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Supplemental Notes

Note 1

Assume we have a set of n unique observations. For a given dissimilarity matrix D (e.g. Euclidean distance):
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and fixed set of predicted cluster labels L, we can generate an adjacency matrix that tells us whether each obser-
vation has the same label (i.e., falls in the same cluster)
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Using d;; and a;; for each i, j pairs of observations, we can then rewrite s in Equation 1 in terms of A, D. Let
Dy = dl-]- Daj = 1;i = 2,...,n,j < i}, thatis, looping over the upper-triangular elements of A, D such that
ajj = 1 to select pairs which correspond to observations that are within the same cluster. We similarly define
Dp = {duv : ayp = O;u = 2,...,n,v < u}, the dissimilarity pairs corresponding to observations with different
cluster labels.
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The total number of distances in each of these sets is |Dy| and |Djp|, respectively. As each upper triangular entry
of A is binary (every distance is either between or within-cluster), we know that |[Dy| + |Dp| = N;. We can
define « where a € (0,1) as the portion of total distances N, that are within-cluster distances (or d;; € Dy). In
this way, we can define | Dy| = aNy, and similarly, |Dp| = (1 — a)Nj.

Conditional on N; and «, the expected value of s is
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where P(d;; > dyy) is the probability a within-cluster distance d;; € Dy, is greater than a between-cluster distance
duv E DB.

Then, the expectation of G is:
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Note 2

We can also consider convergence in terms of the sum s by considering q(Dy) and g(Dp) as sampling without
replacement from Dy and Dg. We denote s, the estimated form of the sum s Equation 2, that is

Se = Z Z 1(dij > duz]) (1)
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While |g(Dw)| < |Dw| and |q(Dp)| < |Dg|, we have that s, +s, = s where s, represents portions of the
summand s that have not yet been counted in s.. This allows us to consider the convergence of an estimated H,
to the true H, in terms of the decomposition s, = s — s,
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The denominators of the second and third term approach |Dy||Dg| as the number of distances sampled in-
creases. The second term seems to approach H+ at 1/|q(Dw)||q(Dg)|. The third term approaches zero as
|9(Dw)||q(Dg)| — |Dw||Dg| and s, decreases with each iteration in a factor bounded by |q(Dw)||q(Dg)|. This
argument provides an intuitive argument that the convergence is achieved simply by increasing |g(Dyw)| and

9(Dg)|-
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Supplemental Figures

k=2, =0.50 k=2, 0=0.82
b1=0.5,0,=0.5 b1=0.9,b,=0.1

>

k=10, =0.23
D 51=0.40,6,0.18,b5=0.14,b,=0.09,b5=0.06,bs=0.05,b7=0.04,63=0.02,b5=0.01,b1=0.01

Supplementary Figure S1. An illustration of the relationship between group (or class) balance and «. Recall that «
is the portion of total distances N, that are within-cluster distances, or |Dy| = «N;, which can be seen most easily by
using a heatmap of an adjacency matrix for (A-B) two or (C-D) ten groups for (A,C) balanced or (B,D) imbalanced
groups. Unique pairs of observations are given on the upper-triangular potion of each adjacency matrix. Within-cluster
pairs are given in blue, and between-cluster pairs are given in green. In other words, « is given by the blue proportion of
each adjacency matrix. The group balance (and corresponding «) is (A) by, by = 0.5 (x = 0.50), (B) b = 0.9,b, = 0.1 (x =
0.82), (C) by, ..., b;p = 0.1 (x = 0.10), and (D) by, by, ..., byg = 0.40,0.18,0.14, 0.09, 0.06,0.05, 0.04, 0.02,0.01, 0.01 (x = 0.23).
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Supplementary Figure S2. Accuracy of the bootstrap H. estimation procedure for two simulated datasets. Two
datasets were simulated using 1000 observations, 500 features with two (N(—0.05,0.25), N(0.05,0.25)) (A) and four
(N(-0.15,0.25), N(—0.10,0.25), N(0.10,0.25), N(0.15,0.25)) (B) balanced classes. The difference absolute difference
between H (estimated using HPE with p = 10001) and the bootstrap estimate Hj, for r replications (bootstraps) using s
samples per bootstrap. For these simulations, sampling as little as 1% (¢ = 10) of the observations over r = 30 bootstraps
provides an accurate estimate for H.




Supplemental Tables

Supplementary Table S1. Performance evaluation for elapsed time as reported in Figure 3. We report the
elapsed time (seconds) for the individual components including calculating the dissimilarity matrix (dis), the
adjacency matrix (adj), s (sum), HPE estimate using the hpe () function in the fasthplus R package, and HPB
estimate using the hpb () function in the fasthplus R package for increasing sizes of datasets with n = 100,
500, 1,000, and 3,000 observations and 500 features. All observations were simulated from N500(0, 1) and then
split evenly in two groups. The hpb procedure used r = 0.05 x n with ¢t = 30, and the hpe procedure used

p = 1001 with the grid search algorithm.

obs | 100 | 500 | 1000 | 3000
dis | 0.01 | 022 | 3.00 | 36.71
adj | 0.00 | 0.01 | 0.08 | 0.44
sum | 0.08 | 59.68 | NA | NA
hpe | 0.12 | 0.15 | 028 | 1.86
hpb | 0.01 | 0.05 | 020 | 5.74

Supplementary Table S2. Performance evaluation of H using known observation labels and several
dissimilarity methods. We report estimated H_. for fixed (experimentally validated a priori) labels of 902
scRNA-seq observations. For each of the 5 dissimilarity methods H was estimated using the validated labels,
and the hpe procedure with p = 10001.

Dissimilarity | H+

Euclidean 0.022
Maximum 0.124
Manhattan 0.021
Canberra 0.047
Binary 0.078




