells of PAE and OMD mice. (A)

High Phred (mean sequence quality) scores were observed across all reads. Scores from

all reads were averaged per sample, and plotted for all samples. (B) The number of read

counts in each Phred score are shown. Each line represents one sample. (C) Density plots

show similar pattern in gene numbers with the indicated num

ber of read counts across

samples. (D-G) Venn Diagrams show the number and proportion of unique and common



significant differentially expressed genes (DEGSs) in B-cells (D, E), T-cells (F, G), and
monocytes (H, 1) in PAE (D, F, H) and OMD (E, G, I) mice as assessed by Limma, DeSeq2
and EdgeR methods of differential gene expression analysis. At least a two-fold change
in expression, either up or down, was considered significant. DEGs identified by EdgeR

were selected for downstream analyses.
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Fig. S8. Distribution of significance and Apsi values of alternative splicing events
in peripheral immune cells of PAE and OMD mice. (A-O1) Volcano plots show the

significance (False Discovery Rate, g-value) and Apsi values of all AS events identified in



B-cells (A-E, A1-E1), T-cells (F-J, F1-J1), and monocytes (K-O, K1-O1) in PAE (A-O) and
OMD (A1-0O1) mice. All 5 types of AS events; A3SS (A, F, K, Al, F1, K1), A5SS (B, G, L,
B1, G1, L1), MXE (C, H, M, C1, H1, M1), RI (D, I, N, D1, 11, N1) and SE (E, J, O, E1, J1,
01); are represented. (P1, Q1) Venn diagrams show the number and proportion of unique

and common AS events among B-cells, T-cells, and monocytes in PAE (P1) and OMD

(Q1) conditions.
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Fig. S9. Minimal to no overlap between DEGs and alternatively spliced genes in
peripheral immune cells of PAE and OMD mice. (A-F) Venn diagrams show the number
and proportion of uniqgue and common genes that were significantly alternatively spliced
and significantly differentially expressed in B-cells (A, D), T-cells (B, E), and monocytes
(C, F) in both PAE (A-C) and OMD (D-F) mice. At least a two-fold change in gene
expression, either up or down, as identified by EdgeR analysis, was considered significant.
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than 5% were considered significantly alternatively spliced.
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Fig. S10. Quantitative real time PCR validation of differential alternative splicing of
key AS events. (A-C) Psi values were calculated from results obtained via quantitative
real time PCR for Tvp23b gene (A) and Etsl (B) gene in B-cells, and Ets1 gene (C) in T-
cells for PAE, PAE-control, OMD and OMD-control groups. P-values from two-tailed

Student’s t-test are shown for each comparison. N = 2 samples per group.
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Fig. S11. Clustering of normalized psi values of biomarker AS events according to
learning index scores of PAE and OMD mice. (A-D) Heatmaps show the clustering of
z-score normalized psi values of B-cell (A, B) and T-cell (C, D) biomarker AS events from
mice in the PAE (A, C) and OMD (B, D) conditions arranged in ascending order of their
learning index. The median learning index score of 2.8 is used for binary classification of
mice into fast and slow learners. Hierarchical clustering of biomarkers is represented as
dendrograms to the left of each heatmap. The color range of heatmap cells are indicated
at the bottom. The distribution of slow and fast learners in different sub-groups: B-cells —
PAE group: 15 slow learners, 14 fast learners; B-cells — OMD group: 9 slow learners, 15
fast learners; T-cells — PAE group: 17 slow learners, 11 fast learners; and T-cells — OMD

group: 5 slow learners, 15 fast learners.
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Fig. S12. Aptly trained deep learning model predicts motor learning ability of PAE

and OMD mice from psi values of common AS event biomarkers. (A) Accuracy of

LSTM model in predicting learner type (fast or slow), with each consecutive epoch, in

training (black) and test (red) datasets, is plotted as %prediction accuracy over epochs.



