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Figure S1. Differentiation of human embryonic stem cells (hESCs) into cardiomyocytes (CMs)
A, Schematic of the CM differentiation protocol of hESCs. Lip, chemically defined lipid concentrates.
D, differentiation day. ESC, embryonic stem cells; ME, mesendoderm; CPC, cardiac progenitor cell.
B, Representative flow cytometry analysis of cTNT+  cells in D10 cultures differentiated from H1 hESCs.
C, Transmission electron microscopic image of hESC-derived CMs showing myofibrils (blue arrows)
with Z-bands (red arrows) and mitochondria (yellow arrows). Scale bar, 500 nm.
D, Immunofluorescence analysis of CM markers α-actinin and cTNT in D15 cultures differentiated
from H1 hESCs. Scale bars, 50 μm.
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Figure S2. Identification of unfolded protein aggregates at the early stage of CM differentiation
A,  Representative immunofluorescence analysis of cells at each stage of CM differentiation of WTC human
induced pluripotent stem cells (hiPSCs) stained with Proteostat (green, protein aggregates). Scale bars, 50 μm.
B, Quantification of the mean fluorescence intensity (MFI) of the protein aggregates normalized to cell number
in samples in (A). n = 3 biologically independent  experiments, 10 fields of view per experiment. ***P<0.001 vs.
iPSC;  #P<0.05,  ###P  < 0.001 vs. D1.
C, Representative immunofluorescence staining of the protein aggregates and P62 in H1 hESC-derived D1 
cultures. Scale bars, 50 μm.
D, Scatter plot showing the correlation between the protein aggregates and P62 in H1 hESC-derived D1 cultures.
n = 4 biologically independent experiments, 50 fields of view per experiment.
E, Representative immunofluorescence staining of the protein aggregates and ubiquitin in H1 hESC-derived D1 
cultures. Scale bars, 50 μm.
F, Scatter plot showing the correlation between the protein aggregates and ubiquitin in H1 hESC-derived D1
cultures. n = 4 biologically independent experiments, 50 fields of view per experiment.
G, Representative propidium iodide (PI) staining of H1 hESC-derived D1 cultures. Fixed cells were used as 
positive control. n = 4 biologically independent experiments, 5 fields of view per experiment. Scale bars, 50 μm.
H, Representative TUNEL staining of H1 hESC-derived D1 cultures. Positive controls were cells treated with
DNase I. n = 3 biologically independent experiments, 5 fields of view per experiment. Scale bars, 50 μm.
I, Representative immunofluorescence staining of the protein aggregates and TUNEL in H1 hESC-derived D1 
cultures. Scale bars, 50 μm.
Data represent mean ± SD. Statistical significance was determined by one-way ANOVA with a post-hoc Tukey 
test (B) and two-tailed Pearson’s correlation test (D  and  F).
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Figure S3. Effects of ATF6 inhibition or activation on CM differentiation
A, Chemical structure of the ATF6 inhibitor Ceapin-A7 and the ATF6 activator AA147.
B  and  C, Representative (B) and quantitative (C) flow cytometric analysis of cTNT+  cells in H1 hESC- or WTC
hiPSC-derived D10 cultures treated with DMSO, Ceapin-A7, or AA147 during differentiation. n = 6 biologically 
independent experiments. ***P<0.001 vs. DMSO.
D  and  E, Immunofluorescence analysis of the CM markers α-actinin, MEF2C, and cTNT  in H1 hESC (D)- or
WTC hiPSC (E)-derived D10 cultures treated with DMSO, Ceapin-A7, or AA147 during differentiation. Scale 
bars, 200 μm.
F  and  G, Representative (F) and quantitative (G) immunofluorescence analysis of the protein aggregates in H1 
hESC-derived D1 cells treated with DMSO, GSK2606414, or Ceapin-A7 during differentiation. n = 3 biologically
independent experiments, 10 fields of view per experiment. ***P<0.001 vs. DMSO. Scale bars, 50 μm.
