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1. Supplementary Methods 

1.1 Inclusion and exclusion criteria 

We retrospectively reviewed data for 6860 patients in five academic medical centers. As Supplementary 

Figure 1 shown, this multi-center data came from different cities of China: Peking University People’s 

Hospital is located in the north of China (Beijing city), and the other hospitals are located in the southwest 

of China (across three distinct cities in Sichuan Province). Supplementary Figure 2 shows the inclusion 

and exclusion criteria. In this study, 4332 patients with 19,300 CT scans underwent physical examination 

at West China Hospital of Sichuan University and Mianzhu People’s Hospital were incorporated as the 

cohort 1 for self-supervised pre-training. 2028 non-small-cell lung cancer (NSCLC) patients with follow-

up data and underwent CT examination before initial treatment at Peking University People’s Hospital 

and Chengdu Shangjin Nanfu Hospital were enrolled in the cohort 2 for multi-task learning network fine-

tuning and internal validation. 500 NSCLC patients with follow-up data and underwent CT examination 

before initial treatment at Guangan People’s Hospital were incorporated as cohort 3 for external 

validation. We followed,1 to exclude the cases with unqualified CT images or missing values of clinical 

data. Specifically, in the cohort 1 for self-supervised pre-training, we excluded 1323 unqualified CT 

images, therefore obtained 17,977 CT scans. In the cohort 2 for the development of multi-task learning 

network, we excluded 19 patients with missing values of clinical data and 121 patients with unqualified 

CTs, therefore obtained 1177 patients for fine-tuning, 711 patients for internal validation. In the cohort 3 

for external validation of our method, we excluded 8 patients with missing values of clinical data and 24 

patients with unqualified CTs, therefore obtained an external validation set including 468 patients. 

1.2 CT-based self-supervised pre-training framework using contrastive learning 

To learn general visual representations from 3D CT images, we built a self-supervised learning CTCLR 

(CT-based Contrastive Learning of Representations) framework, which was pre-trained on large 

amounts of unlabeled CT images. Through contrastive learning, CTCLR learned the visual representation 

by distinguish positive CT pairs against negative ones. The proposed CTCLR consists of four steps, 

including 3D image augmentation, 3D visual feature extraction, non-linear projection and contrastive 

learning.  
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Given a 3D CT image 𝑥" from a minibatch of 𝑁 samples, the image is firstly transformed into two 

correlated views 𝑥$  and 𝑥%  by using the 3D image augmentation strategies. We employed six 3D 

augmentation strategies including random Gaussian noise, random Gaussian blur, random brightness 

transform, random contrast transform, random Gamma transform and random crop. The augmented 

views from the same CT image are clustered together, whereas others are pushed further away. 

Then we employed 3D ResNet,2 as the feature extractor 𝑓(⋅)  to map the CT images into vector 

representations and multi-layer perceptron (MLP) with one hidden layer followed by ReLU activation 

function as the non-linear projection head 𝑔(⋅) to project feature representations into the space where 

contrastive loss was applied.  

𝑧" = 𝑔(𝑓(𝑥$)) 

Finally, the normalized temperature-scaled cross entropy loss (NT-Xent),3 is regarded as the contrastive 

loss applied into 2𝑁 data points to maximize the similarity of positive pairs. The loss function is defined 

as 

𝑙(",/) = −𝑙𝑜𝑔
𝑒𝑥𝑝(𝑠𝑖𝑚(𝑧", 𝑧/)/𝜏)
1[;<"]𝑒𝑥𝑝(𝑠𝑖𝑚(𝑧", 𝑧;)/𝜏)>?

;@A
 

where 𝑁 is the batch size and 𝜏 denotes the temperature parameter of which value is set to 0.1. 𝑧" and 

𝑧/ are the vector representations from a positive pair generated by the non-linear projection head. 1[;<"] 

is the indicator function of which value is set to 1 when 𝑘 ≠ 𝑖. We followed SimCLR,3 to implement 

cosine similarity as 𝑠𝑖𝑚(𝑧", 𝑧/) =
DEFDG
DE DG

. 

