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S1. Simulated Data Generative Model

In our simulation study, we aimed to validate the accuracy of our model. We selected

N = 500 adjacent spots from the human breast cancer 10x Visium data (see Figure 2A in the

manuscript) with known spot locations T Y . The cell locations TX and the covariate matrix

X, including cell types and nuclei shape features, were obtained from the nuclei identification

results through HD-staining on the paired histology image. As detailed in Methods Section

of the manuscript, in real SRT data, typically only a subset of covariates correlate with gene

expression for most genes. To replicate this scenario, we generated coefficients with high

sparsity. Specifically, for cell-type-related explanatory variables, we assumed all correspond-

ing coefficients to be non-zero and normally distributed as βlj ∼ N(1, 1). In contrast, for

nuclei-shape-related explanatory variables, we produced highly sparse coefficients as follows:

βlj ∼ 0.9I(βlj = 0) + 0.1[0.5Unif(−1,−0.5) + 0.5Unif(0.5, 1)].

Consequently, the coefficient matrix B exhibited 90% sparsity. We then generated single-

cell-resolution expression levels in line with our model assumption θj = exp(Xβj). Spot-

resolution relative expression levels for gene j (i.e., λj) were calculated as λj = (Gθj)/(G1),

where G is derived from spot and cell locations (i.e., T Y and TX), and the denominator G1

represents the number of cells covered by each spot. To simulate observed spot-resolution

gene expression counts, we followed the process outlined in Sun et al. (2020) and Jiang et al.

(2022). Specifically, we generated the size factor si ∼ Unif(0.5, 1.5) for i = 1, . . . , N and

dispersion parameter φj ∼ Exp(0.1) for j = 1, . . . , P , and subsequently, each read count

yij ∼ NB(siλij, φj). This data generation process was repeated for P = 300 genes. Finally,

with the generated Y and the observed X and G, we examined our model’s ability in

reconstructing the single-cell-resolution molecular profile Θ.
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S2. Details of the MCMC Algorithms

The model parameter space (φ,B,Γ) consists of 1) the NB dispersion parameters φ that

accounts for the over-dispersion commonly observed in gene expression count data, 2) the

coefficient matrix B that quantifies the relationship between gene expression as measured

in SRT data and the morphological features extracted from the paired histology image, and

3) the selection matrix Γ that indicates the significant association in the coefficient matrix

B. The full likelihood of the model is as follows:

f(Y |φ,B,Γ) =
P∏
j=1

f(yj|φj,βj,γj)

=
P∏
j=1

N∏
i=1

f(yij|φj,βj)

=
P∏
j=1

N∏
i=1

NB

yij; si
∑M

m=1 gim exp
(∑L

l=1 βljxml

)
∑M

m=1 gim
, φj

 .

(1)

With the prior specifications detailed in Methods Section of the manuscript, we give the full

posterior distribution as follows:

π(φ,B,Γ|Y ) = f(Y |φ,B,Γ)× π(B|Γ)π(Γ)π(φ)

= f(Y |φ,B,Γ)×

(
P∏
j=1

L∏
l=1

π(βlj|γlj)

)(
P∏
j=1

L∏
l=1

π(γlj)

)(
P∏
j=1

π(φj)

)

=
P∏
j=1

N∏
i=1

NB

yij; si
∑M

m=1 gim exp
(∑L

l=1 βljxml

)
∑M

m=1 gim
, φj


×

P∏
j=1

L∏
l=1

(1− γlj)δ0(βlj) + γljN(βlj; 0, σ2
β)

×
P∏
j=1

L∏
l=1

Bern(γlj; πγ)

×
P∏
j=1

Ga(φj; aφ, bφ)

(2)

MCMC algorithm was conducted for the posterior sampling. Specifically, we performed

the following steps sequentially at each MCMC iteration after a random initialization.
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Update of over-dispersion parameter φ: We updated each φj for j = 1, . . . , P ,

independently by using the random walk Metropolis-Hasting algorithm. We first proposed

a new φ∗j from the log-normal distribution, i.e., ln(φ∗j) ∼ N(ln(φj), τ
2
φ), and accepted the

proposed value with probability min(1, rφ), where

rφ =

∏N
i=1 f(yij|φ∗j ,βj)× π(φ∗j)× J(φj;φ

∗
j)∏N

i=1 f(yij|φj,βj)× π(φj)× J(φ∗j ;φj)
.