Data represent mean ± SD. Statistical significance was determined by one-way ANOVA with a post-hoc
Tukey test.
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Figure S4. Generation of PERK knockout hESCs
A, Schematic of CRISPR/Cas9-mediated knockout (KO) of PERK and genotyping of two PERK KO hESC clones
by Sanger sequencing.
B, Sanger sequencing of the potential off-target sites of sgRNA1 or sgRNA2 predicated by Cas-OFFinder in WT
and PERK KO hESCs.
C, Alkaline phosphatase (AP) staining analysis of WT and PERK KO hESCs. Scale bar, 5 mm.
D, Immunofluorescence analysis of the pluripotency markers NANOG, OCT4, and SOX2 in WT and PERK KO 
hESCs. Scale bars, 100 μm.
E  and  F, Representative (left) and quantitative (right) flow cytometry analysis of pluripotency markers TRA-1-81
(E) and SSEA4 (F) in WT and PERK KO hESCs. n = 4 biologically independent experiments.
G, Immunofluorescence analysis of the proliferation marker Ki67 in WT  and PERK KO hESCs. Scale bars, 100 μm.
Data represent mean ± SD. Statistical significance was determined by one-way ANOVA with a post-hoc Tukey test.
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Figure S5. PERK is essential for cardiogenesis of H1 hESCs
A,  Representative flow cytometry analysis of cTNT expression in D10 cultures differentiated from
WT, PERK KO, or PERK re-expressed H1 hESCs.
B  and  C, Representative (B) and quantitative (C) immunoblot analysis of the CM markers α-actinin 
and cTNT in D10 cultures differentiated from WT, PERK KO, or PERK re-expressed H1 hESCs.
β-actin was used as a loading control. n = 6 biologically independent experiments. ***P<0.001 vs.
ESC;  ###P  < 0.001 vs. the corresponding PERK KO clone.
Data represent mean ± SD. Statistical significance was determined by one-way  ANOVA with a post-
hoc Tukey test.
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Figure S6. PERK is essential for cardiogenesis of WTC hiPSCs
A,  Immunoblot analysis of PERK in WT, PERK KO, and PERK re-expressed WTC hiPSC clones.
B  and  C, Representative (B) and quantitative (C) flow cytometric analysis of cTNT expression in D10
cultures differentiated from WT, PERK KO, or PERK re-expressed WTC hiPSCs. n = 6 biologically 
independent experiments. ***P<0.001 vs. WT;  ###P<0.001 vs. the corresponding PERK KO clone.
D, Immunofluorescence analysis of CM markers in D10 cultures differentiated from WT, PERK KO,
and PERK re-expressed WTC hiPSCs. Scale bars, 200 μm.
E  and  F, Representative (E) and quantitative (F) immunofluorescence analysis of the protein aggregates 
in D1 cultures differentiated from WT, PERK KO, and PERK re-expressed WTC hiPSCs. n = 3 biologically
independent experiments, 10 fields of view per experiment. ***P<0.001 vs. WT;  ###P<0.001 vs. the 
corresponding PERK KO clone. Scale bars, 50 μm.
Data represent mean ± SD. Statistical significance was determined by one-way  ANOVA with a post-
hoc Tukey test.
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Figure S7. PERK is essential for cardiogenesis in an alternative RPMI-B27 cardiac differentiation 
protocol
A, Schematic of the RPMI-B27 cardiac differentiation protocol.
B, Immunofluorescence analysis of CM markers in D10 cultures differentiated from WT, PERK KO, and
PERK re-expressed H1 hESCs using the RPMI-B27 protocol. Scale bars, 200 μm.
C  and  D, Representative (C) and quantitative (D) flow cytometric analysis of cTNT expression in D10 
cultures differentiated from WT, PERK KO, or PERK re-expressed H1 hESCs using the RPMI-B27 protocol.
n = 6 biologically independent experiments. ***P<0.001 vs. WT;  ###P<0.001 vs. the corresponding PERK
KO clone.
Data represent mean ± SD. Statistical significance was determined by one-way ANOVA with a post-hoc 