1.3 Multi-task learning network 

We developed a multi-task learning network to predict a patient’s OS risk, the probability of early stage 

(stage I), and EGFR genotype. The proposed multi-task learning network had three branches, including 

one primary branch for OS risk prediction and two extra branches for auxiliary tasks (early stage and 

EGFR genotype detection). We employed ResNet,2 as the backbone of our multi-task learning network. 

Given a 3D CT image 𝑥" , the proposed multi-task learning network ℎ(⋅) generated three predicted 

value, including OS risk 𝑠", the probability of EGFR mutation 𝑚" and the probability of early stage 𝑝". 

𝑠", 𝑚", 𝑝" = ℎ(𝑥"; 𝜃) 

where 𝜃 represents the parameter of the network ℎ(⋅). 

The rationale for combining these tasks in a unified model is that EGFR genotype and cancer stage have 
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strong association with patients’ prognosis. We hypothesized that integrated these three tasks into a 

unified network might improve the prediction accuracy of OS risk. Thus, we designed a fusion layer to 

share feature representations obtained from different tasks in different branches at multi-scale levels. 

Specifically, the input was a 3D tensor concatenated from three feature maps obtained from 

corresponding network branches. Then the concatenated 3D tensor was input into two convolution layers. 

Both layers use a 3×3 kernel and followed by a ReLU activation function. By adopting fusion layers, 

different feature representations of prognosis-related tasks were shared and fused, which might provide 

primary task with more useful prognostic knowledge. 

For the prediction of OS risk, we leveraged the negative log partial likelihood,4 as the loss function to 

optimize the primary branch of the multi-task learning network: 

𝐿N = − 𝑠" − 𝑙𝑜𝑔 𝑒NE
/∈ℜ QE":SE@A

 

where the values 𝑇", 𝐸", 𝑠" are the respective event time, event indicator and the predicted death rate 

for the 𝑖VW observation. 𝑖: 𝐸" = 1  represents the set of patients with an observation event of death 

(𝐸" = 1). ℜ 𝑇" = 𝑖: 𝑇" ≥ 𝑡  is the set where patients are still alive at time 𝑡. 

For the prediction of the other two auxiliary tasks, cross entropy loss was employed as the loss function: 

𝐿Z[\] = 𝐿^_ 𝑚", 𝑌"a  

𝐿Z[\b = 𝐿^_ 𝑝", 𝑌"
c  

where 𝐿Z[\] and 𝐿Z[\b represent the loss function for the EGFR genotype detection and early stage 

prediction tasks respectively. 𝑌"a and 𝑌"
c are the corresponding labels of the two auxiliary tasks. 

Therefore, the objective loss ℒ to optimize the entire multi-task learning network is the following: 

ℒ = 𝛼𝐿N + 𝛽𝐿Z[\] + 𝛾𝐿Z[\b 

where 𝛼, 𝛽 and 𝛾 are the soft parameters controlling the loss of three different tasks. To give the 

higher importance to the primary task of OS risk prediction, we used 𝛼 = 0.4, 𝛽 = 0.3 and 𝛾 = 0.3. 

1.4 Training details 

In this study, the proposed IPES was implemented on Pytorch and trained on NVIDIA A10 GPUs. For 

the self-supervised pre-training framework, CTCLR was updated by AdamW optimizer with a learning 

rate of 10-3, a weight decay of 10-5 and a batch size of 1,024. The number of maximum epochs was set 
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to 200. For the down-stream multi-task learning-based fine-tuning, model was updated by Adam 

optimizer with a learning rate of 3×10jk, a batch size of 64 and the fine-tuning epochs of 50. 

1.5 Sample size estimation and study protocol 

According to the previous study,5 which predicts the OS for stage I-IIIA NSCLC, the 5-year death rate 

of the subgroup (A) to receive additional survival benefit is 39.1%, whereas subgroup (B) showed a 

higher 5-year death rate of 83.3%. The ratio of the number of patients in subgroup (A) to subgroup (B) 

is approximately 5.75. Based on the above discussion, the results of the estimated sample sizes by 

statsmodels (Version: 0.14.0) on Python (Version: 3.9.1) are 43 and 57 for the two subgroups (power = 

0.90), with a two-sided alpha of 0.05. 