Absence of overperformance in test dataset, relative to training dataset, over all epochs,
demonstrates that LSTM model is not overfit. (B) Binary cross-entropic loss values are
plotted for training (black) and test (red) datasets for each epoch. Absence of better
learning in test dataset, relative to training dataset, over all epochs, demonstrates that
LSTM model is not overfit. Negative slope of loss function curves in training and testing
datasets, with their respective loss function values trending towards zero with each
successive epoch, demonstrates that LSTM model is not underfit. (C-D) Five-fold cross
validation of LSTM model. Input dataset was randomly split into five equal parts. During
each cross validation; 0-1000, 1000-2000, 2000-3000, 3000-4000, 4000-5000 epochs;
any four of five splits were randomly selected to be training dataset and the remaining fifth
split was used as test dataset, to evaluate model performance [% prediction accuracy (C)]
and model learnability [binary cross-entropic loss (D)]. Black line = Training dataset. Red

line = Test dataset.
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Fig. S13. GO analysis of biomarkers in Shapley-value clusters reveals their

relevance for optimal neural function and motor behavior. MDS plots of significant GO
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terms for genes within clusters I-IV. (A-D) MDS plots of significant GO terms for biological
processes in cluster | B-cell (A), cluster 1l T-cell (B), cluster Il B-cell (C), and cluster IV T-
cell (D) genes. (E-H) MDS plots of significant GO terms for molecular processes in cluster
| (E), cluster Il (F), cluster 11l (G), and cluster IV (H) genes. (I) MDS plots of significant GO
terms for cellular components in all clusters. (J) Human phenotype ontology GO terms for
clusters I-1ll. (K) Significant pathway ontology GO terms from Human Wiki and KEGG

Pathway databases. GO terms with p-value < 0.01 were considered significant.
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: Microcephalic osteodysplastic primordial dwarfism type 2 Yes Yes

0007 Paris-Trousseau thrombocytopenia Yes No

0007 Double cortex syndrome Yes Yes

Trichoepithelioma multiple familial 2 No No

Orotic aciduria type 1 Yes Yes
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Chromosome 13q deletion Yes Yes

Chromosome 15q partial deletion Yes Yes

Pallidopyramidal syndrome Yes Yes

Mowat-Wilson syndrome Yes Yes

Chromosome 18q deletion syndrome Yes Yes

Phosphoribosylpyrophosphate synthetase deficiency Yes Yes

0.004 Genee-Wiedemann syndrome No No

sy Chromosome 10 monosomy 10p Yes Yes

0.005 Adenylosuccinase deficiency Yes Yes

: Hyperbilirubinemia type 2 No No

Urea cycle disorders No No

Fuchs heterochromic iridocyclitis No No

Angiosarcoma of the liver No No

Segmental vertebral anomalies No No

0.004 Pontocerebellar hypoplasia Yes Yes

= Hereditary cerebellar ataxia syndrome of early onset Yes Yes

= Olivopontocerebellar atrophy No Yes

el Epileptic encephalopathy Lennox-Gastaut type Yes Yes

=y Reticuloendotheliosis No No

. Hyperlipoproteinemia type 5 No No

Abidi X-linked mental retardation syndrome Yes Yes

Early-onset ataxia with oculomotor apraxia and hypoalbuminemia  Yes Yes

Chromosome 18 trisomy 18q Yes Yes

ICF syndrome Yes Yes

ITCH E3 ubiquitin ligase deficiency Yes Yes

Chromosome 8 trisomy 8q Yes Yes

Swyer James syndrome No No

Juvenile myelomonocytic leukemia No No

Philadelphia-negative chronic myeloid leukemia No No

Birdshot chorioretinopathy No No

Progressive osseous heteroplasia No No

Gingival fibromatosis 4 No No
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Fig. S14. Rare disease GO analysis of Shapley value-correlated gene clusters

reveals relevance of the common AS biomarkers for cognitive and motor



impairment in humans. Significant rare disease GO terms significantly associated with
Shapley value-correlated gene clusters |-V are listed as a table. Each GO term was
annotated for the presence (yes) or absence (no) of cognitive and motor impairment on
the right. The significance of each GO term is depicted as a colored bubble on a scale of
0 (blue) to 0.01 (red) on the left with the p-value annotated inside of it. Within each cluster,
the GO terms are arranged in descending order of their significance. GO terms with a p-
value smaller than 0.01 were considered significant. The color range of p-value bubbles is

indicated in the top.
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Fig. S15. Superimposition of predicted structures of selected biomarkers of interest
show gross mismatch between their long and short isoforms. (A-D) Superimposition
of AlphaFold2 predicted structures of the long (blue, A-D) and short (yellow, A-D)
alternatively spliced isoforms of Kdm7a (A), Usp15 (B), Dappl (C) and Brox (D) with 1, O,
2, and O twists respectively. In each case, there is a gross mismatch between the short
and long protein isoforms. The RMSD of aligned Ca atoms between the long and short
isoforms of Kdm7a, Usp15, Dappl, and Brox were 1.42A (A), 2.10A (B), 3.77A (C), and
3.34A (D), respectively.