Tukey test.
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Figure S8. PERK is essential for atrial CM differentiation
A,  Schematic of the atrial CM differentiation protocol.
B, Immunofluorescence analysis of the general CM marker cTNT, ventricular CM marker MLC2v, and atrial
CM marker COUP-TFI in D10 cultures differentiated from H1 hESCs using the protocol descripted in A.
Scale bars, 100 μm.
C  and  D, Representative (C) and quantitative (D) flow cytometric analysis of cTNT expression in D10
cultures differentiated from WT, PERK KO, or PERK re-expressed H1 hESCs using the protocol shown in A.
n = 6 biologically independent experiments. ***P<0.001 vs. WT;  ###P<0.001 vs. the corresponding PERK
KO clone.
Data represent mean ± SD. Statistical significance was determined by one-way ANOVA with a post-hoc 
Tukey test.
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Figure S9. PERK is essential for cardioids differentiation
A, Schematic of the cardioids differentiation protocol.
B, Immunofluorescence analysis of the CM markers MEF2C and cTNT in D7.5 cardioids differentiated from
H1 hESCs using the protocol descripted in A. Scale bars, 200 μm.
C, Immunofluorescence analysis of the CM markers MEF2C and cTNT in D7.5 cardioids differentiated from
WT, PERK KO, and PERK re-expressed H1 hESCs using the protocol shown in A. Scale bars, 200 μm.
D, Immunofluorescence analysis of the mesoderm marker Brachyury in D1.5 cardioids differentiated from 
WT, PERK KO, and PERK re-expressed H1 hESCs using the protocol shown in A. Scale bars, 200 μm.
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Figure S10. PERK is essential for lateral mesoderm differentiation
A, Schematic of the lateral mesoderm differentiation protocol. LM, lateral mesoderm.
B, Immunofluorescence analysis of LM markers NKX2-5 and ISL1 in D2 cultures differentiated from H1
hESCs using the protocol shown in A. Scale bars, 100 μm.
C  and  D, Representative (C) and quantitative (D) immunofluorescence analysis of the protein aggregates 
at each stage of LM differentiation of H1 hESCs. n = 3 biologically independent experiments, 10 fields of
view per experiment. ***P<0.001 vs. ESC;  ###P<0.001 vs. D1. Scale bars, 50 μm.
E  and  F, Representative (E) and quantitative (F) immunofluorescence analysis of the protein aggregates
in D1 ME cells differentiated from WT, PERK KO, and PERK re-expressed H1 hESCs. n = 3 biologically
independent experiments, 10 fields of view per experiment. ***P<0.001 vs. WT;  ###P<0.001 vs. the 
corresponding PERK KO clone. Scale bars, 50 μm.
G  and  H, Representative (G) and quantitative (H) immunofluorescence analysis of the protein aggregates
in D2 LM cells differentiated from WT, PERK KO, and PERK re-expressed H1 hESCs. n = 3 biologically 
independent experiments, 10 fields of view per experiment. ***P<0.001 vs. WT;  ###P<0.001 vs. the 
corresponding PERK KO clone. Scale bars, 50 μm.
Data represent mean ± SD. Statistical significance was determined by one-way ANOVA with a post-hoc 
Tukey test.
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Figure S11. PERK affects the overall protein ubiquitination level of D1 ME cells
A  and  B, Representative (A) and quantitative (B) immunoblot analysis of the ubiquitin in D1 ME cells
differentiated from WT, PERK KO, and PERK re-expressed H1 hESCs. β-actin was used as a loading
control. n = 6 biologically independent experiments.  $$$P<0.001 vs. WT ESC; ***P<0.001 vs. WT D1;
##P<0.01,  ###P<0.001 vs. the corresponding PERK KO clone at D1.
Data represent mean ± SD. Statistical significance was determined by one-way  ANOVA with a post-
hoc Tukey test.
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Figure S12. PERK is dispensable for cell death and proliferation of D1 ME cells