This study corresponds to the previously registered study (ChiCTR1800015700), and it was a continued 

study based on the above-registered study. Therefore, this study was not additionally registered as a 

clinical trial. 

1.6 Software materials 

In this study, we exploited several software and packages for data analysis and visualization: (1) Our 

IPES and Grad-CAM algorithm was implemented using PyTorch (Version: 1.7.1) on Python (3.9.1). (2) 

The cutoff IPES-score was selected by X-tile software (Version: 3.6.1). (3) We developed the Cox 

proportional hazard model by using lifelines package (Version: 0.27.0) on Python (Version: 3.9.1). (4) 

Sample size evaluation was performed using statsmodels (Version: 0.14.0) on Python (Version: 3.9.1). 
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3. Supplementary Figures 

Supplementary Figure S1. Maps describing the hospitals’ location along with the corresponding 

number of patients in this study. 
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Supplementary Figure S2. Flowchart escribing the datasets included in this study for self-

supervised pre-training and multi-task learning. Patients inclusion and exclusion criteria were also 

considered. 
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Supplementary Figure S3. Pre-processing procedure of CT images. Our CT image pre-processing 

procedure consists of five major steps including lung mask extraction, HU conversion, image resampling, 

intensity normalization and ROI generation. 
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Supplementary Figure S4. IPES performance on detecting early-stage. (a)-(b) ROC curves represent 
the performance of the IPES, metadata-based model and the combined model in the (a) internal validation 
set and (b) external validation set. 
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Supplementary Figure S5. IPES performance on predicting OS risk of stage I-III resected NSCLC 

patients with EGFR mutation or EGFR wild-type status. (a)-(b) Kaplan-Meier curves of the low- and 

high-risk subgroups predicted by IPES for stage I-III resected NSCLC patients with (a) EGFR mutation 

and (b) EGFR wild-type status in the external validation set. In the Kaplan-Meier curves, the horizontal 

axis represents survival time (months) and the vertical axis represents survival probability. 
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4. Supplementary Tables 

Supplementary Table S1. Stage I-III resected patients’ characteristics in the training, internal 
validation and external validation sets. 

 
Training set  

(n=705) 

Internal validation set 

(n=433) 

External validation set 

(n=303) 

Sex 

Male 308 (43.6%) 192 (44.3%) 130 (42.9%) 

Female 397 (56.4%) 241 (55.7%) 173 (57.1%) 

Age, years 58 (48–68) 59 (49–69) 58 (49–67) 

Smoking status 

Former 222 (31.4%) 137 (31.6%) 101 (33.3%) 

Never 483 (68.6%) 296 (68.4%) 202 (66.7%) 

Cancer family history 

Yes 49 (6.9%) 42 (9.6%) 23 (7.5%) 

No 656 (93.1%) 391 (90.4%) 280 (92.5%) 

Tumor family history 

Yes 83 (11.7%) 52 (12.0%) 33 (10.8%) 

No 622 (88.3%) 381 (88.0%) 270 (89.2%) 

Histology 

Adenocarcinoma 636 (90.2%) 391 (90.3%) 273 (90.0%) 

Others 69 (9.8%) 42 (9.7%) 248 (10.0%) 

Stage 

I 433 (61.4%) 258 (59.6%) 190 (62.7%) 

II-III 272 (38.6%) 175 (40.4%) 113 (37.3%) 

EGFR genotype 

mutant 442 (62.6%) 296 (68.3%) 190 (62.7%) 

wild-type 263 (37.4%) 137 (31.7%) 113 (37.3%) 

Death status 

Dead 89 (12.6%) 61 (14.0%) 40 (13.2%) 

Censored 616 (87.4%) 372 (86.0%) 263 (86.8%) 

Data are n (%) or mean (SD). EGFR= epidermal growth factor receptor. Cancer family history = family 
history of lung cancer. Tumor family history = family history of other cancers (excluding lung cancer). 
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Supplementary Table S2. C-index of the IPES on predicting OS risk for stage I-III resected NSCLC 
patients in the training, internal validation and external validation sets. 

