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Supplemental Methods 

1) Demographics and clinical variables collected in the retrospective CKD cohort

Demographics and comorbidities were extracted from a chart review of patients’ electronic medical 

records by nephrologists. These included age, sex, body mass index, blood pressure, diabetes mellitus, 

cardiovascular comorbidities, chronic respiratory diseases (chronic obstructive pulmonary disease and 

bronchial asthma), a prior history of arterial catheterization (cardiac catheterization and endovascular 

treatment for peripheral artery diseases and carotid artery stenosis), and cholesterol embolism. 

Cardiovascular comorbidities included coronary artery disease, congestive heart failure, valvular heart 

disease, aortic disease, and stroke (cerebral infarction or intracranial hemorrhage). 

Time-series data on laboratory measurements and prescriptions were collected using the electronic 

data capture system developed at Osaka University Hospital. These included serum albumin, creatinine, 

sodium, potassium, C-reactive protein, hemoglobin, white blood cell counts, and urinary protein-to-

creatinine ratio, loop diuretics, thiazide diuretics, mineralocorticoid receptor antagonists, angiotensin-

converting enzyme inhibitors, angiotensin II receptor blockers, nonsteroidal anti-inflammatory drugs, 

proton pump inhibitors, histamine type-2 receptor antagonists, and corticosteroids.  

The time-series data were collected at a monthly interval during the study period. If multiple data 

existed within a month, the datum taken on the day closest to each of the one-month time points was 

adopted. 

We collected information regarding arterial catheterization performed during follow-up (cardiac 

catheterization and endovascular treatment for peripheral artery diseases and carotid artery stenosis) since 

these procedures may have contributed to the development of eosinophilia via cholesterol embolism. These 

data were obtained from diagnostic procedure combination (DPC) codes. DPC codes are used for inpatient 

hospital payment systems in Japan, which provide the main diagnosis and type of intervention (1). 
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2) LASSO

LASSO is a regularization method that reduces the model overfitting and improves the predictive accuracy 

through shrinking coefficients of weaker predictors toward zero. To determine the tuning parameter λ that 

minimizes the out-of-sample mean squared error of the predictions produced by selected variables, we 

used an adaptive method, which is a refined iteration of cross-validation. 

Based on clinical relevance, the following 19 variables were included in the model: age, sex, systolic 

blood pressure, body mass index, diabetes mellitus, angiotensin-converting enzyme inhibitors, angiotensin 

II receptor blockers, loop diuretics, thiazide diuretics, mineralocorticoid receptor antagonists, proton pump 

inhibitors, histamine type-2 receptor antagonists, antibiotics, corticosteroids, nonsteroidal anti-

inflammatory drugs, eGFR, urinary protein-to-creatinine ratio, blood eosinophil counts, and the 

histological chronicity score. All variables were standardized to a mean of zero and a standard deviation of 



one. Odds ratios and confidence intervals were estimated using the cross-fit partialing-out method 

(STATA command "xpologit"). 

3) Statistical models used in the retrospective CKD cohort

Baseline Cox model 

The association between baseline blood eosinophil quartiles and kidney outcome was analyzed using 

multivariable Cox proportional hazards models. The following baseline covariates were included in this 

model: age, sex, body mass index, systolic blood pressure, diabetes mellitus, cardiovascular comorbidities, 

chronic respiratory diseases, a prior history of arterial catheterization and cholesterol embolism, hemoglobin, 

albumin, eGFR, sodium, potassium, C-reactive protein, white blood cell counts, urinary protein-to-creatinine 

ratio, loop diuretics, thiazide diuretics, mineralocorticoid receptor antagonists, angiotensin-converting 

enzyme inhibitors, angiotensin II receptor blockers, nonsteroidal anti-inflammatory drugs, proton pump 

inhibitors, histamine type-2 receptor antagonists. Proportional hazards assumptions were checked based on 

complementary log-log plots and scaled Schoenfeld residuals.  

Time-average Cox model 

The time-average blood eosinophil counts during the first 12 months of follow-up was calculated for each 

patient. The association between time-average eosinophil quartiles and kidney outcome was analyzed using 

a multivariable Cox proportional hazards model adjusted for the same covariates as in the baseline Cox 

model. In this model, the onset of survival time was set at 12 months. 