Note that the proposal density ratio equals to 1 for this random walk Metropolis update on

φj.

Joint update of covariate coefficient B and the selection indicator Γ: We updated

each βlj and γlj for l = 1, . . . , L and j = 1, . . . , P , sequentially by using an independent

Metropolis-Hasting algorithm. A between-model step was implemented first to jointly update

βlj and γlj. We used the add-delete algorithm, where we changed the binary value of γlj to

1 − γlj each time. We repeated this step multiple times to ensure validation of the feature

selection.

For the add case, i.e., changing from γlj = 0 to γ∗lj = 1, we proposed β∗lj from the normal

distribution N(0, τ 2
β). For the delete case, i.e., γlj = 1 → γ∗lj = 0, we set β∗lj = 0. We finally

accepted the proposed γ∗lj with probability min(1, rγ), where

rγ =
∏N
i=1 f(yij |φj ,β∗lj ,β−l,j)×π(β∗lj |γ

∗
lj)×π(γ∗lj)×J(βlj ;β

∗
lj |γlj ;γ

∗
lj)×J(γlj ;γ

∗
lj)∏N

i=1 f(yij |φj ,βlj ,β−l,j)×π(βlj |γlj)×π(γlj)×J(β∗lj ;βlj |γ
∗
lj ;γlj)×J(γ∗lj ;γlj)

,

where the last proposal density ratio equals to 1 and the second to last proposal density

ratio equals to 1/N(β∗lj; 0, τ 2
β) for the add step and N(βlj; 0, τ 2

β) for the delete step.

Update of covariate coefficient B: We performed a within-model step to update each

βlj that corresponds to γlj = 1 to improve MCMC mixing. We first proposed a new β∗lj

from the normal distribution N(βlj, (σβ/2)2) and then accepted the proposed value with

probability min(1, rβ), where

rβ =
∏N
i=1 f(yij |φj ,β∗lj ,β−l,j)×π(β∗lj |γlj=1)×J(βlj ;β

∗
lj)∏N

i=1 f(yij |φj ,βlj ,β−l,j)×π(βlj |γlj=1)×J(β∗lj ;βlj)
.
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Note that the proposal density ratio equals to 1 for this random walk Metropolis update on

βlj.

S3. Implementation Details of Competing Methods

We adapted the TESLA workflow described in their online tutorial (https://github.com/

jianhuupenn/TESLA/blob/main/tutorial/tutorial.md). Specifically, we normalized the

gene expression measurements into log scale. For the histology image, we detected tissue

contour using cv2. All parameters were kept at the defaults or as the same as in the tutorial.

We then imputed the gene expression on all pixels within the contour. The predicted gene

expression at each cell was set to be the imputed gene expression on the pixel where the cell

is located.

Gaussian process (GP) was implemented with GaussianProcessRegressor from

sklearn.gaussian process module in Python. Before fitting the GP model, the observed read

counts yj for gene j were normalized to ỹj = log(yj/s + 1), where s = (s1, . . . , sN) was the

estimated size factor of spots and was computed as si ∝
∑P

j=1 yij. The covariance function

of the GP was specified using the radial basis function (RBF) kernel, with the length scale

of the kernel set to be the radius of spots. Additionally, to account for noise, a WhiteKernel

component was incorporated into the kernel, allowing for the estimation of the global noise

level from the data. The GP model was then trained utilizing the location information at

spot resolution as features and the normalized gene expression as response variable. For

predicting gene expression at the single-cell resolution, we input the location information of

all cells and employed the mean of the output predictive distribution as the predicted gene

expression value.

https://github.com/jianhuupenn/TESLA/blob/main/tutorial/tutorial.md
https://github.com/jianhuupenn/TESLA/blob/main/tutorial/tutorial.md
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Figure S1: Geometric representations of a barcoded spot (in red) and its expanded region (in
green) on the spatial transcriptomics (ST) and the improved 10x Visium platforms. For ST,
the spot diameter is 55µm with a center-to-center distance of 100µm between two adjacent
spots. For 10x Visium, these measures are 100µm and 200µm, respectively. The percentage
of area covered by ST barcoded spots can be approximated by the ratio of the red circle area

to the green square, calculated as
π×( 100µm

2 )
2

(200µm)2
= 19.63%. Similarly, the percentage of area

covered by 10x Visium barcoded spots can be approximated by the ratio of the red circle to