 C-index (95% CI) 

Training set 0.806 (0.744–0.846) 

Internal validation set 0.783 (0.744–0.825) 

External validation set 0.817 (0.786–0.849) 

C-index=concordance index. CI=confidence interval. 
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Supplementary Table S3. C-index comparison of the IPES (combine TNM stage with MTL-score) 
with the TNM staging system (using stage alone) on predicting OS risk for stage I-III resected 
NSCLC patients. The internal validation set was employed to compare the IPES with another baseline. 

 C-index (95% CI) 

IPES 0.783 (0.744–0.825) 

TNM staging system 0.733 (0.684–0.788) 

IPES=intelligent prognosis evaluation system. C-index=concordance index. CI=confidence interval. 
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Supplementary Table S4. C-index comparison of the IPES (based on self-supervised pre-training 
and multi-task learning) with the multi-task learning method (without self-supervised learning) 
and single-task learning method (without both self-supervised pre-training and multi-task learning) 
on predicting OS risk for stage I-III resected NSCLC patients. The internal validation set was 
employed to compare the IPES with other baselines.  

 C-index (95% CI) 

IPES 0.783 (0.744–0.825) 

Multi-task learning 0.765 (0.720–0.816) 

Single-task learning 0.741 (0.695–0.798) 

IPES=intelligent prognosis evaluation system. C-index=concordance index. CI=confidence interval. 
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Supplementary Table S5. Performance comparison on early-stage prediction based on the IPES, 
metadata-based model and combined model in the training, internal validation and external 
validation sets. 

Method AUC (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) 

Training Set 

Combined 0.901 (0.883–0.918) 0.808 (0.786–0.828) 0.777 (0.744–0.809) 0.860 (0.829–0.892) 

IPES 0.846 (0.822–0.870) 0.765(0.732–0.792) 0.769 (0.736–0.797) 0.760 (0.710–0.801) 

Metadata-based 0.781 (0.751–0.806) 0.701 (0.675–0.726) 0.688 (0.653–0.724) 0.722 (0.678–0.762) 

Internal Validation Set 

Combined 0.820 (0.800–0.844) 0.742 (0.712–0.771) 0.698 (0.666–0.731) 0.816 (0.783–0.854) 

IPES 0.804 (0.767–0.831) 0.739 (0.715–0.762) 0.694 (0.660–0.720) 0.813 (0.769–0.853) 

Metadata-based 0.610 (0.582–0.647) 0.600 (0.575–0.633) 0.635 (0.600–0.665) 0.543 (0.497–0.585) 

External Validation Set 

Combined 0.847 (0.823–0.866) 0.779 (0.750–0.800) 0.744 (0.708–0.782) 0.828 (0.796–0.857) 

IPES 0.837 (0.816–0.863) 0.771 (0.745–0.798) 0.707 (0.668–0.740) 0.859 (0.823–0.893) 

Metadata-based 0.654 (0.624–0.687) 0.607 (0.583–0.645) 0.498 (0.455–0.540) 0.758 (0.718–0.792) 

IPES=intelligent prognosis evaluation system. AUC=area under the curve. CI=confidence interval. 
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Supplementary Table S6. Death rate for the low- and high-risk subgroups predicted by IPES on 
stage I and II-III resected NSCLC patients in the internal validation set. 

 
Number of 

participants 

Number of 

events (5-year) 

Number of 

events 

Death rate 

(5-year) 
Death rate 

Hazard ratio 

(95% CI) 
p-value 

Stage I 

low risk 230 8 8 3.5% 3.5% 0.10 (0.04–0.26) 0.0029 

high risk 28 9 10 32.1% 35.7% 4.25 (1.96–9.19) NA 

overall 258 17 18 6.6% 7.0% NA NA 

Stage II-III 

low risk 94 14 15 14.9% 16.0% 0.44 (0.24–0.83) 0.012 

high risk 81 26 28 32.1% 34.6% 2.26 (1.20–4.25) NA 

overall 175 40 43 22.9% 24.6% NA NA 

NA=not applicable. CI=confidence interval. 
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Supplementary Table S7. Performance comparison on EGFR genotype prediction based on the 
IPES, metadata-based model and combined model in the training, internal validation and external 
validation sets.  