A  and  B, Representative (A) and quantitative (B) immunofluorescence analysis of the propidium
iodide (PI) in D1 cultures differentiated from WT and PERK KO hESCs. n = 3 biologically 
independent experiments, 10 fields of view per experiment. Scale bars, 50 μm.
C  and  D, Representative (C) and quantitative (D) immunofluorescence analysis of the TUNEL
in D1 cultures differentiated from WT and PERK KO hESCs. n = 3 biologically independent 
experiments, 9 fields of view per experiment. Scale bars, 50 μm.
E  and  F, Representative (E) and quantitative (F) immunofluorescence analysis of the proliferation
marker Ki67 in D1 cultures differentiated from WT and PERK KO hESCs. n = 3 biologically 
independent experiments, 10 fields of view per experiment. Scale bars, 50 μm.
Data represent mean ± SD. Statistical significance was determined by one-way ANOVA with a 
post-hoc Tukey test.
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Figure S14. Effect of PERK depletion on CMs with advanced maturity
A, Schematic of the two protocols to obtain CMs.
B, Immunofluorescence analysis of cTNT in CMs differentiated by protocol 1 or protocol 2. scale bars, 20 μm.
C, Heatmap showing the relative expression level of maturation marker genes in CMs differentiated by protocol
1 and protocol 2 as determined by RT-qPCR. n = 6 biologically independent experiments.
D  and  E, Representative (D) and quantitative (E) flow cytometric analysis of cTNT and α-SMA in CMs 
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H  and  I, Representative (H) and quantitative (I) flow cytometric analysis of Annexin V and PI in CMs from
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J, Representative traces of Ca2+  transients in CMs from protocol 2 treated with DMSO or GSK2606414.
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Figure S15. Depletion of PERK disrupt genome-wide transcriptional signatures of developing CMs
A, Pearson’s correlation analysis of all samples in WT and PERK KO hESCs during CM differentiation.
B, Time course RNA-seq data analysis using ImpluseDE2 showing the dynamic gene expression pattern
of WT and PERK KO hESCs during CM differentiation.
C, Gene ontology (GO) analysis reveal that genes that up-regulated during CM differentiation compared
to undifferentiated hESCs (left panel) enrich similar GO terms with the down-regulated genes in PERK KO
cells compared to the WT control (right panel).
D, GO analysis reveal that genes that down-regulated during CM differentiation compared to undifferentiated 
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Figure S18. ATF4 and GRP78 are activated in D1 ME cells
A, Schematic of the ATF4 luciferase reporter construct. Luciferase activity indicates the ATF4
mRNA translation rate, which is regulated by the upstream open reading frames (ORFs).
B, Quantitative analysis of ATF4-luciferase activity in D1 ME cells differentiated from WT, PERK
KO, or PERK re-expressed H1 hESCs. n = 6 biologically independent experiments.  $$$P<0.001
vs. WT ESC; ***P<0.001 vs. WT D1;  ###P<0.001 vs. the corresponding PERK KO clone at D1.
C  and  D, Representative (C) and quantitative (D) immunofluorescence analysis of the 
subcellular distribution of ATF4 in D1 ME cells differentiated from WT, PERK KO, and PERK
re-expressed H1 hESCs.  $$$P<0.001 vs. WT ESC; **P<0.01, ***P<0.001 vs. WT D1;  ###P<0.001
vs. the corresponding PERK KO clone at D1. Scale bars, 20 μm.
E  and  F, Representative (E) and quantitative (F) immunoblot analysis of GRP78 and CHOP
in ESC and D1 cells. β-actin was used as a loading control. n = 6 biologically independent 
experiments. **P<0.01 vs. ESC.
G, Immunofluorescence analysis of GRP78 in ESC and D1 cells. Scale bars, 10 μm.