Group-based trajectory model 

Group-based trajectory model was used to assess the association between blood eosinophil count trajectories 

during the first 12 months and subsequent rates of the outcome (STATA command, traj). All available data 

on blood eosinophil counts during the first 12 months were used to identify eosinophil count trajectories. In 

this analysis, blood eosinophil counts were log-transformed to normalize their distribution. 

The group-based trajectory model is a method of data clustering that assumes that a population is 

composed of a mixture of distinct groups characterized by their longitudinal trajectories (1-4). Potential 

trajectory groups were estimated from individual longitudinal eosinophil data, using the maximum 

likelihood estimation method based on the finite mixture model theorem. Patients were divided into one of 

the trajectory groups according to their estimated probability of group membership. We selected the optimal 

number of trajectory groups, as well as a function of each trajectory, based on the Bayesian information 

criterion, with at least 5% of all patients being in the smallest group. 

After deriving the eosinophil trajectory groups, multivariable Cox proportional hazards models were 

used to analyze the association between the trajectory groups and outcomes, adjusting for the same covariates 

as in the baseline Cox model. In this model, the onset of survival time was set at 12 months. 

Marginal structural model 

Marginal structural models were employed to 1) assess the time-varying blood eosinophil counts throughout 

the study period and 2) deal with time-dependent confounding between blood eosinophil counts and eGFR. 



Marginal structural model is a statistical method that can account for time-dependent confounding (5-

8). In the current study, eGFR was considered to be the main time-dependent confounder because it 

influenced both exposure (blood eosinophil counts) and kidney outcomes, while being possibly affected by 

previous blood eosinophil counts. We derived time-varying inverse probability weights (IPWs) from the 

inverse probability of treatment weights (IPTWs) and the inverse probability of censoring weights (IPCWs). 

IPTWs were the reciprocal of the predicted probability of each patient having their own exposure history 

(i.e., high eosinophil count or not). The probability was predicted by a logistic regression model at each of 

the 1-month follow-up periods, conditional on both baseline and time-dependent covariates, as described 

below. Two different definitions of high blood eosinophil counts were adopted: 1) blood eosinophil count 

≥289/µL (the top 25th percentile in our cohort) and 2) blood eosinophil count ≥ 500/µL (9). Similarly, 

IPCWs were the reciprocal of the probability of being uncensored, as predicted by a logistic regression 

model, conditional on both baseline and time-dependent covariates. IPTWs and IPCWs were stabilized by 

multiplying them with the predicted probabilities based on baseline covariates alone. The IPWs were the 

product of the stabilized IPTWs and IPCWs, calculated at baseline and for each month. The IPWs were 

truncated at the 1st and 99th percentiles to reduce the influence of extreme weight values. 

Baseline covariates included were the same as in the baseline Cox model. Time-dependent covariates 

included arterial catheterization performed during follow-up, hemoglobin, albumin, eGFR, sodium, 

potassium, C-reactive protein, urinary protein-to-creatinine ratio, loop diuretics, thiazide diuretics, 

mineralocorticoid receptor antagonists, angiotensin-converting enzyme inhibitors, angiotensin II receptor 

blockers, nonsteroidal anti-inflammatory drugs, proton pump inhibitors, histamine type-2 receptor 

antagonists, and corticosteroids. 

Marginal structural models created “pseudo-populations” using IPWs, comparing the rate of events if 

all patients had been continuously exposed to high blood eosinophil counts with the rate of events if they 

had never been exposed to high blood eosinophil counts. In this model, there was no association between 

measured time-dependent confounders and future exposures. We estimated the hazard ratio and 95% 

confidence interval using an IPW-weighted pooled logistic regression model that produced equivalent 

estimates to the Cox proportional hazards model. 

Multiple imputation 

In the retrospective CKD cohort, missing data at baseline were imputed using the multiple imputations by 

chained equation method based on all baseline covariates. Since all missing data were continuous variables 

(body mass index, systolic blood pressure, eGFR, hemoglobin, sodium, potassium, urinary protein-to-

creatinine ratio, albumin, and C-reactive protein), the data were imputed using linear regression imputation. 