 AUC (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) 

Training Set 

Combined 0.917 (0.903–0.933) 0.825 (0.794–0.843) 0.864 (0.827–0.895) 0.802 (0.773–0.831) 

IPES 0.844 (0.817–0.864) 0.748 (0.725–0.774) 0.776 (0.740–0.807) 0.731 (0.696–0.756) 

Metadata 0.777 (0.750–0.805) 0.729 (0.704–0.753) 0.711 (0.673–0.752) 0.740 (0.706–0.766) 

Internal Validation Set 

Combined 0.851(0.823–0.874) 0.763 (0.740–0.787) 0.714 (0.662–0.753) 0.790 (0.760–0.820) 

IPES 0.819 (0.793–0.840) 0.726 (0.703–0.744) 0.777 (0.733–0.828) 0.698 (0.666–0.732) 

Metadata 0.739 (0.711–0.764) 0.691 (0.669–0.720) 0.671 (0.625–0.726) 0.702 (0.675–0.733) 

External Validation Set 

Combined 0.824 (0.799–0.844) 0.735 (0.708–0.761) 0.725 (0.688–0.765) 0.741 (0.697–0.776) 

IPES 0.791 (0.761–0.825) 0.722 (0.697–0.745) 0.791 (0.749–0.828) 0.678 (0.643–0.709) 

Metadata 0.710 (0.677–0.745) 0.682 (0.659–0.710) 0.593 (0.549–0.634) 0.737 (0.702–0.776) 

IPES=intelligent prognosis evaluation system. AUC=area under the curve. CI=confidence interval. 
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Supplementary Table S8. C-index of the IPES on predicting OS risk for stage I-III resected NSCLC 
patients with EGFR mutation and EGFR wild-type status. 

 EGFR mutation (C-index (95% CI)) EGFR wild-type (C-index (95% CI)) 

Training set 0.824 (0.777–0.868) 0.760 (0.714–0.809) 

Internal validation set 0.778 (0.723–0.824) 0.762 (0.726–0.802) 

External validation set 0.803 (0.774–0.837) 0.793 (0.768–0.827) 

EGFR= epidermal growth factor receptor. C-index=concordance index. CI=confidence interval. 
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Supplementary Table S9. Death rate for the low- and high-risk subgroups predicted by IPES on 
stage I and II-III resected NSCLC patients with EGFR mutation status in internal validation set. 

 
Number of 

participants 

Number of 

events (5-year) 

Number of 

events 

Death rate 

(5-year) 
Death rate 

Hazard ratio 

(95% CI) 
p-value 

Stage I 

low risk 183 5 5 2.7% 2.7% 0.09 (0.03–0.30) <0.0001 

high risk 14 5 5 35.7% 35.7% 5.09 (1.74–14.90) NA 

overall 197 10 10 5.1% 5.1% NA NA 

Stage II-III 

low risk 89 16 18 18.0% 20.2% 0.26 (0.10–0.67) 0.0045 

high risk 10 5 6 50.0% 60.0% 3.92 (1.53–10.02) NA 

overall 99 21 24 21.2% 24.2% NA NA 

NA=not applicable. CI=confidence interval. 
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Supplementary Table S10. Death rate for the low- and high-risk subgroups predicted by IPES on 
stage I and II-III resected NSCLC patients with EGFR wild-type status in internal validation set. 

 
Number of 

participants 

Number of 

events (5-year) 

Number of 

events 

Death rate 

(5-year) 
Death rate 

Hazard ratio 

(95% CI) 
p-value 

Stage I 

low risk 51 3 3 5.9% 5.9% 0.13 (0.03–0.53) 0.0042 

high risk 10 4 5 40.0% 50.0% 8.54 (1.97–37.00) NA 

overall 61 7 8 11.5% 13.1% NA NA 

Stage II-III 

low risk 52 7 7 13.5% 13.5% 0.23 (0.09–0.58) 0.00081 

high risk 24 12 12 50.0% 50.0% 4.71 (1.79–12.42) NA 

overall 76 19 19 25.0% 25.0% NA NA 

NA=not applicable. CI=confidence interval. 

 

 

 

 

 
 


