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Figure S1 for Figure 1: HNF4a isoforms preferentially regulate genes in fetal liver and
liver cancer.

(4) Scatterplot of RNA-seq log2 fold-change (log2FC) values between WT and a7HMZ livers,
plotted versus mouse liver HNF4a knockout (KO) microarray data. Colored data points with
padj <0.01 in both datasets: blue dots, up in WT vs. a7HMZ; red dots, up in a7HMZ vs. WT.
Numbers indicate highlighted genes in each quadrant. (8) FPKM barplots from RNA-seq of
genes downregulated in a7HMZ, but more highly expressed in E14.5 fetal livers compared to
adult. * padj <0.01. (C) Liver-to-body weight ratio of 14- and 21-day old mice (n=11 to 24). * p
<0.01 One-way ANOVA 14-day; # p <0.05 Student’s T-test 21-day. (D) as in (4) except WT
and a7HMZ RNA-seq plotted vs. RNA-seq from murine hepatoma cell line (Hepalclc7)
compared to non tumorigenic C57BL/6 control. () FPKM barplots of proliferation genes from

RNA-seq. * padj < 0.01. See Table S2AC for highlighted genes in (4) and (D).
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Figure S2 for Figure 2: Dysregulation of nuclear receptors (NR) by HNF4a isoforms in the

mouse liver.

(4) Heatmap of regularized log-transformed (rlog) read counts for all NR in WT and a7THMZ

males. Arrow, NR discussed in text. FPKM barplots of NR involved in the regulation of the

circadian clock (B) and sex-specific expression of Cytochrome P450 genes (C) in WT and

a7HMZ males. * padj < 0.01; # padj <0.05
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Figure S3 for Figure 4. Motif analysis of HNF4a ChIP-seq peaks categorized by HNF4a

motifs.

Categorization of HNF4a ChlPseq peaks unique to WT (4) and a7HMZ livers (B) into four

groups based on highest SVM HNF4a motif score, as indicated. Number of unique peaks for

each genotype are given in parentheses. HNF4a SVM-derived binding motifs are shown. Top

three motifs derived from de novo MEME-ChIP analysis are shown with the transcription

factors corresponding to the motifs listed below. NR, HNF4a- like DR1 motif.
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Figure S4 for Figure 5: Examples of dysregulated genes with unique ChIP-seq peaks.

(4) UCSC Genome Browser view of four genes specific to a7HMZ livers with respect to both
expression (RNAseq) and binding (ChIP-signal within ~10 kb of TSS). ChIP-seq and uniquely
bound regions are in the top two tracks; RNA-seq from 10:30 AM is in the bottom two tracks.
(B) as in (A) but of two genes specific to WT livers. (C) as in (4) but of three genes with
differential expression between WT and a7HMZ livers but no difference in ChIPseq peaks. (D)
RIME results showing proteins involved in signaling pathways uniquely bound to HNF4a in

WT or a7HMZ livers at 10:30 AM and 20:30.
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Figure SS for Figure 6: HNF4a isoforms impact the circadian response and are regulated
by the clock.

(4) Barplots of FPKM values for core circadian TFs not significantly dysregulated (padj > 0.05)
in WT and a7HMZ livers. (B) Representative immunoblots showing levels of P1- and P2-
HNF4a protein in WT and Clock KO mouse liver whole cell extracts at the indicated time points,
using antibodies that recognize either a single isoform (P1 or P2) or both isoforms (P1/P2). Also
shown are BMALLI (4rntl) and P84. (C) Quantification of BMALI1, P1-HNF4a and P2-HNF4a
protein from immunoblots of individual livers (n=3-4) from WT and Clock KO mice throughout

the circadian cycle. * p <0.01; ** p <0.001; *** p <0.001 by two-tailed Student’s T-test.
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Figure S6 for Figure 7: Metabolic effects of P2-HNF4a in the adult liver.

(4) Pathway enrichment for known primary metabolites dysregulated between WT and a7HMZ
livers, with a Mann-Whitney U-test p < 0.05. (B,C,E) FPKM values for the indicated genotypes
and time points (Fed in C is 10:30 AM) * padj < 0.01; # padj < 0.05. (D) Bar plots for Krebs
cycle metabolites trending towards repression in a7HMZ, but not statistically significant. (F)
Heatmap of row normalized levels for known complex lipids in WT and a7HMZ livers

(Benjamini-Hochberg padj < 0.05).
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Figure S7 for Figure 7: PCA and Sample Distance Matrix for all RNA-seq samples.

(4) PCA analysis of all RNA-seq samples using distance matrix for entire transcriptome.
Biological replicates denoted by underscores and digit, fasting samples denoted by “ F”. (B)
Sample Distance Matrix for each RNA-seq replicate, including fasting, calculated for entire
transcriptome. Dark blue indicates smaller distance which implies high degree of similarity. (C)
Left, circulating blood glucose levels of male mice (~6 mo. old) starting at 24 hr after food was
removed (ZT11). Mice were re-fed after 72 hr of fasting. WT and a1HMZ n=5; a 7THMZ n= 6
for 24, 36 and 48 hr, n=4 for 60 hr, n=3 for remaining time points. #, p< 0.05 a1HMZ vs. WT; *
p<0.01 a1HMZ vs. a7THMZ. Right, blood glucose levels from fed males (3 to 6 mo. old) at
ZT11. WT n=9, alHMZ n =10, a7HMZ n= 7. #, p< 0.05 a1HMZ versus WT. p=0.055 for
olHMZ vs. a 7THMZ. (D) Rose plots of All Proteins from Robles et al., 2014 (lef?) filtered for

DEGs at any time point (10:30, 13:30, 20:30, padj < 0.05) specific for a7HMZ (middle) or WT

(right).



