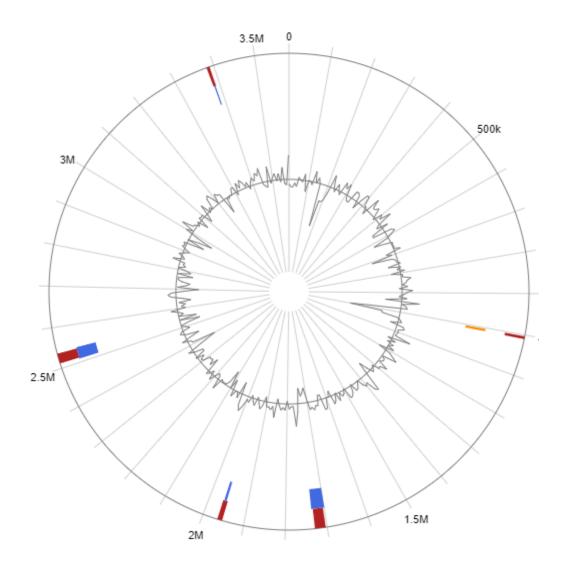
Supplementary Materials

Details of 16S rRNA gene copy numbers in the genomes used in the analysis are represented in Table S1. The genomes were obtained from the NCBI database while the 16S rRNA gene sequence was downloaded from the individual genome. Some genomes had more than one copy of the 16S rRNA gene. The copies were analyzed and found to be the same. Thus, only one copy was used in drawing the phylogenetic tree.

Isolate	Copies	Region	Genome	
			(Accession number)	
Bdellovibrio sp. LBG001 ^T	2	953588955101	NZ_CP093442.1	
		17599401761453		
B. bacteriovorus 109J	1	10368991038412	NZ_CP007656.1	
<i>B. bacteriovorus</i> strain SSB218315	1	2952287-2950774	NZ_CP020946.1	
B. bacteriovorus HD100 ^T	2	819576821089	NC_005363.1	
		16876401689153		
B. bacteriovorus W	2	608416-609941	CP002190.1	
		1360268-1361793		
B. bacteriovorus Tiberius	2	842390843894	NC_019567.1	
		18376581839162		
B. bacteriovorus RO	1	1711684	NZ_LUKE01000007.1	
Bdellovibrio sp. KM01	2	18258191827332	NZ_CP058348.1	
		31127603114273		
Bdellovibrio sp. NC01	2	858146859659	NZ_CP030034.1	
		17222521723765		
Bdellovibrio sp. ZAP7	2	19605321962045	NZ_CP030082.1	
		32847923286305		
Bdellovibrio sp. qaytius	1	663487664991	CP025734.1	
Pseudobdellovibrio exovorus JSS	1	751703753216	NC_020813.1	
$Halobacteriovorax marinus SJ^{T}$	2	233651235207	NC_016620.1	
		18919501893506		
Halobacteriovorax sp. BALOs_7	2	246974248526	NZ_CP027772.1	
		12932211294773		
Bacteriovorax stolpii DSM 12778 ^T	2	262357263907	NZ_CP025704.1	
		21663942167944		
<i>Fluviispira sanaruensis</i> RF1110005 ^T	5	396712398248	NZ_AP019368.1	
		485340486876		
		23754562376992		
		28667552868291		
		33321623333698		
Silvanigrella aquatica MWH-Nonnen-	5	388357389887	NZ_CP017834.1	
W8red ^T		527078528608		
		22863052287835		
		27410602742590		
		31575533159083		

Table S1: 16S rRNA gene copy number in the related genomes.

Table S2: A 16S rRNA pairwise alignment of *Bdellovibrio* sp LBG001^T with other members of the
 Bdellovibrio genus


Bacteria*	Alignment identity	
	(%)	
<i>B. bacteriovorus</i> HD100 ^T	97.2	
B. bacteriovorus 109J	97.2	
B. bacteriovorus SSB218315	97.2	
B. bacteriovorus R0	97.8	
B. bacteriovorus Tiberius	97.2	
B. bacteriovorus W	95.5	
Bdellovibrio sp NC01	96.5	
Bdellovibrio zap7	96.8	
Bdellovibrio sp KM01	96.8	
<i>Bdellovibrio</i> sp. qaytius ^T	92.2	
Bdellovibrio exovorus JSS ^T	92.7	

* Only members of the *Bdellovibrio* genus

Fig S1: Location of degenerate prophage (Region 1) in $LBG001^T$

The prophage sequence is located at 728,575-758,048 of the LBG001^T genome.