Data represent mean ± SD. Statistical significance was determined by one-way ANOVA with
a post-hoc Tukey test (B  and  D) and unpaired two-tailed  t-test (F).
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Figure S19. ATF4 activation rescues PERK KO-induced CM differentiation defect
A, Representative flow cytometry analysis of cTNT expression in D10 cultures differentiated
from WT, PERK KO, or ATF4-overexpressed PERK KO H1 hESCs.
B, Immunofluorescence analysis of CM markers in D10 cultures differentiated from WT, PERK 
KO, and ATF4-overexpressed PERK KO WTC hiPSCs. Scale bars, 200 μm.
C  and  D, Representative (C) and quantitative (D) flow cytometry analysis of cTNT expression
in D10 cultures differentiated from WT, PERK KO, or ATF4-overexpressed PERK KO WTC 
hiPSCs. n = 6 biologically independent experiments. ***P<0.001 vs. WT;  ###P<0.001 vs. the 
corresponding PERK KO clone.
E  and  F, Representative (E) and quantitative (F) immunofluorescence analysis of the protein 
aggregates in D1 cultures differentiated from WT, PERK KO, or ATF4-overexpressed PERK KO
WTC hiPSCs. n = 3 biologically independent experiments, 10 fields of view per experiment.
Scale bars, 50 μm. ***P<0.001 vs. WT;  ###P<0.001 vs. the corresponding PERK KO clone.
Data represent mean ± SD. Statistical significance was determined by one-way ANOVA with a 
post-hoc Tukey test.
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Figure S20.  ATF4  knockdown does not affect self-renewal of H1 hESCs
A, AP staining analysis of shScram control and  ATF4  knockdown (KD) H1 hESCs. shATF4-
1 and shATF4-2 represent two independent  ATF4  shRNAs. Scale bar, 5mm.
B  and  C, Immunofluorescence analysis of the pluripotency markers (B) and the proliferation 
marker Ki67 (C) in shScram control and  ATF4  KD H1 hESCs. Scale bars, 100 μm.
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Figure S21.  ATF4  knockdown impairs CM differentiation
A, Representative flow cytometry analysis of cTNT expression in D10 cultures differentiated from
the shScram control and  ATF4  KD H1 hESCs. shATF4-1 and shATF4-2 represent two independent
ATF4 shRNAs.
B  and  C, Representative (B) and quantitative (C) immunoblot analysis of the CM markers α-actinin
and cTNT in D10 cultures differentiated from shScram control and  ATF4  KD H1 hESCs. n = 6
biologically independent experiments. ***P<0.001 vs. shScram.
D  and  E, RT-qPCR (D) and immunoblot (E) analysis of ATF4 in D1 ME cells differentiated from the 
shScram control and  ATF4  KD WTC hiPSCs. n = 6 biologically independent experiments. ***P<0.001
vs. shScram.
F  and  G, Representative (F) and quantitative (G) flow cytometric analysis of cTNT expression in D10 
cultures differentiated from the shScram control and  ATF4  KD WTC hiPSCs. n = 6 biologically
independent experiments. ***P<0.001 vs. shScram.
H, Immunofluorescence analysis of CM markers in D10 cultures differentiated from the shScram
control and  ATF4  KD WTC hiPSCs. Scale bars, 200 μm.
I  and  J, Representative (I) and quantitative (J) immunofluorescence analysis of the protein aggregates 
in D1 cultures differentiated from the shScram control and  ATF4  KD WTC hiPSCs. n = 3 biologically
independent experiments, 10 fields of view per experiment. Scale bars, 50 μm. ***P<0.001 vs. 
shScram.
K  and  L, Representative (K) and quantitative (L) immunoblot analysis of the ubiquitin in D1 ME cells 
differentiated from shScram control and  ATF4  KD H1 hESCs. β-actin was used as a loading control. n 
=
6 biologically independent experiments. ***P<0.001 vs. shScram.
Data represent mean ± SD. Statistical significance was determined by one-way ANOVA with a post-hoc
Tukey test.
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Figure S22. WARS1 activation rescues PERK KO-induced CM differentiation defect
