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Extended Data Fig. 1: Intact native mono-nucleosomes obtained by hydroxyapatite (HAP) and

size-selective purification.

a, After the HAP purification of MNase-treated chromatin, flow-through and elution samples were run in 2%
agarose gel. b, Mono-nucleosomes were selected through further size-selective purification of HAP elution.
Each purification step and the quality of final product was validated by running the samples in 2% agarose

gel (c), SDS-PAGE gel showing only four histones without other proteins (d), and western blot for histone

PTMs (e).
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Extended Data Fig. 2: Computational pipeline and data quality controls for condense-seq.

a,b, The pipeline of Condense-seq analysis is composed of (i) reads alignment by Bowtie2, (ii) coverage
calculations, (iii) mono-nucleosome peak calling for each local maximum of input coverage, (iv) absolute
nucleosome count estimation using coverage area and soluble fraction changes, and (v) compute
condensability score as minus log of soluble fraction after condensation for each nucleosome. For the
quality control of mono-nucleosome samples, we checked that the length distribution of nucleosomal DNA
is mostly at 150 bp (c), reads are covered evenly along the genome (d), nucleosome positioning shows the
signature properties such as the nucleosome free region (NFR) near the transcription start site (e), and the
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periodicity of AT-rich versus GC-rich dinucleotides in nucleosomal DNAs (f). Correlation between replicates
of Condense-seq measurements on H1-hESC (g) and GM12878 (h) are shown for condensabilities
determined for 0.32 mM spermine and 0.79 mM spermine.
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Extended Data Fig. 3: Condensability scores of H1-hESC across all chromosomes and
correlations with gene expression and other epigenetic marks near the TSS.

a, Comparison between condensability (blue) and transcription level (red) along all chromosomes. b,
Snapshot of UCSC genome browser for the condensability profile along with many other cis-regulatory
elements. c,d, All genes in chromosome 1 were grouped into five quantiles according to the transcription
level (quantile 1 through 5 for increasing transcription). (top) Condensability, meCpG fraction, H3K36me3,
H3K4me4 and H3K9ac along the transcription unit coordinate averaged for each quantile. (bottom) Heat
maps show the same quantities for each gene, rank ordered with increasing condensability. TSS
(transcription start site), TTS (transcription termination site). Views zoomed around TSS are shown in (d) .
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Extended Data Fig. 4: Condense-seq measurement of native mono-nucleosomes from GM12878
cells and the comparison between nucleosome condensability and their chromatin states.

a, Native mono-nucleosomes were purified from GM12878 cell line, and the condensation was induced by
adding spermine. Soluble fractions were measured using UV-VIS spectroscopy (left) and ran in the 2%
agarose gel (right). b, Genomic nucleosomes were grouped according to their ChromHMM chromatin states
based on the combination of various PTMs. Their condensabilities are shown in box plot for each chromatin
state. ¢, The condensability score was plotted over human chromosome1 for different spermine titration
points (colored lines) and compared with the gene expression level (black line). The condensability profiles
from TSS to TTS (d) near TSS (e) for five quantiles based on the gene expression levels in the GM12878

cell line. Also shown at AT content and H3K27ac profiles.
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Extended Data Fig. 5: Spatial separation of molecules promoted by condensability difference to
compartmentalize the genome.

H1-hESC condensability (blue) and A/B compartment scores based on Micro-C data (orange) in mega
base-pair resolution of chromosome 1 (a) and finer resolution (b). ¢, PCR amplified AT-rich (Cy3 labeled)
and GC-rich (Cy5 labeled) DNAs were equally mixed and condensed in various spermine concentrations.
For each condition, DNA condensates were imaged using wide-field microscope. As spermine
concentration increased, AT-rich DNAs formed a condensed core first, and GC-rich DNAs condensed over
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the AT-rich core at higher spermine concentrations, promoting the spatial separation between AT-rich
versus GC-rich condensate. d, Chromosome polymer simulation with condense-seq data using spermine
as only input (GM12878, chr12) shows that highly condensable chromatin is compacted into the core and
the rest is excluded to generate spatially separate compartments (red = condensability score).
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Extended Data Fig. 6: Deciphering the genetic and epigenetic determinants of genomic
nucleosome condensation.

a, Scatter plot of the condensability of mono-nucleosomes in chromosome 1 and the AT contents of
corresponding nucleosomal DNA. b, The nucleosome population was partitioned into seven partitions, from
low to high condensability. The periodicity of AT-rich versus GC-rich dinucleotides was analyzed. The
results for each partition (c, left), and its amplitude and phase were computed using Fourier transformation
and represented in polar plot (c, right, radius: amplitude, angle: phase). d, The enrichment analysis of all
DNA methylation and histone ChlP-seq data available in ENCODE over different condensability partitions
from low to high (1-7 partitions in b). e, After randomly selecting 1% of the mono-nucleosomes in
chromosome 1, their genetic and epigenetic features were projected into two-dimensional scatter plots
through UMAP embedding. Each color represents one of the property classes of the NMF analysis shown
in panel f. f, The genetic and epigenetic features of all mono-nucleosomes in chromosome 1 were linearly
decomposed into 10 property classes by NMF algorithms. Each property class has a specific combination
of features, as shown in the matrix (lower panel). All nucleosomes were clustered into each representative
property class with the biggest contributions. After clustering, nucleosome condensabilities were plotted as
boxplot for each class (upper panel). g—l, Multivariate linear regression (linear reg), Supported Vector
Machine regression (SVM), gradient boosting regression (Boosting), random forest regression (Random
Forest), and neural networks were used to predict nucleosome condensability. All showed similar
correlations between experimental values and predictions in a 10-fold cross-validation (g,h). The
importance of genetic—epigenetic features in prediction was computed using the boosting method (i).
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Extended Data Fig. 7: Mass spectrometry identification of histone PTM marks with biased
enrichment during native mononucleosome condensation experiments.