We created ten imputed datasets that were analyzed separately and combined based on Rubin’s rule.  
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Supplemental Table 1. Clinicopathological diagnosis in the kidney biopsy cohort 

Clinicopathological diagnosis (n=563) n (%) 

Interstitial 

eosinophilic 

aggregates 

n (%) 

IgA nephropathy, n (%) 219 (39) 20 (9) 

Minimal change disease, n (%) 73 (13) 6 (8) 

Membranous nephropathy, n (%) 44 (8) 8 (18) 

Nephrosclerosis, n (%) 33 (6) 7 (21) 

Tubulointerstitial nephritis, n (%) 32 (6) 11 (34) 

ANCA-associated glomerulonephritis, n (%) 30 (5) 5 (17) 

Lupus nephritis, n (%) 25 (5) 4 (16) 

Diabetic nephropathy, n (%) 22 (4) 11 (50) 

Focal segmental glomerulonephritis, n (%) 17 (3) 5 (29) 

Membranoproliferative glomerulonephritis, n (%) 8 (1) 4 (50) 

Amyloid nephropathy, n (%) 7 (1) 1 (14) 

Thrombotic microangiopathy, n (%) 5 (1) 2 (40) 

Thin basement membrane disease, n (%) 5 (1) 1 (20) 

Fabry disease, n (%) 4 (1) 0 

Acute proliferative nephritis, n (%) 4 (1) 1 (25) 

Endocapillary proliferative glomerulonephritis, n (%) 4 (1) 1 (25) 

IgG4-related kidney disease, n (%) 3 (0.5) 1 (33) 

Obesity-related glomerulopathy, n (%) 3 (0.5) 0 

Alport syndrome, n (%) 2 (0.4) 0 

Light chain deposition disease, n (%) 2 (0.4) 1 (50) 

Preeclampsia, n (%) 2 (0.4) 0 

Miscellaneous, n (%) 19 (5.6) 7 (37) 

Abbreviation: ANCA; anti-neutrophil cytoplasmic antibody 



Supplemental Table 2. Sensitivity analyses for the association between interstitial eosinophilic aggregates and kidney outcome 

Models Adjusted HR* (95% CI) P-value

(1) Adding diabetes mellitus to the clinical/histological model** 3.47 (2.36-5.09) <0.001 

(2) Adding the interstitial cell infiltration score to the

clinical/histological model** 
3.99 (2.71-5.87) <0.001 

(3) Excluding the etiologies that contained <10 patients,

tubulointerstitial nephritis, ANCA-associated nephropathy, and 

lupus nephritis (n=408) 

3.50 (2.16-5.70) <0.001 

*Adjusted HR for the kidney outcome among patients with interstitial eosinophilic aggregates compared to those without interstitial eosinophilic aggregates.

**The clinical/histological model includes age, sex, eGFR, UPCR, and the histological chronicity score. 

Abbreviations: eGFR, estimated glomerular filtration rate; UPCR, urinary protein-to-creatinine ratio; ANCA; anti-neutrophil cytoplasmic antibody; HR, hazard ratio; CI, 

confidence interval. 



Supplemental Table 3. Baseline characteristics according to blood eosinophil quartile in the retrospective CKD cohort 

Blood eosinophil quartiles: range (/µL) 

Total Missing data Q1: < 90 Q2: 90-170 Q3: 170-289 Q4: > 289 

Characteristics n=2,877 n (%) n=688 n=684 n=736 n=769 

Age, year 63(14) 0 63(14) 64(14) 63(14) 63(16) 

Male, n (%) 1,873(65) 0 356(52) 435(64) 509(69) 573(75) 

Diabetes mellitus, n (%) 1,173(41) 0 243(35) 264(39) 331(45) 335(44) 

BMI, kg/m2 23(4) 84 (3) 22(4) 23(4) 23(4) 24(4) 

SBP, mmHg 131(21) 108 (4) 130(21) 132(20) 131(20) 131(21) 

Cardiovascular comorbidities, n (%) 512(18) 0 78(11) 118(17) 136(18) 180(23) 

Prior history of catheterization , n (%)415(14) 0 71(10) 89(13) 106(14) 149(19) 

Chronic respiratory diseases, n (%) 43(1) 0 7(1) 6(1) 9(1) 21(3) 

ACEIs/ARBs, n (%) 485(17) 0 83(12) 103(15) 124(17) 175(23) 

Loop diuretics, n (%) 299(10) 0 48(7) 63(9) 68(9) 120(16) 

Thiazide diuretics, n (%) 101(4) 0 11(2) 24(4) 30(4) 36(5) 

MRAs, n (%) 176(6) 0 29(4) 41(6) 39(5) 67(9) 

NSAIDs, n (%) 63(2) 0 16(2) 12(2) 24(3) 11(1) 