Fig. S16

A Mtpap long isoform B Mtpap short isoform

ot

Fig. S16. Predicted protein structures of biomarkers show how AS can influence
their structure. (A-J) AlphaFold2 predicted structures of long (A, C, E, G, |) and short (B,
D, F, H, J) AS isoforms. Protein regions retained in long isoforms and important for
specified functions were marked green and red respectively, with any overlap marked
yellow, and remainder marked grey. AAs 447-585 (green, A) which include AAs 478 and
490, point mutations in which confers susceptibility to fetal-onset spastic ataxia type 1V,
are retained in long Mtpap isoform (A) but spliced out in short Mtpap isoform (no green,



B). AAs 68-134 (green + yellow, C), which include an ERK2 MAPK docking site (AAs
114,116,120; yellow, C), are retained in long Ets1 isoform (C) but spliced out in short Ets1
isoform (no yellow or green, D). AAs 111-154 (green + yellow, E) which include one of the
transmembrane regions (AAs 126-146; yellow, E) are retained in long Tvp23b isoform (E)
but spliced out in short Tvp23b isoform (no yellow or green, F). AAs 104-148 (green +
yellow) are retained in long Celf2 isoform. AAs 107-187 (yellow + red, G) mark RNA
binding site of Celf2 essential for RNA splicing activity. AAs 107-148 (green + yellow, G)
mark partial overlap between AS region (AAs 104-148; green + yellow, G) and RNA
binding region (AAs 107-187; yellow + red, G) in Celf2 long isoform (G). Splicing out this
AS region in short Celf2 isoform (no green or yellow, H) leads to its RNA binding site
truncation (red, H). AAs 705-1036 in long Rasal isoform (red + yellow, 1) mark Ras
GTPase activating domain. AAs 967-1011 (yellow, I) within this domain are spliced out in

short isoform resulting in truncated GTPase domain (AAs 705-994; red, J).
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Fig. S17. Confidence plots for AlphaFold2 predicted structures of long and short
isoforms of selected biomarkers of interest. (A-T) Predicted Local Distance Difference



Test (pLDDT) plots (A, B, E, F, I, J, M, N, Q, R) and Predicted Aligned Error plots (C, D,
G,H, K L, O, P, S, T) of AlphaFold2 predicted protein structures for long (A, C, E, G, |, K,
M, O, Q, S) and short (B, D, F, H, J, L, N, P, R, T) isoforms of Mtpap (A-D), Ets1 (E-H),
Tvp23b (I-L), Celf2 (M-P) and Rasal (Q-T). pLDDT is a per-residue measure of
AlphaFold2’s local confidence, on a scale from 0-100, in the accuracy of each AA residue
in its predicted structure. pLDDT plots are a plot of pLDDT scores (y-axis) for each AA
residue (x-axis) in the protein structure. Regions with pLDDT scores > 90, 90-70, and 70-
50 are expected to be modeled with high, medium, and low accuracy respectively. Regions
with pLDDT scores < 50 is a strong predictor for disorder, i.e those regions are either
intrinsically disordered or only structured as part of a complex. Predicted Aligned Error (x-
y) plots report AlphaFold2’s expected position error at residue x (x-axis), when the
predicted and true structures are aligned on residue y (y-axis). Predicted Aligned Error is
useful for assessing confidence in relative domain positions (i.e., domain packing). For
residues x and y drawn from two different domains, a consistently low Predicted Aligned
Error at (X, y) suggests AlphaFold2 algorithm is confident about the relative domain

positions, and vice versa.