a,b, Histone PTM marks detected in each histone H3/H4 peptides are shown. Its relative enrichment
difference compared with the unmodified peptide is represented by color (red: more enriched in
supernatant, blue: more depleted in supernatant) and its signification is represented by the size of bubble
(-log p-value). ¢, Combinatorial histone PTM enrichment data was aggregated into single PTM
modifications, and the relative enrichment in each phase of condensation (input/pellet/supernatant) is
shown in the z-score heat map.
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Extended Data Fig. 8: Condense-seq of H1-hESC native mono-nucleosomes using various
condensing agents.
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a, The soluble fraction of nucleosomes was measured by titrating the various condensing agents other than
spermine, including spermidine, cobalt-hexamine, magnesium/calcium, PEG 8000, and HP1a, HP1p with
SUV39H1 complex. b, Condensability scores were computed in 10kb resolution and plotted over
chromosome 1 (blue) and compared with the gene expression level (red). Hierarchical clustering of the
condensability profile shows that all ionic condensing agents (spermine/spermidine/cobalt-
hexamine/PEG/calcium) are clustered together but other protein-based condensing agents (HP1a and
HP1B) are clustered in a separate group. Comparison of condensability scores across various chromatin
states (c) and various nuclear compartments (d, LAD: lamin-associated domain, NAD: nucleolar-associated
domain, SPAD: nuclear speckle-associated domain, P/E: promoter or enhancer) for different condensing
agents. e, Correlations between nucleosome condensability and the enrichment of other nuclear
compartment hall mark proteins are represented as heat map. f, Upset plot of intersections between various
nuclear compartments and the corresponding nucleosome condensabilities by spermine and HP1a shown
as bar plots. g, Hypothetical hierarchal model of the biophysical driving force of chromatin organization: At
a large scale, chromatin is compartmentalized via ubiquitous charge—charge interactions, but other proteins
and RNAs are involved to generate sub-compartments that are smaller in scale but more specific function
directed.
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Extended Data Fig. 9: Summary of histone PTM effects on the nucleosome condensation by
various condensing agents on the synthetic nucleosome library with PTM marks.

The effects of single PTMs on nucleosome condensation are depicted by the cartoons (a: spermidine, b:
cobalt-hexamine, c: PEG 8000 as the condensing agent). Each symbol represents different types of PTMs
as shown in the legend, and the size is proportional to the strength of effects. The colors of the marks
indicate the direction of the effect (red: decreases condensation, blue: increases condensation) compared
with the unmodified control. d, All condensability scores of the PTM library using HP1a as a condensing
agent are summarized in the ladder bar plot. The library members are sorted from the lowest to the highest
condensability scores from top to bottom. On the left panel, the ladder-like lines represent each histone
subunit peptide from N-terminal (left) to the C-terminal (right). Each mark on the line indicates the location
of the PTMs and the shape of the marks represents the PTM type (ac: acetylation, me: methylation, cr:
crotonylation, ub: ubiquitylation, ph: phosphorylation, GIcNAc: GIcNAcylation, mut: amino acid mutation,
var: histone variant). On the right panel, differences in the condensability score compared with the
unmodified control are shown as bar plots for each member of the library. e, PCA analysis was conducted
by combining the condensability scores of all five condensing agents (spermine/spermidine/cobalt-
hexamine/PEG 8000/HP1a) into the five-dimensional state vector. In the PCA plot, each member of the
library is represented by a symbols according to categories such as canonical wild-type nucleosome (WT),
wild type with CpG methylation (WT+CpGme), mutations on wild type (WT+mut), nucleosome with histone
variants (Var), mutations on histone variants (Var+mut), Acidic patch mutants (AP mutants), and
nucleosomes with acetylation on H2A/B dimer (H2A/Bac), acetylation on H3 (H3ac), acetylation on (H4ac),
having poly-acetylation (KpolyAC), methylation on H3 (H3me), methylation on H4 (H4me), acetylation on
H4 and methylation on H3 (H4ac + H3me), crotonylation on H3 (H3cr), GlcNAcylation (GIcNAc),
phosphorylation on H3 (H3ph), and ubiquitylation (+ub), all of which are shown in the figure legend. f,
Comparison of condensability scores across different condensing agents. Scatter plots of condensability
across different condensing agents are shown in the lower triangle, and the corresponding Spearman’s
correlations are shown in the upper triangle of the matrix.
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condensing agent when the soluble fraction is half the input, so it is reversely correlated with condensability

a, Soluble fractions were measured via UV-VIS spectroscopy and run in 2% agarose gel after condensation
in various spermine concentrations. b, Condensation point (c12) is defined by the concentration of
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score. ¢c—h, Soluble fractions of nucleosomes in various spermine concentrations were calculated and
plotted over chromosome 1 in 10kb resolution. C12 was computed for each bin after fitting the soluble
fraction change with a logistic function as shown fitting curves of all bins (d, f, h), and polyamine deficient
conditions show broader distribution of condensation points. (c, d: wild type control, e, f: +DFMO, g, h:
ODC KO) i, The scatter plot of A z-score of condensability near TSS shows a high correlation between
+DFMO and ODC KO. j, The A z-score of condensabilities is computed as the difference between the
standardized condensability of +DFMO or ODC KO conditions and the wild type control and then
categorized into the corresponding ChromHMM chromatin states.