A, Representative flow cytometry analysis of cTNT expression in D10 cultures differentiated from
WT and PERK KO, as well as PERK KO H1 hESCs that receive WARS1-, HERPUD1-, or PSAT1-
overexpression, respectively.
B, Immunofluorescence analysis of CM markers in D10 cultures differentiated from WT, PERK KO,
and WARS1-overexpressed PERK KO WTC hiPSCs. Scale bars, 200 μm.
C  and  D, Representative (C) and quantitative (D) flow cytometric analysis of cTNT expression in 
D10 cultures differentiated from WT, PERK KO, or WARS1-overexpressed PERK KO WTC hiPSCs.
n = 6 biologically independent experiments. ***P<0.001 vs. WT;  ###P<0.001 vs. the corresponding 
PERK KO clone.
E  and  F, Representative (E) and quantitative (F) immunofluorescence analysis of the protein
aggregates in D1 cultures differentiated from WT, PERK KO, and WARS1-overexpressed PERK KO
WTC hiPSCs. n = 3 biologically independent experiments, 10 fields of view per experiment. Scale 
bars, 50 μm. ***P<0.001 vs. WT;  ###P<0.001 vs. the corresponding PERK KO clone.
Data represent mean ± SD. Statistical significance was determined by one-way ANOVA with a post-
hoc Tukey test.
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Figure S23.  WARS1  knockdown does not affect self-renewal of H1 hESCs
A, RT-qPCR analysis of  WARS1  in shScram control and  WARS1  KD ME cells at D1. shWARS1-1
and shWARS1-2 represent two independent  WARS1  shRNAs. n = 6 biologically independent 
experiments. ***P<0.001 vs. shScram.
B, AP staining of shScram control and  WARS1  KD H1 hESCs. Scale bar, 5mm.
C  and  D, Immunofluorescence analysis of the pluripotency markers (C) and the proliferation marker 
Ki67 (D) in shScram control and  WARS1  KD H1 hESCs. Scale bars, 100 μm.
Data represent mean ± SD. Statistical significance was determined by one-way ANOVA with a post-
hoc Tukey test.
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Figure S24.  WARS1  knockdown impairs CM differentiation
A, Representative flow cytometry analysis of cTNT expression in D10 cultures differentiated from shScram 
control and  WARS1  KD H1 hESCs.
B  and  C, Representative (B) and quantitative (C) immunoblot analysis of the CM markers α-actinin and cTNT 
in D10 cultures differentiated from shScram control and  WARS1  KD H1 hESCs. n = 5 biologically independent
experiments. ***P<0.001 vs. shScram.
D, RT-qPCR analysis of  WARS1  in D1 ME cells differentiated from the shScram control and  WARS1  KD WTC 
hiPSCs. shWARS1-1 and shWARS1-2 represent two independent  WARS1  shRNAs. n = 6 biologically
independent experiments. ***P<0.001 vs. shScram.
E  and  F, Representative (E) and quantitative (F) flow cytometric analysis of cTNT expression in D10 cultures 
differentiated from the shScram control and  WARS1  KD WTC hiPSCs. n = 6 biologically independent
experiments. ***P<0.001 vs. shScram.
G, Immunofluorescence analysis of CM markers in D10 cultures differentiated from the shScram control and 
WARS1  KD WTC hiPSCs. Scale bars, 200 μm.
H  and  I, Representative (H) and quantitative (I) immunofluorescence analysis of the protein aggregates in D1 
cultures differentiated from the shScram control and  WARS1  KD WTC hiPSCs. n = 3 biologically independent
experiments, 10 fields of view per experiment. Scale bars, 50 μm. ***P<0.001 vs. shScram.
J  and  K, Representative (J) and quantitative (K) immunoblot analysis of the ubiquitin in D1 ME cells 
differentiated from shScram control and  WARS1  KD H1 hESCs. β-actin was used as a loading control. n = 6
biologically independent experiments. ***P<0.001 vs. shScram.
Data represent mean ± SD. Statistical significance was determined by one-way  ANOVA with a post-hoc Tukey 
test.