Fig. S18
A Superimposed Mtpap long & short isoform with 1 twist

Mtpap long isoform in gray

Mtpap short isoform in yellow

Mtpap short isoform spliced out region in red
RMSD of equivalent positions = 2.85A

Ets1 long isoform in gray

Ets1 short isoform in yellow

Ets1 short isoform spliced out region in red
RMSD of equivalent positions = 4.03A

Tvp23b long isoform in gray

Tvp23b short isoform in yellow

Tvp23b short isoform spliced out region in red
RMSD of equivalent positions = 4.24A

D Superimposed Celf2 long & short isoform with 4 twists

1\

Celf2 long isoform in gray

Celf2 short isoform in yellow

Celf2 short isoform spliced out region in red
RMSD of equivalent positions = 3.60A

Rasa1 long isoform in gray

Rasa1 short isoform in yellow

Rasa1 short isoform spliced out region in red
RMSD of equivalent positions = 2.77A

Fig. S18. Superimposition of predicted structures of long and short biomarker

isoforms show preservation of global structures of short isoforms in spite of loss




of their spliced out regions. (A-E) Superimposition of AlphaFold2 predicted structures
of long (grey) and short (yellow) AS isoforms of Mtpap (A), Etsl (B), Tvp23b (C), Celf2
(D), and Rasal (E) via FATCAT algorithm. The protein regions retained in long isoforms
were marked red. RMSDs of aligned Ca atoms between long and short isoforms are

indicated.



Fig. S19
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Fig. S19. Heatmap of binding site density ratio of RBPs and fold-change in RBP
expression in peripheral immune cells of PAE and OMD mice. (A) Heatmap show RBP

binding site density ratio, as determined by the ratio of RBP binding site density in



downregulated exons (negative Apsi splicing events) vs upregulated exons (positive Apsi
splicing events) in skipped exon AS type; in B-cells, T-cells, and monocytes; in PAE and
OMD mice. (B) Heatmap show differential RBP expression, as determined by EdgeR
analysis; in B-cells, T-cells, and monocytes; in PAE and OMD mice. (A ,B) The RBPs are
arranged in descending order of their variance among different experimental conditions.

The color range of heatmap cells is indicated in the middle between panels a and b.
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Fig. S20. Differential expression of RBPs may underlie opposing AS pattern

o

bserved in PBMCs of PAE and OMD. (A-F) Scatter plots of RBP binding site density

ratio of RBPs in SE AS type versus differential expression of those RBPs in B-cells (A, D),



T-cells (B, E), and monocytes (C, F) in PAE (A-C) and OMD (D-F). RBP binding site
density ratio is determined as ratio of RBP binding site density (number of RBP binding
sites per million base pairs) in downregulated (-Apsi) vs upregulated (+Apsi) exons in SE
AS type. IGF2BP3, CPEB2, and SRSF2; among the highest differentially expressed RBPs
between PAE and OMD across all cell-types; are annotated. (G) Heatmap shows fold
change in their expression in B-cells and T-cells in PAE and OMD. (H) Heatmap shows

their binding site density in biomarkers, around their splice relevant sites.



Table 1

OMD-control OMD p
All Male Female All Male Female All Male Female
n 30 13 17 26 16 10
Body weight (g) 23.8+3.7  26.7#3.7  21.6%2.0 21.24¢3.2 22.143.4 19.7+24 0.029* 0.010* >0.999

Fasting blood glucose (mg/dl) 135.6%22.5 153.8%17.3 121.6%14.4 123.6%16.7 127.6119.2 117.4%9.5 0.508 0.036* >0.999

Random blood glucose (mg/dl) 166.3+21.4 185.1+x11.3 151.9£15.0 163.7%21.1 171.2419.9 151.7£18.0 0.996 0.376 >0.999

Table S1. Metabolic assessment of OMD and OMD-control mice at postnatal day 29.
The offspring of the MD group (OMD group) shows lower body weight and blood glucose
level at 6 hours post fasting at postnatal day 29 (P29) in males, but not females, compared
to the offspring of the MD control group (OMD-control group). Statistical significance was
assessed by Kruskal-Wallis test (Body weight and Fasting blood glucose) or one-way

ANOVA (Random blood glucose).

Movie S1. Predicted protein structures of the long and short isoforms of Mtpap,
Etsl, Tvp23b, Celf2 and Rasal. The AlphaFold2 predicted protein structures of the long
and short isoforms of Mtpap, Etsl, Tvp23b, Celf2 and Rasal respectively, as annotated
in Fig. 8, and their FATCAT superimposed structures as annotated in Fig. 9, displayed in

tandem.
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