the green hexagon, calculated as
π×( 55µm

2 )
2

3
√
3

2
×
(

2√
3

100µm
2

)2 = 27.43%.
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Figure S2: Overview of model validation for the simulated data: Evaluation results in terms
of the root mean square error (RMSE) between the actual and estimated covariate coefficient
βlj’s for BayesDeep with and without regularization, respectively.
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Figure S3: Overview of model validation for the human prostate cancer 10x Visium data,
including the validation settings and evaluation results in terms of the Pearson correlation
coefficients ρ between the actual and predicted gene expression counts (yij’s vs. ŷij’s) for
BayesDeep, TESLA, and Gaussian Process (GP), respectively.
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Figure S4: Downstream analysis on the human breast cancer 10x Visium data: A.
BayesDeep-generated single-cell-resolution expression of the breast cancer stem cell markers
CD44 depicted on the UMAP. B. BayesDeep-generated single-cell-resolution expression of
the breast cancer stem cell markers CD24 depicted on the UMAP. C. Pseudotime analysis
on the UMAP.
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Figure S5: Downstream analysis on the human prostate cancer 10x Visium data: A.
BayesDeep-generated single-cell-resolution expression of the prostate cancer stem cell mark-
ers ITGA6 depicted on the UMAP. B. BayesDeep-generated single-cell-resolution expression
of the prostate cancer stem cell markers ALCAM depicted on the UMAP. C. Pseudotime
analysis on the UMAP.
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Table S1: A list of explanatory variables utilized by BayesDeep in real data analysis, including
cell type classification and nuclei shape features extracted from the paired histology image
by HD-staining

Human breast cancer 10x Visium
data

Human prostate cancer 10x Visium
data

Cell type

Ductal epithelium
Lymphocyte Lymphocyte
Macrophage Macrophage
Necrosis Necrosis
Red blood cell Red blood cell
Stromal cell Stromal cell
Tumor cell Tumor cell

Nuclei shape
feature

Area Area
Convex area Convex area
Eccentricity Eccentricity
Extent Extent
Filled area Filled area
Major axis length Major axis length
Minor axis length Minor axis length
Orientation Orientation
Perimeter Perimeter
Solidity Solidity
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Table S2: A list of key notations of the proposed BayesDeep.

Notation Support Definition

Data N N The number of spots

P N The number of genes

M N The number of cells

L N The number of explanatory variables

Y = [yij ]N×P yij ∈ N The gene expression measurement table with ench entry
yij being the read count for gene j observed at spot i

s = [si]N×1 si ∈ R+ The spot-specific size factors

T Y = [tYir]N×2 (tYi1, t
Y
i2) ∈ R2 The spot location with each row (tYi1, t

Y
i2) being the x

and y coordinates of spot i

X = [xml]M×L xml ∈ R The covariate matrix with each entry xml representing a
measurement for explanatory variable l observed for cell
m

TX = [tXmr]M×2 (tXm1, t
X
m2) ∈ R2 The cell location with each row (tXi1, t

X
i2) being the x and

y coordinates of cell m

G = [gim]N×M gim ∈ {0, 1} The spot-cell spatial relationship matrix with gim = 1
indicating that cell m locates within spot i and gim = 0
otherwise

Parameters φ = [φj ]P×1 φj ∈ R+ The gene-specific negative binomial dispersion parame-
ter

Λ = [λij ]N×P λij ∈ R+ The relative gene expression at the spot resolution with
each entry λij being the relative gene expression for gene
j at spot i

Θ = [θmj ]M×P θmj ∈ R+ The relative gene expression at the single-cell resolution
with each entry θmj being the relative gene expression
for gene j at cell m

B = [βlj ]L×P βlj ∈ R The covariate coefficient matrix with each entry βlj
signifying the association between explanatory variable
l and gene j

Γ = [γlj ]L×P γlj ∈ {0, 1} The selection matrix with each entry γlj = 1 indicating
the corresponding covariate coefficient βlj 6= 0 while
γlj = 0 indicating βlj = 0

Hyper- aφ {0} ∪ R+ The shape parameter in the gamma prior for each φj

parameters bφ {0} ∪ R+ The rate parameter in the gamma prior for each φj

σ2
β R+ The variance parameter of the slab component in the

spike-and-slab prior for each βlj

πγ (0, 1) The parameter in the Bernoulli prior for each γlj
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