 

 

 

Table S1 Primer sequences used in this paper 

Primer Sequence(5’→3’) Usage 

shATF4-1-F 
CCGGCCACTCCAGATCATTCCTTTACTCGAG

TAAAGGAATGATCTGGAGTGGTTTTTG 

Construct knock 

down plasmid 

shATF4-1-R 
AATTCAAAAACCACTCCAGATCATTCCTTTA

CTCGAGTAAAGGAATGATCTGGAGTGG 

shATF4-2-F 
CCGGCCTCAGTGCATAAAGGAGGAACTCGA

GTTCCTCCTTTATGCACTGAGGTTTTTG 

shATF4-2-R 
AATTCAAAAACCTCAGTGCATAAAGGAGGA

ACTCGAGTTCCTCCTTTATGCACTGAGG 

shWARS1-1-F 
CCGGGTCACGGATGAGATAGTGAAACTCGA

GTTTCACTATCTCATCCGTGACTTTTTG 

shWARS1-1-R 
AATTCAAAAAGTCACGGATGAGATAGTGAA

ACTCGAGTTTCACTATCTCATCCGTGAC 

shWARS1-2-F 
CCGGCTTTGACATCAACAAGACTTTCTCGAG

AAAGTCTTGTTGATGTCAAAGTTTTTG 

shWARS1-2-R 
AATTCAAAAACTTTGACATCAACAAGACTTT

CTCGAGAAAGTCTTGTTGATGTCAAAG 

OE-hPERK-F 
TCCTACCCTCGTAAAGAATTCATGGAGCGCG

CCATCAGC  

Construct 

overexpression 

plasmid 

OE-hPERK-R 

CAGGGGAGGTGGTCTGGATCCCTACTTATCG

TCGTCATCCTTGTAATCATTGCTTGGCAAAG

GGCTATG 

OE-hATF4-F 
TCCTACCCTCGTAAAGAATTCATGACCGAAA

TGAGCTTCCTGA 

OE-hATF4-R 

CAGGGGAGGTGGTCTGGATCCCTACTTATCG

TCGTCATCCTTGTAATCGGGGACCCTTTTCTT

CCCC 

OE-hWARS1-F 
TCCTACCCTCGTAAAGAATTCATGCCCAACA

GTGAGCCCG 

OE-hWARS1-R 

CAGGGGAGGTGGTCTGGATCCCTACTTATCG

TCGTCATCCTTGTAATCCTGAAAGTCGAAGG

ACAGCTTCC 

OE-hPSAT1-F 
TCCTACCCTCGTAAAGAATTCATGGACGCCC

CCAGGCAG 

OE-hPSAT1-R 

CAGGGGAGGTGGTCTGGATCCTCACTTATCG

TCGTCATCCTTGTAATCTAGCTGATGCATCTC

CAAAAATTT 

OE-hHERPUD1-F 
TCCTACCCTCGTAAAGAATTCATGGAGTCCG

AGACCGAACC 

OE-hHERPUD1-R 

CAGGGGAGGTGGTCTGGATCCTCACTTATCG

TCGTCATCCTTGTAATCGTTTGCGATGGCTG

GGGG 

hSOX17-qPCR-F GTGGACCGCACGGAATTTG 

RT-qPCR 

hSOX17-qPCR-R GGAGATTCACACCGGAGTCA 

hFOXA2-qPCR-F GGAGCAGCTACTATGCAGAGC 

hFOXA2-qPCR-R CGTGTTCATGCCGTTCATCC 

hGATA4-qPCR-F CGACACCCCAATCTCGATATG 



 

 

 