Proton pump inhibitors, n (%) 276(10) 0 52(8) 56(8) 61(8) 107(14) 

H2 blockers, n (%) 285(10) 0 68(10) 72(11) 73(10) 72(9) 

Hemoglobin, g/dL 12.3(2.1) 1 (<0.1) 12.1(2.0) 12.5(2.0) 12.5(2.1) 12.2(2.1) 

Sodium, mEq/L 140(3) 466 (16) 140(3) 140(3) 140(3) 139(3) 

Potassium, mEq/L 4.4(0.5) 356 (12) 4.4(0.6) 4.4(0.5) 4.5(0.5) 4.5(0.5) 

Albumin, g/dL 3.8(0.6) 695 (24) 3.8(0.6) 3.9(0.6) 3.8(0.6) 3.7(0.6) 



Data presented as mean (standard deviation), number (%), or median [25th‒75th] 

Abbreviations: BMI, body mass index; SBP, systolic blood pressure; ACEIs, angiotensin-converting enzyme inhibitors; ARBs, angiotensin II receptor blockers; MRAs, 

mineralocorticoid receptor antagonists; NSAIDs, non-steroidal anti-inflammatory drugs; H2 blockers, histamine H2 receptor antagonists; eGFR, estimated glomerular 

filtration rate; UPCR, urinary protein-to-creatinine ratio 

eGFR, ml/min/1.73m2 37(14) 50 (3) 39(14) 38(14) 37(14) 35(14) 

C-reactive protein, mg/dL 0.1[0.0-0.9] 760 (26) 0.1[0.0-0.7] 0.1[0.0-0.7] 0.1[0.0-1.0] 0.2[0.0-1.1] 

UPCR, g/gCre 0.7[0.0-2.4] 1070 (37) 0.4[0.0-1.8] 0.6[0.0-2.2] 0.8[0.0-2.5] 0.9[0.0-2.7] 

White blood cells, ×103/µL 7.2(3.4) 0 6.7(3.5) 6.4(2.2) 7.3(3.5) 8.3(3.7) 



Supplemental Table 4. Adjusted hazard ratios for kidney outcome in the baseline Cox 

proportional hazards model 

Variables Adjusted HR [95% CI] P-value

eGFR, per 10 ml/min/1.73 m2 lower 1.61 [1.41-1.85] <0.001 

UPCR, per 1 g/gCre higher 1.36 [1.06-1.74] 0.02 

Abbreviations: HR, hazard ratio; CI, confidence interval; eGFR, estimated glomerular filtration rat; UPCR, 

urinary protein-to-creatinine ratio. 



Supplemental Figure 1. Proportion of patients with interstitial eosinophilic aggregates and each component of the histological chronicity 

score (≥score 2) across etiologies 

While interstitial eosinophilic aggregates are most frequently observed in DN (50%), note that they are detected across a wide range of etiologies. 

The proportions of patients with the histological scores (glomerulosclerosis, interstitial fibrosis, tubular atrophy, and arteriosclerosis) ≥2 are presented.  

Abbreviations: IgAN, IgA nephropathy; MN, membranous nephropathy; FSGS, focal and segmental glomerulosclerosis; MCD, minimal change disease; ANCA, anti-

neutrophil cytoplasmic antibody-associated glomerulonephritis; LupusN, Lupus nephritis; TIN Tubulointerstitial nephritis; DN, diabetic nephropathy 



Supplemental Figure 2. Flow diagram of the retrospective CKD cohort 

Abbreviation: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate 



Supplemental Figure 3. A restricted cubic spline curve for the association between blood 

eosinophil counts and kidney function  

Three knots (10th, 50th, and 90th percentiles of estimated glomerular filtration rate) are used in the restricted cubic 

spline regression. Dashed lines indicate 95% confidence intervals. Bar graph shows the histogram of the study 

patients according to estimated glomerular filtration rate. 



Supplemental Figure 4. Blood eosinophil count trajectories identified by a group-based trajectory 

model 

Group-based trajectory modeling identified three distinct trajectories of blood eosinophil counts during the first 12 

months of the follow-up period: high, middle, and low groups. The solid lines and dots represent the averaged 

estimated trajectory and averaged observed trajectory, respectively. The dashed lines indicate 95% confidence 

intervals. 

Low Eos, n=324

Middle Eos, n=1430

High Eos, n=1123