Fig S2: Location of 5 genomic islands within $LBG001^T$

Islands	Start	End	Size	
1.	1,003,250	1,009,985	6,735	
2.	1,703,472	1,729,408	25,936	
3.	1,952,347	1,964,324	11,977	
4.	2,512,597	2,536,676	24,079	
5.	3,382,539	3,389,809	7,270	

Coordinate numbers of genomic islands within $\mbox{LBG001}^{\rm T}$

Text 1. Housekeeping genes that were used to construct the phylogenetic analysis

The 30 housekeeping genes were extracted from each analyzed genome by using the AMPHORA software. 30 house-keeping genes are: *dnaG*, *frr*, *infC*, *nusA*, *pgk*, *pyrG*, *rpIA*, *rpIB*, *rpIC*, *rpID*, *rpIE*, *rpIF*, *rpIK*, *rpIL*, *rpIM*, *rpIN*, *rpIP*, *rpIS*, *rpIT*, *rpoB*, *rpsB*, *rpsC*, *rpsE*, *rpsI*, *rpsJ*, *rpsK*, *rpsM*, *rpsS*, *smpB*, *tsf*

Text 2. Details of the experimental protocol for a microscopic view of the Bdellovibrio

Materials and Methods

Purified cells of wild-type *B. bacteriovorus* 109J and *B. reynosensis* LBG001^T were prepared as follows. Each predator was grown on ~10¹⁰ CFU of *K. pneumoniae* (ATCC 43816) in 1 mL of (4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid) Complete buffer (HEPES) at 30°C with aeration until >99% of prey cells were lysed, and a high titer of predator was apparent by examination under dark field microscopy (~48 h). HEPES buffer was made by dissolving 3 g of HEPES into 500 mL deionized water, then adding 0.4 ml 10 N NaOH, 1.5 ml 1 M MgCl₂, and 1 ml 1 M CaCl₂, filtering through a 0.22 µm filter, and stored at 4°C for up to 2 months. The remaining prey cells and debris were removed by differential centrifugation at 1500 RCF for 2 min, and the supernatant was filtered consecutively through 0.45 µm and 0.22 µm PVDF 4 mm syringe filters (MillexTM-HV SLHVR04NL, SLGVR04NL) attached to 1cc syringes to obtain pure cultures of *B. bacteriovorus* and *B. reynosensis*. Note that the 0.22 µm filter units clog after passing ~0.2 mL through, requiring changing of the filter unit several times to achieve filtration of the 1 mL volume. The purified predator cells were labelled briefly with a 1/500 volume of BactoViewTM Live Green stain (Biotium, 40102) at 37°C in a microfuge tube for 5 min. Unincorporated dye was

removed by pelleting the cells at 21,000 RCF for 2 min, removing the supernatant, washing the cells once, and resuspending in 0.5 mL of HEPES buffer. Labelled predator was added a multiplicity of infection of ~4 to freshly grown *Klebsiella pneumoniae* (ATCC 43816) resuspended in 1 mL of HEPES buffer and incubated in a 2 mL microfuge tube at 30°C with aeration. After 10 and 80 min, half the volume was removed, and differential centrifugation at 1100 RCF for 2 min was used to remove most of the extracellular, unattached predator cells from the prey cells: The cell pellet, which was very loose, was washed once with HEPES, centrifuged again at 1100 RCF for 2 min, the supernatant removed, and the cell pellet of infected prey cells was resuspended in 0.5 mL HEPES. A 4 μ l volume of the infected prey cells was examined on agarose pads on microscope slides by 100x bright field and fluorescence microscopy using the FITC channel on a Revolve microscope (Echo Laboratories, RVL-100-B2).

Reference

Csaba Kerepesi, Dániel Bánky, Vince Grolmusz, *AmphoraNet: The webserver implementation of the AMPHORA2 metagenomic workflow suite*, Gene, Volume 533, Issue 2, 10 January 2014, Pages 538-540, ISSN 0378-1119, <u>http://dx.doi.org/10.1016/j.gene.2013.10.015</u>