hGATA4-qPCR-R GTTGCACAGATAGTGACCCGT 

hOTX2-qPCR-F CATGCAGAGGTCCTATCCCAT 

hOTX2-qPCR-R AAGCTGGGGACTGATTGAGAT 

hPAX6-qPCR-F TCGAAGGGCCAAATGGAGAAGAGAAG 

hPAX6-qPCR-R GGTGGGTTGTGGAATTGGTTGGTAGA 

hNESTIN-qPCR-F GGCAGCGTTGGAACAGAGG 

hNESTIN-qPCR-R CCTTCCAGGACCTGAGCGA 

hOCT4-qPCR-F AGTGCCCGAAACCCACACTG 

hOCT4-qPCR-R ACCACACTCGGACCACATCCT 

hNANOG-qPCR-F TTTGTGGGCCTGAAGAAAACT 

hNANOG-qPCR-R AGGGCTGTCCTGAATAAGCAG 

hSOX2-qPCR-F CACTGCCCCTCTCACACATG 

hSOX2-qPCR-R TCCCATTTCCCTCGTTTTTCT 

hATF4-qPCR-F GCTAAGGCGGGCTCCTCCGA 

hATF4-qPCR-R ACCCAACAGGGCATCCAAGTCG 

hTBXT-qPCR-F CAGTGGCAGTCTCAGGTTAAGAAGGA 

hTBXT-qPCR-R CGCTACTGCAGGTGTGAGCAA 

hEOMES-qPCR-F CATGCAGGGCAACAAAATGTATG 

hEOMES-qPCR-R GTGTTGTTGTTATTTGCGCCTTTGT 

hTBX6-qPCR-F AGCCTGTGTCTTTCCATCGT 

hTBX6-qPCR-R GCTGCCCGAACTAGGTGTAT 

hNKX2-5-qPCR-F CAAGTGTGCGTCTGCCTTT 

hNKX2-5-qPCR-R CAGCTCTTTCTTTTCGGCTCTA 

hISL1-qPCR-F ATCAGGTTGTACGGGATCAAATG  

hISL1-qPCR-R ATGTGATACACCTTGGAGCG 

hMYH6-qPCR-F GCTGGTCACCAACAATCCCTA 

hMYH6-qPCR-R CGTCAAAGGCACTATCGGTGG 

hMYL7-qPCR-F ACATCATCACCCATGGAGACGAGA 

hMYL7-qPCR-R GCAACAGAGTTTATTGAGGTGCCC 

hTNNT2-qPCR-F TTCACCAAAGATCTGCTCCTCGCT 

hTNNT2-qPCR-R TTATTACTGGTGTGGAGTGGGTGTGG 

hWARS1-qPCR-F GTTTCCACGGACGCCCA 

hWARS1-qPCR-R GACGCATTTCCCGCTTTGAG 

hHERPUD1-qPCR-F CCGGTTACACACCCTATGGG 

hHERPUD1-qPCR-R TGAGGAGCAGCATTCTGATTG 

hPSAT1-qPCR-F TGCCGCACTCAGTGTTGTTAG 

hPSAT1-qPCR-R GCAATTCCCGCACAAGATTCT 

hGAPDH-qPCR-F AAGGTGAAGGTCGGAGTCAAC 

hGAPDH-qPCR-R GGGGTCATTGATGGCAACAATA 

hACTB-qPCR-F CCTGTACGCCAACACAGTGC 

hACTB-qPCR-R ATACTCCTGCTTGCTGATCC 

hPERK-qPCR-F AATGCCTGGGACGTGGTGGC 

hPERK-qPCR-R TGGTGGTGCTTCGAGCCAGG 

hSCN5A-qPCR-F AGCTGGCTGATGTGATGGTC  

hSCN5A-qPCR-R CACTTGTGCCTTAGGTTGCC 

hKCNJ5-qPCR-F GCTGGCGATTCTAGGAATGC 

hKCNJ5-qPCR-R TCTGTGGCAATGGGGACATAA 



 

 

 

hKCNIP2-qPCR-F ATGGGCAAGTACACGTACCCT 

hKCNIP2-qPCR-R GTCACCACACCATCCTTGTTT 

hCACNB1-qPCR-F GGCTACGAGGTTACAGACATGA 

hCACNB1-qPCR-R CTGCCGTCACACGAGTGAT 

hCACNA1G-qPCR-F ACACTTGGAACCGGCTTGAC 

hCACNA1G-qPCR-R AGCACACGGACTGTCCTGA 

hCACNA1D-qPCR-F GCTTCGGAACCGATGCTTC 

hCACNA1D-qPCR-R TCCTCGTTCTCTGTCTGGTAAT 

hKCNJ3-qPCR-F CCTGGCTTTTCATGGCGTC 

hKCNJ3-qPCR-R GCAAGGCGTGTAGTTACCG 

hATP2A2-qPCR-F CATCAAGCACACTGATCCCGT 

hATP2A2-qPCR-R CCACTCCCATAGCTTTCCCAG 

hMYL2-qPCR-F TTGGGCGAGTGAACGTGAAAA 

hMYL2-qPCR-R CCGAACGTAATCAGCCTTCAG 

hPERK-Oligo siRNA GCAUCUGCCUGGUUACUUATT 
Oligo siRNA for 

knock down  
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